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A B  STR  A C  T  

Given restrictions that comfort conditions in the interior of a building are satisfied, it becomes obvious that the 

problem of energy conservation is a multidimensional one. Scientists from a variety of fields have been working 

on this problem for a few decades now; however, essentially it remains an open issue. In the beginning of this 

article, we define the whole problem in which the topics are: energy, comfort and control. Next, we briefly 

present the conventional control systems in buildings and their advantages and disadvantage. We will also see 

how the development of intelligent control systems has improved the efficiency of control systems for the 

management of indoor environment including user preferences. This paper presents a survey exploring state of 

the art control systems in buildings. Attention will be focused on the design of agent-based intelligent control 

systems in building environments. In particular, this paper presents a multi-agent control system (MACS). This 

advanced control system is simulated using TRNSYS/MATLAB. The simulation results show that the MACS 

successfully manage the user’s preferences for thermal and illuminance comfort, indoor air quality and energy 

conservation. 

 

I. INTRODUCTION:PROBLE

MSTATEMENT 
1.1. Energy 

The distribution of energy 

consumption in European house-holds in 

1999 was as follows: 68% for space heating, 

14% for waterheating and 13% for electric 

appliances and lighting. While 

thepercentage of space heating has 

decreased during the past 

15years,thepercentageofconsumptionforthe

operationofelectricalapplianceshasincrease

dby10–13%;representingmorethanhalfof 

the consumed electricity. Operation of 

office equipment isresponsible for as much 

as 40% of the electricity consumed in 

anoffice building with the sector of office 

buildings and hence energyconsumed in 

these buildings growing in size (Intelligent 

EnergyExecutiveAgency(IEEA),http://ww

w.iea.org). 

Theconstructionsectorcoversoneeighthofth

etotaleconomicactivity in the European 

Union (EU), employing more than 

eightmillion people. The intense activity in 

building construction, inconjunction with 

the need for energy savings and 

environmentalprotectionpolicy,dictateform

orereasonabledesignpracticesforbuildings.T

henewlyreleasedEUDirective‘‘EnergyPerfor

manceofBuildings’’ (EPBD) concerns the 

use of energy in buildings 

andurgesmembernationsoftheEUtosetstrict

erregulationsregarding the efficient use of 

energy in buildings. For this reason,one of 

the main goals of advanced control 

systems, as applied 

tobuildings,istominimizeenergyconsumpti

on. 

 

1.2. Comfortconditions 

Inthe1970sand1980s,theneedforene

rgysavingsresultedinthe design and 

construction of buildings that had small 

openings,lacked natural ventilation, etc. 

Because people spend more 

than80%oftheirlivesinbuildings,theenvironm

entalcomfortinaworkplaceisstronglyrelatedt

otheoccupants’satisfactionandproductivity.

Ontheotherhand,aswellknown,energyconsu

mp-tion is also strongly and directly 

related to the operation cost of abuilding. 

Hence, energy consumption and 

environmental 

comfortconditionsmostoftenareinconflictw

ithoneanother. 

Inthepast20years,specialemphasishasbeeng

iventothebioclimaticarchitectureofbuilding

s.Bioclimaticarchitectureisgeared towards 

energy savings and comfort; utilizing 

glazing 
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andshadowingsystems,solarspaces,naturalv

entilation,thermalmass,Trombewalls,coolin

gsystemswithevaporationandradiation,etc.

Bioclimaticarchitecturefocusesonthedesign

andconstructionofbioclimaticbuildingsthatt

akeadvantageandmakeuseofsolarradiationa

ndnaturalairflowfornaturalheatingandpassiv

ecooling.Thequalityoflifeinbuildings(comf

ortconditions)isdeterminedbythreebasicfac

tors:Thermalcomfort,visualcomfort, and 

Indoor Air Quality (IAQ) [1–4]. Thermal 

comfort 

isdeterminedbytheindexPMV(PredictiveMea

nVote)[2,4].PMViscalculatedbyFanger’sequ

ation[4,5].PMVpredictsthemeanthermal 

sensation vote on a standard scale for a large 

group ofpersons. The American Society of 

Heating Refrigerating and 

AirConditioningEngineers(ASHRAE)develo

pedthethermalcomfort 

indexbyusingcoding—3forcold,—2forcool,—

1forslightlycool,0 

for natural, +1 for slightly warm, +2 for 

warm, and +3 for hot. 

PMVhasbeenadoptedbytheISO7730standar

d[6].TheISOrecommends maintaining 

PMV at level 0 with a tolerance of 0.5as 

the best thermal comfort. Visual comfort is 

determined by theillumination level 

(measured in lux) and by the glare that 

comesfromdirectviewingofthesolardisk. 

 

Indoorairqualitycanbeindicatedbyth

ecarbondioxide(CO2)concentration in a 

building [1,3]. The CO2 concentration 

comesfrom the presence of the inhabitands 

in the building and fromvarious other 

sources of pollution (NOx, Total Volatile 

OrganicCompounds (TVOC), respirable 

particles, etc). Ventilation is 

animportantmeansforcontrollingindoor-

airquality(IAQ)inbuildings.Supplyingfresh

outdoor-

airandremovingairpollutantsandodoursfro

minteriorspacesisnecessaryformaintaininga

cceptableIAQlevels.However,ventilationra

tesinsidebuildingsmustbeseriouslyreducedi

nordertocontrolthecoolingorthermal load 

in an improved manner and reduce the 

energy load.In many cases though, this 

contributes to a degradation of theindoor-

airqualityandtowhatisgenerallyknownas’si

ckbuildingsyndrome’(SBS)[7].Forthesereas

ons,IAQisnowamajorconcerninbuildingdesi

gn.Demand-

controlledventilation(DCV)systemsofferan

efficientsolutionfortheoptimizationofenerg

yconsump-tionand indoor-air quality[8]. 

 

The main characteristic of DCV 

systems is that ventilation ratesare modified 

according to the value of a certain 

parameter, forexample the CO2 

concentration, which is representative of 

thepollutantloadinaroom.Thistechniquehas

alreadybeensuccessfully applied in many 

cases by using mechanical ventila-tion. 

Dounis et al. [9] investigated the potential 

application of CO2-based DCV to control 

ventilation rates for a building with 

naturalventilation. Simulations were 

performed in which window open-

ingswereadjustedbasedonmeasuredCO2con

centrations.Duetoconcernsovertheconstant

variationofnaturalventilationdrivingforces,

fuzzylogicwasusedinsteadofconventionalo

n–

offorPIDcontrol.Carbondioxideconcentrati

ons,windowopenings,andairtemperatures 

are presented for a simulated day. The 

feasibility 

ofsuchasystemwasdemonstrated. 

