
Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    54 | P a g e  

 

 

 

 

 

 

Learning Physics And Biology In Virtual Laboratory 
 

Anand Deshpande*, Deval Shah**, Rohit Kawale***, Saif Vazir**** 
*(Software Engineer, Samsung R&D Institute, Bangalore, India 

**(Jamnalal Bajaj Institute of Management Studies (JBIMS), Mumbai, India 

***(Software Engineer, Barclays, Pune, India  

****(Department of Computer Science, Stony Brook University, NY,  USA 

Corresponding Author: Anand Deshpande 

 

ABSTRACT:It is very common to find educational institutions in rural India where there are no equipments 

available for performing academic experiments. This problem can be mitigated with the help of Virtual Reality. 

We have used Google Cardboard as the Head Mounted Display and Leap Motion for interacting with the 

application. The cost of these devices is low so, we have succeeded in creating a virtual laboratory at a cost 

which is less than the cost of setting up and maintaining a real laboratory. Although it has been developed at low 

cost, it has a few drawbacks. Using the application requires large amount of practice and prolonged usage can 

lead to nausea and disorientation. VR is still in the early stages, but it has huge potential. This application can be 

further expanded to include a wide range of laboratories like Chemistry and Mechanics. If this low cost solution 

can be implemented in schools and colleges, it will provide facilities to students and save a huge amount of 

money for institutions. Effective implementation of such a solution will improve the quality of practical 

education to a great extent. With further improvements in VR hardware, the problems of accuracy, portability 

and VR sickness can be solved. 

Keywords:Cardboard, LeapMotion, Unity, Virtual Reality, Physics Laboratory, Biology Laboratory 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date Of Submission:04-09-2018                                                                         Date Of Acceptance: 20-09-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 
 Large number of students, in developing 

countries like India, do not have the access to 

adequate resources in the practical laboratories of 

their educational institutions. The outcome of this 

is, even though the students have the theoretical 

knowledge required, they lack the understanding 

associated with the practical implementation of the 

theory. This leads to low quality of the workforce. 

The major reason for this problem is the lack of 

monetary reserves in the institutions. The purpose 

of the project is to create a laboratory using Virtual 

Reality[1] with the use of minimum hardware, so 

that the institutions can provide better opportunities 

to the students at lower costs. The scope of our 

project involves determining how effectively the 

virtual laboratory can be developed and the cost of 

development. If the cost of the hardware for the 

virtual laboratory is higher than the physical 

equipments required for the laboratory, then such a 

virtual laboratory would be of no use. However, 

due to the progress of computer technology, the 

cost of various hardware devices has been reducing 

and it would not be difficult to find an economic 

device suitable for our use. Apart from the 

purchase of hardware, there is no other major 

expense as there are various softwares available 

which can be used for the development of the 

project. Virtual laboratories have the capability to 

help the students improve their practical knowledge 

in the absence of well-equipped physical 

laboratories. All the problems that occur in the 

physical laboratories due to the absence of ideal 

conditions in our real world, can also be easily 

eliminated by creating ideal conditions in the 

virtual laboratory. Even the human errors can be 

reduced with the help of efficient hardware devices. 

In the real world laboratories, the maintenance and 

upgradation of the equipment requires large 

amount of money as well as skilled professionals. 

This increases the burden on the educational 

institutions. On the other hand, there is no cost 

associated with the maintenance of the virtual 

laboratory. Also, the upgradation can done be 

easily with the release of a new version of the 

software. There is no existing system which 

implements Virtual Laboratories. This system is a 

novel idea and will be very helpful for students as 

well as colleges. Creating a virtual laboratory at a 

cost which is less than the cost of setting up and 

maintaining it, could revolutionize the education 

sector. This virtual laboratory system is aimed at 

providing practical education which is open to all 

students. 