Wangetal.[10]developedarobustcontrolstrat

egytoovercomethecontroldifficultieswhen

DCVcontroliscombinedwitheconomizerco

ntrol.Themaindifficultyistheemergenceinsta

bilityphenomena(alternationandoscillation)

inthetransitionphase

between different control modes. Wang et 

al. [11] developed 

anoptimalandrobustcontrolofoutdoorventil

ationairflowrate.Thisstrategy employs a 

dynamic algorithm to estimate the number 

ofoccupants in the indoor building based 

on the CO2 

measurement.Theoptimalrobustcontrolstrat

egyachievesindoorairqualityandminimum 

energy consumption. Hence, the second 

main goal andcharacteristic of advanced 

control systems is the achievement 

ofoccupants’comfortconditions. 

 

1.3. Controlobjective 

Livingspaceclimateregulationisamu

ltivariateproblemhaving no unique 

solution, particularly in solar buildings. 

Morespecifically, the goals of an 

intelligent management system 

forenergyandcomfortareasfollows: 

 

● High comfort level: Learn the 

comfort zone from the user’spreference, 

and guarantee a high comfort level 

(thermal, 

airqualityandilluminance)andgooddynamic

performance. 
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● Energysavings:Combinethecomfort

conditionscontrolwithan 

energysavingstrategy. 

● Airqualitycontrol:ProvideCO2-

baseddemand-

controlledventilation(DCV)systems. 

 

Satisfaction of the above requirements 

demands control of 

thefollowingactuators/effectors: 

 

● Shadingsystems,tocontrolincoming

solarradiationandnaturallight,aswellastored

uceglare. 

● Windowsopeningfornaturalventilati

onormechanicalventila-tion systems, to 

regulate natural airflow and indoor air 

change,thusaffectingthermalcomfortandind

oorairquality. 

● Electriclightingsystems. 

● Auxiliaryheating/coolingsystems. 

User interactions always have a direct 

effect on the 

systemunderconsiderationinorderto 

givetheuserthefeelingthat heorshe controls 

his or her own environment. Users of an 

electriclighting system may switch the 

lights on or off, or may preciselychoose the 

electric lighting level. Heating system users 

may 

changethetemperaturesetpoint.Anincreaseo

fthesetpointwillimmediatelystarttheheating

systemasfarastheindoortemperatureisbelow

thissetpoint.Moreover,peopleusingblindsm

aychooseanyblindpositiontheydesire. 

The combined control process for the 

above systems requiresoptimal 

performance of almost every subsystem, 

under the 

basicassumptionthateachoperatesnormallyi

nordertoavoidconflictsarising between 

users’ preferences and the simultaneous 

opera-tions of these control subsystems. 

Mathews et al. [12] developedcost efficient 

control strategies to achieve optimal 

energy andacceptablecomfortconditions. 

We could obtain optimal operation of the 

local controllers 

byusingindividualswhoareexpertoperatorso

fthesystem,however,thisisimpossible.There

fore,weneedtodesignthearchitectureofamult

i-

agentcontrolsystemthatwillincorporatethek

nowledgeofsuchexpertoperators.Suchasyst

emincludesanintelligentsupervisor to 

coordinate the operation of the partial sub-

systems,whicharethelocalintelligentcontrol

lers–agents.Inamulti-

agentcontrolsystemofabuildingmicroclimate,

highprioritymaybegivento passive 

heating/cooling techniques; aiming at 

maximization 

ofenergyconservationwhileincorporatingth

eusers’preferences. 

A basic characteristic of the advanced 

control systems is 

theirabilitytooperatewithsymboliclanguage

andnon-exactandfuzzylogic that humans 

perceive better. It is done in conjunction 

withComputationalIntelligence.Techniques

ofthiskindhavebeen 

widely applied in the industry all over the 

world in hundreds ofpower plants. 

However, in complicated systems, 

mathematicalmodeling can hardly describe 

a real system in real time. For thisreason, 

Computational Intelligence techniques, 

like Fuzzy 

Logic(humanapproximateclassificationand

reasoning),NeuralNetworks (the 

neurophysiology of the human brain), and 

GeneticAlgorithms (Darwinian evolutionary 

laws) have been used to 

solveproblemsthatarisefromthemanagemen

tofsuchsystems. 

Thedifferentapproachestocontrolsystemsfo

rindoorbuildingenvironments can be 

roughly classified into the following cate-

gories: (i) conventional methods; (ii) 

computational 

Intelligencetechniques;and(iii)agent-

basedintelligentcontrolsystems.However,it

shouldbenotedthattheoverlappingbetweenc

ategoriesisunavoidable.Forexample,genetic

algorithmscantuneafuzzycontroller,oracont

rolleragentcanbedevelopedbyfuzzylogic.Th

enumberofpublicationsonthesubjectofcontr

olsystemsforbuildingcontrolisquitelarge.Thi

sbeingso,onlyasmallportionofthesearelistedi

nthereferences.Becauseitisbeyondthescope

ofthis survey paper to cover all of these 

studies in detail, we 

willinstead,presentanoverviewofthesecateg

oriesinthenextsectionsandfocusonmulti-

agentcontrolsystemsinmoredetail.Therefore

,themainobjectiveofthispaperistosurveystat

eoftheartcontrolsystems in buildings and in 

particular, the multi agent controlsystems 

thathavebeenrecentlydeveloped. 

 

II. CONVENTIONAL CONTROL 

SYSTEMS ENGINEERING IN 

BUILDINGS—AN OVER 

VIEW 
1.4. Classicalcontrollers 

Originally, the goal of the development of 
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control systems 

forbuildingswasmainlyminimizationofener

gyconsumption.Thermostatswereusedforth

efeedbackcontrolofthetemperature[13].Inor

dertoavoidfrequentchangesbetweenthetwos

tatesofathermostat, thermostats with a dead 

zone were introduced andused. This kind 

of control is called bang–bang control with 

deadzone.However,overshootsinthecontrol

ledtemperaturewerenotavoided,whichresult

edinanincreaseinenergyconsumption.Inord

ertosolvetheproblem,designersusedProport

ional–Integrate–Derivative (PID) 

controllers [13,14]. Although 

thesecontrollersimprovedthesituation,impr

operchoiceofthegainsinthePIDcontrollerco

uldmakethewholesystemunstable.Therefor

e, designers resorted to optimal, predictive, 

or adaptivecontroltechniques. 

 

1.5. Optimal,predictive,andadaptivecontrol 

Important research was conducted 

on optimum and 

predictivecontrolstrategiesduringthe1980sa

nd1990s.However,noindustrialdevelopmen

thasfollowedthesescientificstudies,especial

ly due to implementation issues. In order 

to use optimalcontrol [15–24], or adaptive 

control, [25] a model of the building 

isnecessary.Predictivecontrol[26,22,27–

29]isveryimportantbecause it includes a 

model for future disturbances (e.g. solar 

gains,presenceofhumans,etc.).Itimprovesth

ermalcomfortmainlybyreducing 

overheating [30–32] but especially through 

night cooling.However, mathematical 

analysis of the thermal behavior of 

abuilding generally results in non linear 

models and even 

moreimportantly,thesemodelsdifferfromon

ebuildingtoanother. 