 

 

 

 

RESEARCH ARTICLE                    OPEN ACCESS 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    55 | P a g e  

 

 

 

 

II. PROJECT SETUP 
2.1 Devices Used 

2.1.1 Google Cardboard Head Mount Display 

(HMD) 

 Google Cardboard[2] headsets are built 

out of simple, low-cost components. On 

assembling the headset, a smartphone is inserted in 

the back of the device and held in place by the 

selected fastening device. A Google Cardboard– 

compatible app will split the smartphone display 

image into two halves. This results in a 

stereoscopic (”3D”) image with a wide field of 

view. The cost advantage provided by Google 

Cardboard is unparalleled and hence is the option 

chosen by us for our project. The availability of 

Cardboard based viewers supports our proposition 

for a readily available education system which is 

open for all. 

 

2.1.2 Leap Motion 
 The Leap Motion[3] controller is a small 

USB peripheral device which is used to track hand 

gestures. It is designed in such a way that it can be 

placed on a physical desktop, facing upward. It can 

also be mounted onto a virtual reality headset. It 

contains two monochromatic IR cameras and three 

infrared LEDs, which track hand gestures to a 

distance of about 1 meter in a hemispherical area. 

The Leap Motion controller is available at a price 

that is far less as compared to other controller 

devices which include HTC Vive, Oculus Rift and 

Samsung Gear VR. Apart from its cost benefit, the 

precise and accurate gesture tracking offered by the 

device has been the reason for its selection for our 

project. Also Leap Motion can be used along with 

Unity by using the Unity Core Assets for Leap 

Motion. 

 

2.2 Software Used 

2.2.1 Unity Game Engine 

 Unity is a game development engine 

which supports the development of Virtual Reality 

using C sharp. Unity provides a user friendly 

graphical user interface (GUI) which helps the 

developers to modify the VR Scenes without much 

hassle. Due to the vast expanse of platforms and 

devices supported, Unity was our go to 

development engine. For our project, we have used 

the Unity Asset Store to fetch some of the pre-

made environments and objects which reduce the 

developing load and promote the fundamentals of 

Code Reuse. We are using Unity Engine version 

5.3+ personal edition. 

 

2.2.2 Blender 

 Blender[4] is the free and open source 3D 

creation suite. It supports the entirety of the 3D 

pipeline. This includes modeling, rendering, 

compositing as well as  animation, simulation and 

motion tracking. In addition it also supports video 

editing and game creation. The open source 

community, along with a number of tutorials, 

readily available plugins for modelling, have made 

Blender an ideal choice for creating models of 

different environments and objects which are 

difficult to execute in Unity Engine. 

 

III. IMPLEMENTATION 
3.1 Virtual Experiments 

Table 3.1: Physics Experiments 

Physics Experiments 

1 Acceleration due to gravity 

To calculate the acceleration due to gravity 

(g) using a simple pendulum in virtual 

environment. 

The following formula has been used- 

 

2 Spring constant 

To calculate the spring constant (k) of a 

spring in virtual environment. 

The following formula has been used- 

 

3 Vernier Calliper 

To calculate the length using Vernier 

Calliper in virtual environment. 

4 Conduction of electricity 

To show, in virtual environment, that 

distilled water is a bad conductor of 

electricity while salt water is a good 

conductor of electricity. 

5 Rolling bodies 

To calculate acceleration of rolling bodies 

and verify with the theoretical values in 

virtual environment. 

The following formulae have been used- 

To calculate theoretical value: 

 
To calculate practical value: 

 

 

 

 

 

 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    56 | P a g e  

 

 

 

 

Table 3.2: Biology Experiments 

Biology Experiments 

1 Heart 

To study the anatomy of human heart in  

virtual environment. 

The following parts have been studied- 

Heart Chambers 

Inferior Vena Cava 

Superior Vena Cava 

Pulmonary Artery 

Pulmonary Vein 

2 Neuron 

To study the anatomy of neuron in virtual 

environment. 

The following parts have been studied- 

Axon Terminal 

Dendrite 

Myelin Sheath 

Cell Body 

3 Skeleton 

To study the anatomy of human skeleton in 

virtual environment. 

The following parts have been studied- 

Skull 

Rig cage 

Hands 

Legs 

Spine 

4 Brain 

To study the anatomy of human brain in   

virtual environment. 

The following parts have been studied- 

Frontal Lobe 

Occipital Lobe 

Parietal Lobe 

Temporal Lobe 

Cerebellum 

Brainstem 

5 Dinosaur 

To study about Allosaurus in virtual 

environment. 