Adaptivecontrollershavetheabilitytoself-

regulateandadapttothe climate conditions 

in the various buildings. More 

specifically,adaptive fuzzy controllers are 

regarded as the most 

promisingadaptivecontrolsystemsforbuildi

ngs[16,30,25].Anotherwaytosolvetheprobl

emisbyusingparameterestimationmethods(

RecursiveLeast-

Squaresestimation).Nesler[33]developed 

adaptive control of thermal processes in 

buildings. The standard PIcontrol algorithm 

is adequate for the control of heating, 

ventilating,andair-

conditioning(HVAC)processes.TheRLSestim

atorprovidesestimatesof 

thegain,timeconstantand dead timeof a  

process.RLS estimator diverges when the 

control loop is subjected to anunmodeled 

load disturbance. Actuator nonlinearity is 

also a well-knownlimitationofself-

tuningcontrollers.Onlyafewauthorshavedirec

tly applied adaptive techniques that learn the 

characteristics 

ofabuildinganditsenvironment[33,34]. 

Because the above optimal solutions are 

not always 

feasible,solutionsthatareapproximatetotheo

ptimalonehavebeenused.However, such 

techniques suffer from various drawbacks, 

some ofwhichare: 

 

● Theneedforamodelofthebuilding. 

● The use of elements of bioclimatic 

architecture complicates 

theprocessofminimizationofthecostfunctio

nandifsucha 

minimizationisobtained,theresultsarenotap

plicableinpractice. 

● The need to make parameter 

estimation in real time with 

thealgorithmsbeingusedsensitivetonoise.Th

us,underrealconditions,suchtechniquesmay

giveerroneousresults. 

● Suchtechniquesdonotdealwiththepr

oblemofcomfort.Nonlinearfeaturesthatcoul

ddeterminesomedifficultieswhen 

monitoringandcontrollingHVACequipmentc

haracterize  thePMVindex. 

● Theresultingcontrolsystemsarenotu

serfriendly,sincetheuser 

doesnotparticipateintheconfigurationofthec

limateofhis/herenvironment(Userpreferenc

es). 

● Thesecontrolmethodsarenotuselear

ningmethods. 

● Theclassicalcontrolmaximizestheen

ergyconservationwithout 

givingprioritytopassivetechniques. 

 

III. COMPUTATIONAL 

INTELLIGENCE IN 

BUILDINGS 
Application of intelligent methods 

to the control systems ofbuildings 

essentially started in the decade of the 

1990s. ArtificialIntelligence (AI) 

techniques were applied to the control of 

bothconventional and bioclimatic 

buildings. Intelligent controllers,optimized 

by the use of evolutionary algorithms were 

developedfor the control of the subsystems 

of an intelligent building [35]. Thesynergy 

of the neural networks technology, with 

fuzzy logic, andevolutionary algorithms 
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resulted in the so-called 

ComputationalIntelligence(CI),whichnowh

asstartedtobeappliedinbuildings.To 

overcome the nonlinear feature of PMV 

calculation, time delay,and system 

uncertainty, some advanced control 

algorithms 

haveincorporatedfuzzyadaptivecontrol[36–

39],optimalcomfortcontrol[18],andminimu

m-powercomfortcontrol[40].Akindofdirect 

neural network controller, based on a 

back-

propagationalgorithm,hasbeendesignedand

successfullyappliedinhydronicheatingsyste

ms[41]. 

Neural networks have been extensively 

used in Japan [42]where they have been 

applied to commercial products such as 

airconditioners, electric fans etc. A system 

of two neural networks hasbeen 

incorporated in an air conditioner to 

further fine-tune 

theequipmenttotheusers’preferences.Oneof

thetwoneuralnetworks estimates the value 

of the PMV index by using sensorinputs 

only. However, this is not always optimal 

for a given 

user.Theotherneuralnetworkfurthercorrects

thisoutput.Theusercantrainthisneuralnetwo

rk. 

 

1.6. Fuzzysystemsandevolutionarycompu

tation 

The need to obtain energy savings 

and to guarantee 

comfortconditions,takingintoconsiderationt

heusers’preferences,droveresearcherstodev

elopintelligentsystemsforenergymanageme

nt 

inbuildings(BuildingIntelligentEnergyMan

agementSystems—BIEMS), mainly for 

large buildings like office buildings, 

hotels,publicandcommercialbuildings,etc.T

hesesystemsaredesignedtomonitorandcontr

oltheenvironmentalparametersofthebuildin

g’s microclimate and to minimize the 

energy consumptionand operational costs. 

A large number of publications regarding 

theapplication of fuzzy techniques on 

BIEMS can be found in thereferences. The 

results cited are superior when compared 

to 

thoseofclassicalcontrolsystems.Recently,th

epracticalapplicationsoffuzzyandneuralcon

trolforHeatingVentilationandAirConditioni

ng(HVAC)systemshavebeendiscussedwith

thegoalbeingperformanceimprovementove

rclassicalcontrol[43–47]. 

Therequirementforamathematicalmodeloft

heoperationofabuilding has been an 

obstacle to the application of 

traditionalcontrol methods in buildings. In 

intelligent systems, namely inmodel-

freecontrollers,suchamodelisnotrequired.T

hisfactisageneralinnovationinthedevelopm

entofautomaticcontrolsystems. By 

incorporating new-type, higher-level 

variables thatdefine comfort into the 

intelligent controllers (e.g. PMV [48]), 

itwas possible to control comfort without 

going into the regulationof lower level 

variables like temperature, humidity and 

air 

speed.Insuchsystems,usersstarttoparticipat

einthespecificationofthedesiredcomfort. 

Genetic Algorithms and methods coming 

from the theory ofadaptive control are used 

to optimize fuzzy controllers. Fuzzy 

logiccontrol has been used in a new 

generation of furnace controllersthat apply 

adaptive heating control in order to 

maximize bothenergy efficiency and 

comfort in a private home heating 

system[49]. The development of fuzzy 

controllers to control 

thermalcomfort,visualcomfort,andnaturalv

entilation,withthecombinedcontroloftheses

ubsystemshasledtoremarkableresults[50,37

,17,51,36,48,52–72,39]. 

 

1.7. Synergisticneuro-fuzzytechniques 

Neuro-fuzzy systems originated 

when neural network techni-ques were 

used in fuzzy technology. Hybrid systems 

like ANFIS(Adaptive Neuro-Fuzzy 

Inference System) [73] have been used 

forpredictionandcontroloftheartificiallighti

nginbuildings,following variations of the 

natural lighting [74]. Proper choice 

ofthepredictivecontrolstrategy,combinedwi

thanon-linearmodeling of the building, the 

user’s behavior, and the predictionof the 

climate parameters allowed NEUROBT 

system to obtainenergy savings and to 

guarantee satisfactory comfort [27]. A 

neuralcontroller, equipped with the 

prediction capabilities of neuralnetworks, 

can be used in the control of hydronic 

heating systemsand solar buildings [75–

77,32]. Kanarachos and 

Geramanis[41]haveproposedanAdaptiveN

euralNetwork(ANN)controllerforthe 

control of single zone hydronic heating 

systems. The inputsand outputs of this 

controller involve parameters related to 

theheating plant and the indoor set point 
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temperature. However, noforecasting 

ofeither weatherparameters orindoor 

conditionsweremade. 

Thetechnologyofneuralnetworkshasfoundi

mportantapplications not only to the 

control systems of buildings [78–81,57,46] 

but also to more general problems 

regarding renewableenergy sources. 

Neuro-fuzzy systems havealso been 

studied.Egilegor et al. [57] developed and 

tested a fuzzy-PI 

controlleradaptedbyaneuralnetwork.Howe

ver,itdidnotofferspectacularimprovement. 

Yamada et al. [82] developed an air-

conditioningcontrol algorithm that 

combines neural networks, fuzzy 

systems,and predictive control. This 

system predicts weather parametersand the 

number of occupants. These predictions 

are then used toestimate building 

performance in order to achieve energy 

savingsandtomaintaintheindoorconditionsi

nahighcomfortlevel. 

 

1.8. Designoffuzzylogicandneuralnetworkc

ontrollers 

1.8.1. FuzzyPcontrollers 

Manydifferentmethodsexisttousefu

zzylogicinclosed-loopcontrol. The simplest 

structure is to use the measurement 

signalsfromtheprocessastheinputstothefuzz

ylogiccontrollerandtheoutputs of the fuzzy 

logic controller to drive the actuators of 

theprocess.Thispurefuzzylogicsystemiscall

edfuzzyPcontroller.TheinputsofafuzzyPco

ntrollerarePMVandoutdoortemperature.Au

xiliaryheating(AH),auxiliarycooling(AC),a

ndventilationwindowopeningangle(AW)set

tingsarethecontrolleroutputs [36,52]. These 

outputs, which are deterministic 

signals,drivetheprocessactuators. 

A global P controller has six inputs (PMV, 

ambient temperatureTamb, CO2 

concentration, change of CO2 

concentration, DaylightGlare Index (DGI), 

and illuminance (ILL)), and four outputs 

(AH/AC,SHaDowing, Artificial Lighting, 

and window opening angle 

(AW))[39,65].Triangularandtrapezoidalme

mbershipfunctionsareusedtocovertheinput–

outputuniverseofdiscourse.Intheruledesign,

priority is given to passive techniques to 

obtain indoor comfort.During moderate 

seasons, the fuzzy rules allow natural 

coolingthrough window openings in order 

to reach thermal comfort 

byusingnaturalventilation.Duringwinterand

summer,windowsarekeptclosedtoavoidther

mallosses.Thesolargainsarecontrolledto 

allow passive heating during the winter 

and cut off 

excessiveheatingduringthesummer. 

Indoor illuminance fuzzy rules are 

designed to give priority 

tothenaturallighting.Theelectriclightingiso

nwhenindoorilluminanceiszero,i.e.duringni

ghttimeandduringcloudyconditions. When 

indoor illuminance is increased, the 

electriclightingisimmediatelyturnedoffands

hadingregulatestheindoorvisual comfort. 

The performance index in the building 

controlsystemisminimizationofenergycons

umption[67]. 

 

1.8.2. PI-likefuzzylogiccontrollers 

FuzzyPIDcontrollersareclassifiedin

totwomajorcategories,according to their 

structure [83,84]. The first category of fuzzy 

PIDcontrollers involves typical fuzzy logic 

controllers (FLCs) 

realizedasasetofheuristiccontrolrules.Inord

ertobeconsistentwiththenomenclature [85] 

and to distinguish from the second 

category offuzzy PID controllers, we will call 

FLCs in this category PID-like (PI-likeorPD-

like)FLCs.Mostoftheresearchonfuzzylogic

controldesignreferstothiscategory[86–90]. 

The second category of fuzzy PID 

controllers is composed of theconventional 

PID controllers in conjunction with a set of 

fuzzyrulesandafuzzyreasoningmechanismt

otunethePIDgainsonline[91]. Controllers 

of this type can adapt to varying 

environments.Themaindisadvantageofacon

trolsystemofthiscategoryisthatitis mainly 

model-dependent, since it requires human 

experiencewith controlling the plant in 

order to define the range of 

theproportionalgain. 

Inmostcases,thefuzzyPIcontrollerisanincre

mentalcontroller.The conventional fuzzy 

PI controller is described by the 

equationu(k +1)=u(k)+Du(k)(Fig.1)where 

kisthesamplinginstanceand 

Du(k)istheincrementalchangeincontrollero

utputdeterminedby 

fuzzy rules. PI-type FLCs most commonly 

are followed by PD-

typeFLCs.Inaproportional–

integral(PI)controller,proportional(P)andinte

gral(I)actionsarecombinedtotakeadvantage

oftheinherentstability of the proportional 

controllers and the offset 

eliminationability of the integral 

controllers. PD-type FLCs are suitable for 

alimitedclassofsystems.Theyarenotsuitable
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whenmeasurementnoiseandsuddenloaddist

urbancesexist.PID-

typeFLCsarerarelyusedbecauseofthedifficul

tiesassociatedwiththegenerationofanefficie

nt rule base and the need for tuning its 

large number ofparameters. 

Itisnaturaltouseanincrementalcontrollerwh

en,forexample,the actuator is a motor or a 

valve. It is an advantage that 

thecontrolleroutputisdrivendirectlyfromani

ntegrator,becauseitiseasy to deal with wind 

up and noise. The fuzzy PI controller uses 

asinputstheerrorsignalanditschange(Fig.1). 

The advantage of a fuzzy PI controller is that 

it does not have 

anoperatingpoint.Thecontrolstrategyofrule

sevaluatesthedifferencebetween 

themeasuredvalueandtheset  point  andalso 

evaluates the change of this difference in 

order to decidewhether to increment or 

decrement the control variables of 

thebuilding. A fuzzy logic controller can 

implement nonlinear controlstrategies. If 

comfort condition (PMV) is ‘cold’, the 

increment 

willbestrong,regardlessofitstendency,butift

hePMVerrorissmall,thetendencyistakenint

oaccount.Table1showstherulebaseofaPIcon

trollerinatableformat. 