 

3.2 Development Methodology 
 The block diagram presented in Fig 3.1 

describes the development process of the 

application. The process starts with collecting the 

premade assets. These assets can be collected from 

the Unity asset store. Some assets can also be 

imported from the Blender market. After asset 

collection, if some assets cannot be found on the 

asset store, we can model those assets using 

Blender software. After model creation, we create 

the layout of the entire scene. After the scene has 

been created, we include the object-scene 

interactivity. This process is completed by creating 

C sharp scripts which enable the objects to interact 

with the scenes and also perform various 

predefined animations on certain inputs. We then 

move onto the final process of incorporating user 

inputs and enabling the user to interact with the 

virtual environment created. This is done using 

VRInput method defined in Unity library. Inputs 

are obtained from the gyroscope readings of mobile 

as well as leap motion device. This concludes the 

development process of the application. 

 

 
Figure 3.1: Development Methodology 

 

3.3 Stereoscopic Rendering 

 Stereoscopy[5] is a method by which the 

illusion of depth in an image is created or enhanced 

by means of stereopsis for binocular vision. Images 

that appear three-dimensional when wearing 

special glasses can be generated using stereo 

cameras. This effect can be achieved by rendering 

two separate images from cameras that are a small 

distance apart from each other, similar to the 

mechanism used by our eyes. When viewing a 

stereo image, the left eye is limited to seeing one of 

the images, while the right eye sees the second 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    57 | P a g e  

 

 

 

 

image. Our brain then merges these two images 

together, making it appear as if we are looking at a 

3D object ratherthan a flat image. In stereoscopic 

rendering the device screen is split in two parts 

generating views for left and right eye separately 

this gives the effect of 3D visualisation of the 

virtual environment. We use stereoscopic rendering 

for viewing the lab in 3D on our head mounted 

display (Google Cardboard). 

 

 
Figure 3.2: Stereoscopic View of Virtual 

Laboratory 

 

3.4 Gaze Interaction 
 In VR, there might be a need to activate an 

object that a user is looking at. This is 

accomplished using Gaze Interaction. A script is 

written, which casts a ray forwards to see if the ray 

hits any colliders. When a collider is hit by a ray, 

the script finds the interactive component on the 

object. So, we can determine whether the user is 

looking at an object or not, and call the appropriate 

method. 

 

 
Source:https://productcoalition.com/ui-interaction-

in-mobile-virtual-reality-4-reasons-to-not-use-the-

touch-pad-on-samsungs-gear-vr-6b1c86a8f140 

Figure 3.3: Gaze Interaction 

 

3.5 GPU Instancing 
 GPU Instancing, also known as Geometry 

instancing[6][7], is the process of rendering 

multiple copies of the same mesh which are present 

in a scene, at once. It uses only a small number of 

draw calls[8] as opposed to standard instancing. 

This helps in significantly increasing the 

performance of the application[9]. This process can 

be used only for objects which have identical 

Meshes but can vary in terms of their dimension 

and colour. To understand the benefits of GPU 

Instancing, we need to understand how an object is 

drawn on the screen. To draw an object, an API 

call is made to the graphics driver(such as OpenGL 

or Direct3D). These are resource-intensive calls 

which place a significant overhead on the CPU. 

Therefore, to draw similar objects with slight 

difference in parameters, GPU Instancing provides 

much better performance output. In terms of Unity 

engine, this process can be enabled manually. It is 

only present on a select few platforms, out of 

which the below mentioned ones are used: 

1. DirectX 11 and DirectX 12 on Windows 

2. OpenGL Core 4.1+/ES3.0+ on Windows, 

macOS, Linux, iOS and Android 

Our project environment is setup in Windows 10 

operating system and has DirectX 12 installed in it. 

 

 
Figure 3.4: GPU Instancing in Unity 

 

3.6 Movement in Virtual Space 
 A user should be able to move in virtual 

space according to his will. The movement of the 

user can be implemented by moving the head in the 

real world. Whenever the user inclines his head 

below a certain angle (referred to as the 

toggle_angle), the movement starts in the direction 

that the user faces at that moment. This concept has 

been implemented using the pseudo code 

mentioned in Algorithm 3.1. 

Algorithm 3.1: 

vector3 current_location; 

/* 

This function causes the movement of the user in 

the virtual environment 

*/ 

void vr_walk(float toggle_angle, float speed) 

{ 

boolean move_forward; 

if((vr_camera_angle >= toggle_angle) 

&& (vr_camera_angle < 90.0)) 

{ 

move_forward = true; 

} 

else 

{ 

move_forward = false; 

} 

if(move_forward) 

{ 

vector3 forward = 

get_current_location(); 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    58 | P a g e  

 

 

 

 

simple_move(forward,speed); 

} 

} 

 

/* 

This function returns the coordinates of user's 

current location 

*/ 

vector3 get_current_location() 

{ 

return current_location; 

} 

 

/* 

This function calculates coordinates of the new 

location where the user intends to go 

*/ 

void simple_move(vector3 location, float speed) 

{ 

vector3 new_location; 

new_location = location * speed; 

move_to(new_location); 

} 

 

/* 

This function changes user's current location by 

changing the coordinates 

*/ 

void move_to(vector3 location) 

{ 

current_location = location; 

} 

 

 
Figure 3.5: Movement in Virtual Space 

 

Fig 3.5 shows the toggle_angle as measured from 

the line of sight of the user. The user will start 

moving in the virtual world when he/she inclines 

the head to see below the toggle_angle in the real 

world. 

 

3.7 Collision-Trigger Model 

 The collision-trigger model developed by 

us shows the dynamics of collision between objects 

and the way in which it can trigger events. An 

object must be a rigid body so that it follows the 

laws of physics, so a RigidBody component is 

added. It is also necessary that the objects contain a 

collider to detect collisions. Different types of 

colliders are suitable for different shapes. 

BoxColliders are available for cubes, 

SphereColliders for sphere, CapsuleColliders for 

cylinders while MeshColliders[10] can fit any 

shape. The physics engine calls functions contained 

in scripts which are attached to the objects involved 

in the collision. The code placed in the function is 

executed in response to the collision event. 

However,  the physics engine can also simply 

detect the entry of one collider into the space of 

another without creating a collision. This can be 

done by configuring a collider as a Trigger (using 

the Is Triggerproperty).A trigger does not behave 

like a solid object and will allow other colliders to 

pass through. The OnTriggerEnter function is 

called  on the trigger object’s scripts whenever a 

collider enters its space. Thus, we can use triggers 

or collision depending on our goal. If we only need 

to detect an object entering another object’s space 

then we can use triggers. In case we need actual 

collision to take place then we use collision. We 

have used both in our project. Unity provides three 

methods for collision detection - OnCollisionEnter, 

OnCollisionStay, OnCollisionExit which are used 

to define the events that occur when collision 

begins, collision occurs and when collision ends 

respectively. Similarly, three other methods like 

OnTriggerEnter, OnTriggerStay, OnTriggerExit are 

provided for triggers. We have used Algorithm 3.2 

for implementing this model. 

 

Algorithm 3.2: 

main() 

{ 

Define GameObject gb1, gb2; 

/* 

add components of rigid body and mesh filter  to 

gb1, gb2 

*/ 

gb1.AddComponent<RigidBody>(); 

gb2.AddComponent<RigidBody>(); 

gb1.AddComponent<MeshFilter>(); 

gb2.AddComponent< MeshFilter >(); 

//add collider according to shape of object 

addCollider(gb1); 

addCollider(gb2); 

if(Goal is to only detect object entering a space) 

UseTrigger(gb1, gb2); 

if(Goal is  actual collision between two objects) 

UseCollision(gb1, gb2); 

} 

 

/* 

Function to add collider according to shape of 

object 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    59 | P a g e  

 

 

 

 

*/ 

addCollider(GameObject gb) 