 

1.8.3. AcombinationofFLC,neuralcontroller,an

dPIDcontroller 

Intheilluminancecontroller,acascad

econtrolstrategyisused[71]. This strategy 

contains a main illuminance fuzzy 

controllerand a PID controller as an 

auxiliary controller. The 

illuminanceprocess is in close dependency 

with the external solar 

radiationchanges,whichcanbeveryunpredic

tableoroscillatory.Withtheuse of the 

cascade control strategy, which is 

complement to thefeedback control, the 

performance of the corrective action of 

therollerblindisimproved.Themainfuzzyco

ntrollerdeterminestheproper position of the 

roller blind in order to maintain the 

insideilluminance at the desired value. The 

auxiliary PID 

controllermanipulatesthesignalforproperalt

ernationoftherollerblind,tonullifytheerrorb

etweenthecurrentandthedesiredposition.Tw

ofilters, realized in filter blocks, are included 

to smooth possible fastand frequent 

movements of the roller blind, that happen 

whenexternalsolarradiationchangesoccurfr

equently.Propersettingofthe filter time 

constants results in smoother roller blind 

alterna-tions. We want to avoid excessive 

movements of the roller 

blind,forthesimplefactthatitisannoyingtothe

occupants.Curtisetal. 

[25] developed a neural controller that 

gradually undertakes 

thecontrolofHVACprocessesfromaPIDcontr

oller.In[92]Curtisand 

 

 
 

Fig.1.StructureoffuzzyPIcontroller. 
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Table1 

TherulebaseofafuzzyPIcontroller[85]. 

 

De e 

NB NM NS ZE PS PM PB 

  

NB NB NB NB NM NS NS

 ZENM NB NM NM NM NS

 ZE PSNS NB NM NS NS

 ZE PS PMZE NB NM NS

 ZE PS PM PBPS NM NS

 ZE PS                  PSPM               PBPM               

NS                 ZE                  PS                  PM               

PMPM               PBPBZE                 PS                PSPM              

PB               PBPB 

 

Shavit a neural controller was used 

to augment the output of a PIcontroller. 

This controller attempts to modify the 

output of a PIcontroller in a way that the 

motion of the actuator is minimized.Sucha 

combinationissuitable fornon-linear 

HVACsystems. 

 

1.8.4. AdaptivefuzzyPDandfuzzyPIDcontroll

er 

ThestructureoftheadaptivefuzzyPD

controlleristhesameasforthefuzzyPDcontroll

er.ThedifferenceisthattheadaptivefuzzyPDco

ntrollerusesasecond-

ordersystemasareferencemodelforthe 

determination of the scaling factors of the 

controller. 

TheobjectiveistodesignanadaptivefuzzyPD

controllersuchthatthebehaviorofthecontroll

edbuildingremainsclosetothebehaviorofa 

desired model. The adaptive fuzzy PD 

controller is based onscaling factors geand 

gDeand gu(Fig. 1) in order to improve 

thesystem’sresponse[39]. 

Calvino et al. [37] add an adaptive 

network to the model inorder to improve 

some general characteristics of a classical 

PIDregulationsystem.Furthermore,theymo

difiedsomecontrolrules,aimingatdeterminin

gamonotone‘‘controlsurface’’toguaranteeb

etter stability features of the system [93]. 

The addition of 

theadaptivenetworktotheoriginalmodelallo

wsustovarythevaluesof the parameters 

regarding the integrative and derivative 

blocks:so doing, these parameters will 

depend on the peak of the 

‘‘stepresponse’’,whichimprovesthestability

oftheentiresystem. 

 

1.8.5. Neuralnetworkcontrollers 

In thermal comfort control [46] and 

in the temperature 

controlofhydronicheatingsystems[41],direc

tneuralnetworkcontrollers(NNC)areused.T

hesecontrollersarepracticalandcontrarytoth

eindirectneuralnetworkcontrollers,theydon

otrequiretheidentification model of the 

plant. Fig. 2 shows the structure of atwo-

layer multi-input and single-output 

(MISO) neural networkcontroller [46]. The 

controller has two inputs and one output: e 

istheerrorbetweenPMVsetvalueandfeedbac

kvalue,ėistheerrorderivative,anduisthecontr

olsignaltothebuilding. 

Theequationsofneuralnetworkcontrollerare 

y¼w11eþw12ėþw13b 

 1  

Þ ¼
1þexpð—y2Þ 

 

whereyistheinputtotheoutputlayerofNN;w1

1andw12arethesynaptic weights; w13 is the 

synaptic weight of the fixed input(bias)b = 

1;w(y)istheactivationfunction(unipolarsigmo

idfunction);uistheoutputintheoutputlayer;a

ndh*isthelearning-rate parameter. Training 

of a neural network is essentially 

theregulationofitsweightcoefficientsinaway

thatminimizesacost 

function.Thedeterminationoftheweightsoft

heinterconnectionsbetween the neurons is 

based on the gradient descent algorithm.At 

the beginning, the algorithm assigns 

random values to 

theweightsofthenetwork.Thetwosignalsatth

einputofthecontrollerareobtainedandtheout

putuofthecontrolleriscomputed.Next,thealg

orithmupdatestheweightsofthenetwork,as 

well as the new output signal u, which is 

then supplied to thebuilding. 

 

1.9. Tuningoffuzzylogiccontrollers 

It is important to distinguish 
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ij  

TA 

g¼ ; g ¼ ; g¼ 

i j
 @w @PMV 

between the problems of tuningand of 

learning in an FLC. Tuning is mainly 

concerned with theoptimization of an 

existing FLC, whereas learning constitutes 

anautomated design method for fuzzy rule 

sets. Tuning processesassume a predefined 

rule base and their goal is to find a set 

ofoptimalparametersforthemembershipfun

ctionsorforthescalingfactors(normalizedgain

s).Thesegainsareusedtomapthe 

actual inputs and outputs of the FLC on the 

normalized universe ofdiscourse [—1, +1]. 

Learning processes perform a more 

elaboratetaskwhilesearchinginthespaceofpos

siblerulebasesanddo 

not depend on a predefined set of rules. 

The most 

importantoptimizationtechniquesare: 

 

1. Tuning of the scaling factors for 

the control inputs and 

outputsthatcanbeachievedbyasetofmeta-

fuzzyrules.Thisapproachhas a trial and 

error nature. A good example can be found 

in[94,95,47]. 

2. Parameterizedcontrolparameters(sc

alingfactorsandmember-

shipfunctions)adaptedbyGeneticAlgorithm

stoafitnessfunction that specifies the design 

criterion in a quantitativemanner[96]. 

3. A formal approach to the derivation 

of the scaling factors, aimingat establishing 

an analytical relationship between the 

values 

ofthescalingfactorsandtheclosedloopbehavi

orofthecontrolledprocess[85]. 

4. Theinputandoutputuniverseofdisco

urseoftheFLCisnormalized on the range 

[—1, +1]. The gains are chosen 

asboundsontheinputsandoutputsofthecontr

oller(trialand 

error)sothattherulebaserepresentstheactiv

eregiononthecontrolactions: 

1 1 1    
e maxðeÞ De maxðDeÞ u

 maxðuÞ 
5. Thechoiceofgainsisdonewithanon-

lineauto-tuningstrategy 

 

Dw¼—h
@E

¼—h·
@E

· 

@PMV@u 

@u
·
@wi j 

@E @u 

¼hω·
@PMV

·
@w 

[97].Letthemaximumvaluesofthetwofuzzyc

ontrollerinputs 

duringthelastTAsecondsbemaxTAfeðkTÞgan

dmaxTAfDeðkTÞg. 

Wedefinethemaximumgainvaluesas 

 1  

ge¼
max  ðeÞ

; gDe 

 

 1  

¼
maxTAðDeÞ 

 

1.10. Optimizationoffuzzylogiccontrollers 

 

 

 

 

 

 

 

 

 

Fig.2.Adirectneuralnetworkcontroller. 

ij  
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The gradient-based optimization technique 

determines 

searchdirectionsforminimizationofanobject

ive(orerror)function.Wecanusethistechniqu

etominimizeenergyconsumptionindistribut

edenvironmentalcontrol  systems  without  

increasingtheoccupants’thermaldissatisfact

ion[98]. There are several such derivative-

free techniques, the 

mostpopularofwhichare:GeneticAlgorithm

s(GAs),simulatedannealing,  random 

search and downhill simplex method. 

GAsare adaptive search and optimization 

algorithms that work bymimicking the 

principles of natural genetics [99]. These 

algorithmsare,however,verydifferentfromtr

aditionalsearchandoptimiza-

tionmethodsthatareusedinengineeringdesig

nproblems.Fundamentalideasareborrowedf

romgeneticsandareusedartificiallytoconstru

ctsearchalgorithmsthatarerobustandrequire

minimalproblemrelatedinformation. 

Dounisetal.[51]developedaGAs-

basedoptimizationtechnique for fuzzy 

controller for thermal and indoor air 

qualityin buildings. Kolokotsa et al. [66] 

have proposed an 

optimizationstrategythatintegratesinaGenet

icAlgorithmtheindoorcomfortrequirements 

with the energy consumption, targeting to 

satisfythe indoor comfort requirements and 

simultaneously minimizethe energy 

consumption. The solution of the Genetic 

Algorithmprovidestheoptimalindoorcomfo

rtsettingsthatarethenfedintothecontrolleras

newsetpoints. 

In [62] the objective was to develop and 

test user 

adaptivecontrollersforblinds,electriclightin

gandheating.Forthispurpose,anintegratedco

ntrolsystemthatadaptstothecharacteristicsof

theenvironmentandthebuildingwasdevelop

edand successfully implemented. The 

system was built on 

threenestedcontrollevels:level1wherethesy

stemtranslatesphysicalvalues into actuator 

commands; level 2 where the fuzzy 

logiccontrollersareimplemented;andlevel3

whereadaptationaspectsare dealt with. 

User adaptation was performed by means 

of GAsthat optimize the parameters of the 

fuzzy logic controllers. GAshave shown to 

be the most efficient optimization method 

for thistask. An important result cited in 

the paper is that because 

theautomaticcontrolsystemdidnotsatisfyuse

rdesires,theyrejectedit at a high percentage 

rate (25%), compared to the user 

adaptivesystem. 

Alcalaetal.[100]usedGAstodevelopsmartlytu

nedfuzzylogiccontrollers for heating, 

ventilation, and air conditioning 

systems,takingintoaccountenergyperforma

nceandindoorcomfortrequirements. Also, 

Lam [101,29] proposed a classifier system 

withGAs in on-line control for an air 

conditioning system. The target 

ofthiscontrolsystemistomaketheairconditio

ningcontrolleraself-learningcontrolsystem. 

 

1.11. Supervisorycontrol 

Optimalcontrolaimstopreserveindo

orenvironmentalconditionswithminimalene

rgyexpenditureunderdynamicoutdoor and 

indoor conditions. It can be achieved by 

using localcontrollers of the sub-systems 

and optimal supervisory control 

ofthebuilding.Fortheadvancedcontrolsyste

msinbuildings,supervisory control is an 

interesting subject. The set-points 

areresetbythecontrollersupervisorduetothec

hangesoftheoutdoor/indoorloads,theuserspr

eferences,andtheenergyconsumption.Kolo

kotsaetal.[66]developedoptimizationtechni

quesbasedonGeneticAlgorithmstargetedato

ptimalindoorcomfortsettings.Thesenewsett

ingsaredirectlyappliedtothe controllers. 

Wang et al. [19] developed an on-line 

controlstrategy for an air-conditioning 

system using digital control forVAV 

(variable air volume) AHUs (air handling 

units). A geneticalgorithm is used to detect 

the optimal settings of the controllers.This 

strategy predicts the system response to 

the changes of thecontrol set-points using 

on-line parameter identification and self-

tuning. Dounis et al. [55] developed an 

intelligent coordinator offuzzycontrollers–

agentsforindoorenvironmentcontrolinbuild

ings using 3D fuzzy comfort set. In this 

system, the 

basicfactorsthatparticipateinthecontrolofin

doorenvironmental 

conditionsarethecontrollersandtheusers’co

mfortrequirements.Synchronization of the 

control system is obtained by the 

designandimplementationofanintelligentco

ordinator,whichisacentralizedone.Itconsist

sofamasteragentandaslaveagentthatare 

both implemented by fuzzy logic theory. 

The master agentevaluates the energy 

efficiency of the building and comfort 

ofoccupants. A fuzzy inference mechanism 

produces signals 
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thatactivatetheslaveagentandchangethesetp

ointsofthecontrollers.Theslaveagentisafuzz

ynegotiationmachine(FNM), which 

synchronizes the interaction of the fuzzy 

controllersandmanagestoavoidconflictsbet

weenthem.Whensomeconditionsdetermine

dbytheslaveagentaresatisfied,fuzzycontroll

ersareactivated,otherwisetheystayinactive. 

 

1.12. Userinterfaces 

Insmartbuildings,thebuildingautom

ationsystemsandcontrol networks 

(BACnet) [102] provide user interface 

devices(thermostat,valves,keypads)sothatt

heusercaninteractwiththecomponentsofeac

hfunction(heating,cooling,ventilation,shadi

ng,security).Thesystemallowsusersbysettin

gtheirpreferences(desiredcomfortcondition

s,energymanagement,andoccupancyschedu

le). 

Kolokotsaetal.[103]usesasmartcardunit(kio

sk),manufactured by the French company 

INGENICO that 

performstheinterfacebetweenthesystemand

theuser.Theusers’preferences are 

monitored via the smart card unit. 

Consideringthe users’ preferences 

collected from the smart card unit for 

aspecifictime,suchasoneweek,astatisticalan

alysisisperformedevaluating the average 

users’ preferences corresponding to 

thethree indoor comfort controlled 

variables: PMV index, 

indoorilluminanceandCO2concentration. 