{ 

MeshFilter filter= gb.GetComponent< MeshFilter 

>(); 

if(filter.Mesh=”Cube”) 

gb.AddComponent< BoxCollider >(); 

else if(filter.Mesh=”Sphere”) 

gb.AddComponent< SphereCollider >(); 

else if(filter.Mesh=”Cylinder”) 

gb.AddComponent<CapsuleCollider>(); 

else 

gb.AddComponent< MeshCollider >(); 

} 

 

UseTrigger(GameObject gb1,GameObject gb2) 

{ 

Set property IsTrigger=true for gb1’s collider; 

//Add script for detecting collision 

gb1.AddComponent< Script >(); 

 

if (gb2 enters gb1 space) 

Use OnTriggerEnter() to define steps 

on entering trigger; 

 

while (gb2 is in gb1 space) 

Use OnTriggerStay() to define steps  

when inside trigger; 

 

if (gb2 exits gb1 space) 

Use OnTriggerExit() to define steps  

on exiting trigger ; 

} 

 

UseCollison(GameObject gb1, GameObject gb2) 

{ 

//Add script for detecting collision 

gb1.AddComponent< Script >(); 

 

if (gb2 begins collision with gb1) 

Use OnCollisionEnter() to define 

steps on collision start; 

 

while (gb2 colliding with gb1) 

Use OnCollisionStay() to define 

steps during collison;            

 

if (gb2 stops colliding with gb1) 

Use OnCollisonExit() to define steps  

on collision stop; 

} 

 

3.8 Scripting and Function Calls 

 Scripting is an essential part of the project. 

Scripts contain functions which provide the users 

with results after a successful completion of an 

activity or interaction with an object. The scripts 

used in our project include VRWalk as described in 

Algorithm 3.1, Collision detectors and Event 

Triggers, scripts for calculating results of physics 

experiments listed in Table 1, and scripts for 

interacting with various instruments of the virtual 

laboratory. Scripts are attached to gameObjects 

upon which the functions act. Scripts are written in 

C sharp language. A simple pseudo code for 

attaching scripts and providing functionality is 

given in Algorithm 3.3. 

Algorithm 3.3 

1. Write script with functions to act on 

gameObjects 

2. Attach the script to gameObject 

3. Use the sendMessage(“function_name”) 

function to call a particular function when an 

event is triggered 

4. Handle the event in the function called 

 

  The sendMessage()[11] function in Unity 

is used to call a particular function when an event 

is triggered. The project is laid out using the 

Collision-Trigger model which is an extension of 

the Event-Trigger model. For handling interactivity 

using LeapMotion, we have included the 

LeapMotion SDK in Unity. Every gameObject that 

requires interactivity is attached with a Interaction 

Manager and an Interaction Behaviour[12] script 

provided by LeapMotion. The particular 

gameObject and the script name is mentioned, 

along with the function to be called. 

 

 
Figure 3.6: Script attached to a gameObject 

 

 Fig 3.6 contains a script 

“skull_interaction” attached to a gameObject. The 

function “collide” is called when the user begins an 

interaction activity with that gameObject. The 

ContactBegin() function is provided by 

LeapMotion’s Interaction Behaviour. 

 

3.9 Deployment Methodology 

The block diagram presented in Fig 3.7 depicts the 

deployment process of the application. 

 



Anand Deshpande Journal of Engineering Research and Application                            www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 9 (Part -II) Sep 2018, pp 54-60 

 
www.ijera.com                                             DOI: 10.9790/9622-0809025460                                    60 | P a g e  

 

 

 

 

 
Figure 3.7: Deployment Methodology 

  

 In the initial stages, we are required to 

compile and build the entire project. If the project 

has a lot of scripts and assets, the building section 

will require some time to build. This can be 

overcome by using the cloud support offered by 

Unity. After compiling and building the project, we 

will have to render the VR application on the 

laptop. This is because the Leap Motion device 

requires to be connected to the laptop and cannot 

be interfaced directly with Android. The rendered 

application will then be cast on the screen of the 

mobile which will be placed in the Head Mounted 

Display (HMD). The user will then be able to 

finally interact with the VR labs and equipment. 