Keyson et al. [104] proposes a mixed-

initiative user 

interfacethatisanintelligentthermostatthatca

nreduceenergyconsumption. An embedded 

statistical model uses living 

patternstoinferuserintentions. 

In practice, however, fully usable user 

interface systems 

areundefinedandunrealized[105]formanyre

asons.Auserinterfacedevice is difficult to 

use in different buildings. Each building 

hasdifferent equipment, control systems 

and requirements. Even inbuildings with 

the same systems, the environment within 

whichtheyoperatecannotbeforeseen. 

Penner and Steinmetz [105] developed a 

Dynamic 

InterfaceGenerationforBuildingEnvironme

nts(DIGBE)thatdynamicallyadaptstotheuse

randdataenvironments. 

ThementionedcontrolsystemsarelistedinTa

ble2.Wesummarizethemostimportanttechni

calissuesregardingtheclassical and 

advanced control methods. In the column 

of energyconsumption, the symbol H 

denotes that the advanced controlstrategies 

can achieve significant energy savings 

compared 

withtheclassicalcontrolsystems.Theenergys

avingspercentagedepends on weather 

conditions, building characteristics and 

userpreferences. 

 

IV. AGENT-

BASEDINTELLIGENTCONT

ROLSYSTEMS 
VariousresearchersdefineArtificialI

ntelligence(AI)indifferent ways. The 

differences in the definition of AI have 

twodimensions: One is human centrality 

and the other is rationality.The aspect that 

intelligence deals with rational actions is 

mostlyadopted. In this view, intelligence 

deals with the approach to theproblems 

through the laws of thinking; in other 

words, 

throughclearprocessesofreasoning(Aristote

lianreasoning).Therationalapproachresultsi

nsystemsthatareacombinationofmathemati

csandtechnology.Thus,AIinvolvessystemst

hatoperaterationally. 
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IntheapproachofAIthroughthelawso

fthinking,emphasisisgiven to the correct 

derivation of conclusions. Best results 

areachieved when rational action is applied 

and this can be done 

byusingrationalagents.Arationalagentactsin

awaythatisoptimalinregardtoeithertheclarit

yorambiguityoftheinformationthatitaccepts

.Consequently,theuseofrationalagentsisfun

damentalinthe AI approach. A rational 

agent that realizes the best 

possibleactioninagivensituationisanintellig

entagent. 

In controls and robotics, intelligent agents 

are designed andimplemented. In 

automatic control, a controller has the 

char-acteristics of an intelligent agent. The 

properties of the environ-ment are very 

important and have significant 

implications on 

thedesignofcontrollersandrationalagents.Cl

assicalautomaticcontrolsystemsdealwithen

vironmentsthatarecausalandobservable. In 

stochastic and observable environments, 

optimalstochastic control is applied, and in 

environments that involveboth continuous 

and discrete time subsystems hybrid 

control isapplied. 

AttheAIlabofMassachusettsInstituteofTech

nology(MIT),Brooks and his group [106] 

work on an intelligent room 

projectthatfocusesmainlyontheuserandthef

acilitiesofferedtohim/herintheroom.Forthis

reason,cameras,microphones,etc.areinstall

edinthebuildingtocontrolvoice,monitorface

sandgestures, etc. This is a new research 

direction in control systemsbuildings. In 

the various zones of the building, 

controllers areconsidered as distributed 

software agents [107]. Intelligence 

isdistributed to agents and evolves through 

the connections 

andinteractionsoftheagents. 

 

4.1. Multi-agentcontrolsystems(MACS) 

Manytimes,controlengineersfaceco

mplicatedcontrolproblems where they have 

to design and implement real timecontrol 

systems that use a group of controllers 

instead of a 

singleone.Inaddition,thehumanfactorisinvo

lvedinthecontrolsystem,eitherrewardingorn

otrewardingaspecificcontrolstrategy(reinfor

cement learning). These systems are called 

Human 

CentricSystems[108].Now,thecontrolengin

eerhasonemorejobtodo:that of breaking the 

problem into many simple sub-

problems(structuring).Thedesignofthemulti

-controllersystemisperformed and the 

system is implemented on a more 

generalframework, based on controllers–

agents. For optimal 

operation,thecontrollers–

agentsareguidedbyacoordinator–

agent[109]. 

Aswestatedinthepreviousparagraphs,inorde

rtocontroltheusers’environment,researcher

shavefollowedvariousapproaches;e.g.neura

lnetworksbasedontheconventionaltheory of 

mechanical learning. However, these 

approaches 

useobjectivefunctionsthataimeitheratderivi

ngaminimizedcontrolfunction that satisfies 

–
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the users’ needs on an average level, or 

atoptimization between a numbers of 

conflicting needs (e.g. energyefficiency 

and users’ comfort). In both cases, users 

have limitedparticipation in the operation 

of the system and for this 

reason;theymusttoleratesomedegreeofdisco

mfort. 

One solution to this problem is offered by 

combining systemsbased on behavior 

(behavior-based systems) with systems 

basedon Computational Intelligence 

[106,110,111]. The main advantageof the 

systems that are based on behavior is that 

they reject atheoretical model and replace 

it by the real one. The behavioralsystem is 

a fuzzy controller where a genetic 

algorithm regulatesthe knowledge basis 

and the membership functions. The 

fuzzycontroller’s outputs are weighted by 

the coordinator and 

thenforwardedtotheactuators. 

Thecontrolsystemsthathavebeendeveloped

byusingclassicaltechniquesofAIareautomat

edbutnotautonomous.Thewordautonomous

comesfromtheGreekwords‘‘auto’’(self) 

and ‘‘nomos’’ (rule or law). A system is 

autonomous when itsbehavior changes 

following a fundamental law. For 

example,biological systems are 

autonomous because they operate 

withmechanismslikeself-

organization,evolution,adaptationandlearni

ng. Methodologies and techniques 

developed for 

intelligentautonomoussystems,likemobiler

obots,havebeentransferredtoand applied to 

buildings in order to equip them with 

intelligence[106,112]. In [112] the authors 

have developed a multi-agentsystem based 

on fuzzy logic and genetic algorithms. The 

systemconsists of three constant behaviors: 

(a) security, (b) danger andeconomy, and 

(c) a comfort behavior adapted to the 

action andbehaviorofthehabitants. 

 

4.2. Architectureofamulti-

agentcontrolsysteminbuildings 

Techniques that divide a problem 

into smaller sub-problems,which are 

consequently solved, are called divide-

and-conquertechniques [113]. They also 

constitute a top-down process. Ingeneral, 

there are no standard or classical methods 

to optimallydivideaprobleminsmallersub-

problems.Eachcomplexproblemhasitsownp

eculiaritiesanditsanalysismayrevealtheappr

opriate ways to perform the task. 