 

IV. CONCLUSION 
 The main stumbling block in VR 

becoming mainstream is the high costs associated 

with the hardware required to run VR 

applications.Thus, we have created a virtual 

laboratory with the use of minimum hardware, so 

that the institutions can provide better opportunities 

to the students at lower costs.     The major 

drawback of this laboratory is the practice required 

to handle the hardware. Since the hardware is very 

inexpensive, the range available for gesture 

detection is very small and effective usage of the 

laboratory requires large amount of practice.This 

application can be further expanded to include a 

wide range of practicals from different fields of 

Science and Technology. 

 

ACKNOWLEDGEMENT 
 We would like to extend our sincere 

thanks to all people without whom this 

development would not have possible. We are 

highly indebted to our prestigious institution VJTI, 

which has groomed us over the last few years and 

have provided us with various opportunities 

including this one. We would like to express our 

gratitude to our mentor Dr. S. G. Bhirud for sharing 

his experience with us and guiding us during our 

difficulties. He also introduced us to the startup 

Parallax Labs LLP and we are very thankful to him 

for this helpful gesture. We would also like to 

mention the part played by 'Parallax Labs LLP' in 

our project. The founders of the startup guided us 

during our initial phase and helped us choose the 

correct technologies from the abundant resources 

available in the field of Virtual Reality. 

 

REFERENCES 
[1]. https://www.vrs.org.uk/virtual-reality/what-

is-virtual-reality.html 

[2]. https://en.wikipedia.org/wiki/Google_Cardb

oard 

[3]. Anitha.A, Iswariya.K and Karunya.S, A 

Survey on Next Generation in Revolution - 

Leap 

Motion,http://www.ijtrd.com/papers/IJTRD4

208.pdf 

[4]. https://www.blender.org/about/ 

[5]. https://en.wikipedia.org/wiki/Stereoscopy 

[6]. https://en.wikipedia.org/wiki/Geometry_inst

ancing 

[7]. https://docs.unity3d.com/Manual/GPUInstan

cing.html 

[8]. https://docs.unity3d.com/Manual/DrawCallB

atching.html 

[9]. Peng Hu and Kai Zhu, Strategy research on 

the performance optimization of 3D mobile 

game development based on Unity, 

http://www.jocpr.com/articles/strategy-

research-on-the-performance-optimization-

of-3d-mobile-game-development-based-on-

unity.pdf 

[10]. https://docs.unity3d.com/Manual/CollidersO

verview.html 

[11]. https://docs.unity3d.com/ScriptReference/Ga

meObject.SendMessage.html 

[12]. https://github.com/leapmotion/UnityModule

s/wiki/Getting-Started-%28Interaction-

Engine%29

[13].  

Anand Deshpande "Learning Physics And Biology In Virtual Laboratory " 'International Journal of 

Engineering Research and Applications (IJERA) , vol. 8, no.9, 2018, pp 54-60 

 

https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://en.wikipedia.org/wiki/Google_Cardboard
https://en.wikipedia.org/wiki/Google_Cardboard
http://www.ijtrd.com/papers/IJTRD4208.pdf
http://www.ijtrd.com/papers/IJTRD4208.pdf
http://www.ijtrd.com/papers/IJTRD4208.pdf
https://www.blender.org/about/
https://en.wikipedia.org/wiki/Stereoscopy
https://en.wikipedia.org/wiki/Geometry_instancing
https://en.wikipedia.org/wiki/Geometry_instancing
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html
http://www.jocpr.com/articles/strategy-research-on-the-performance-optimization-of-3d-mobile-game-development-based-on-unity.pdf
http://www.jocpr.com/articles/strategy-research-on-the-performance-optimization-of-3d-mobile-game-development-based-on-unity.pdf
http://www.jocpr.com/articles/strategy-research-on-the-performance-optimization-of-3d-mobile-game-development-based-on-unity.pdf
http://www.jocpr.com/articles/strategy-research-on-the-performance-optimization-of-3d-mobile-game-development-based-on-unity.pdf
https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html
https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html
https://github.com/leapmotion/UnityModules/wiki/Getting-Started-(Interaction-Engine)
https://github.com/leapmotion/UnityModules/wiki/Getting-Started-(Interaction-Engine)
https://github.com/leapmotion/UnityModules/wiki/Getting-Started-(Interaction-Engine)