Therefore, people try 

toinventheuristictechniquestodothejob. 

Inthiscase,wesolvethesub-

problemsbydesigningcontrollers–

agentsthatarebasedonfuzzylogicandcanbeo

ptimizedbyusinggeneticalgorithms.Anintel

ligentsupervisor 

[54]coordinatestheoperationofthecontroller

s–

agents.Itisanimportantprocedurebecauseitl

eadstothenormaloperationoftheentiresyste

m.Inotherwords,itsolvestheoriginalproble

m.TheconceptofanIntelligentAgent(IA)has

beenintroducedrecentlyintheareaofcomput

erscience[114].Ithasbeenusedextensivelyin

thefieldofArtificialIntelligenceandisclosely

relatedtothesubjectofdistributedproblemsol

ving[113,115]. 

An IA consists of a virtual entity 

(software) that mainly has 

thefollowingproperties: 

 

(a) Ithastheabilitytocommunicateandin

teractwithitsenvironment. 

(b) Itisabletoperceivethelocalenvironm

ent. 

(c) Itisguidedbybasic‘‘objectives’’. 

(d) Ithasfeedbackbehaviors. 

 

Thedesignofamulti-

agentcontrolsystemconsistsroughlyofthrees

teps[115]: 

1. Structuring:Decomposethewholepr

oblemintoasetofindependentpartialproblem

s. 

2. Solvingindividualsub-

problems:Solvethepartialproblemsbydesig

ningcontrollers–

agentsthatknowhowtosolvethepartialproble

ms. 

3. Combining individual solutions: 

Combine the set of implementedagents into 

a coherent whole by properly coordinating 

theiractivities. 

 

4.2.1. Decompositionoftheproblemofenerg

yefficiencyandcomfortinbuildings 

The goal of obtaining comfort 

conditions and 

simultaneouslyenergyconservationinabuild

ingissolvedbythedevelopmentofintelligent 

systems. Mo and Mahdani[116] developed 

an agent-based framework for building 

operators and individual occupantsto 

negotiate their control activities. Dounis 

and Caraiscos[54]proposed the use of an 

intelligent supervisor that coordinates 

theoptimal cooperation of the local 

–
 

–
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controllers–agents. The result 

isthattotalcontrolisachieved,occupants’pref

erencesaresatisfied,conflictsareavoidedand

energyconsumptionisconditionally 

minimized. In a building, the controlled 

variables are the 

PredictiveMeanVote(PMV)index,theIllumi

nationlevel(lux),andtheCO2concentration 

(ppm). The actuators that are being used 

are theauxiliary heating/cooling system, 

the mechanical ventilation, 

theshading,andtheelectriclighting. 

In order to control the entire operation of the 

building, five localintelligent field 

controllers are developed and optimized off-

line byusing Genetic Algorithms. These five 

lower level controllers 

areguidedbyahigherlevelIntelligentCoordinat

or.TheideaispresentedinFig.3. 

Inputsandoutputsofthelocalcontrollersare 

 

ControllersFCA1andFCA2—

Inputs:illuminationerroranditsrate of 

change; Outputs: control signals to the 

shadowing andelectriclighting. 

Controllers FCA3 and FCA4—Inputs: PMV 

error and its rate 

ofchange;Outputs:controlsignalstotheheati

ng/coolingsystem.Controller FCA5—

Inputs: CO2 concentration and its rate 

ofchange;Outputs:controlsignaltothemecha

nicalventilation. 

 

Thecommunicationoperationofacontr

oller–

agentwithitsenvironmentissketchedinFig.3.F

oreachcontroller–agentFCAi,i=1–5 thereis 

the activation signal wi¼fðinputsi;qiÞ, where 

variable qidenotes the state of the 

controller–agent, and the 

acknowledge signalai that makes  the  

controller–agent  

active(qi=1)orinactive(qi=0). 

Ineachsamplingperiod(timestep),thecontrol

ler–agentperforms a set of communication 

tasks. First, it receives a sample 

ofmeasurements and uses it to calculate the 

activation signal wiandsend it to the 

coordinator/supervisor. This signal denotes 

that 

thecontrollerwantstobecomeactiveorinactiv

e.Whenthecoordinator receives activation 

signals from all the controllers–agents, it 

makes its decision and sends acknowledge 

signals back tothem.Ifacontroller–

agentreceivesapositiveacknowledgesignal,itb

ecomesorstaysactive;otherwiseitbecomesor

staysinactive.Also,ifacontroller–

agentisactive,itcalculatesthecontrolactiona

ndsendsittotheactuators. 

 

4.2.2. Structureoftheintelligentcoordinator 

The proposed intelligent 

coordinator is shown in Fig. 4. Itreceives as 

inputs PMV, IAQ, illumination level, energy 

consump-

tion,occupants’preferences,andactivationsi

gnalsfromthecontrollers–agents. It then 

performs two specific tasks using amaster-

slavecoordinationmechanism.Eachtaskrequ

iresaseparate intelligent agent. The 

dependency between the two 

tasksisthatthelowerlevelagent(slave)operat

esonlywhenitreceives 

an  activationsignal  rfromthe  upper 

levelagent  (master) 

[109,115].Inputs_1:Predictedenergyconsu

mption,andtotalcomfort[55].Inputs_2:EPMV,

DTout,EIin,EIout,DEoutwhereEIinistheindoorill

uminancedesiredminustotalindoorillumina

nce,EIoutisthe illuminance desired minus 

outdoor illuminance, DEout is 

thechangeofoutdoorilluminance(k)–

outdoorilluminance(k—1), 

 

 

Fig. 3. Block diagram of the controlled system, the controllers–agents, and 

theintelligentcoordinator. 
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Fig.4.Structureoftheintelligentcoordinator. 

 

EPMVistheerrorofPMVandDTout=23
0
—

Tout,andToutistheoutdoorambienttemperatur

e. 

 

● ThefirstIA(IA_1),calledmasteragent,

evaluatestheenergyefficiencyandcomfortofth

ebuildingandmonitorsthe 

occupants’ preferences. By equipping the 

master agent withqualitative fuzzy rules, 

the inference engine machine producesnew 

set points. Activation signal r makes active 

or inactive 

IA_2.TherulesthatareusedhavetheformIF–

THEN,forexample, 

IF Predicted Energy is small AND Comfort is 

low THEN Changeof set points. More details 

can be found in the paper Dounis–

Caraiscos[55]. 

● The second IA (IA_2), called slave 

agent, compensates the 

interaction of the controlled sub-systems 

and manages to 

avoidconflictsbetweenthem;asforexample,

betweennaturalventilationandmechanicalc

ooling,naturalventilationandheating, 

shadowing and heating or cooling, 

decrease of 

directsolarradiationandvisualcomfort,etc.V

eryoften,evaluationofthe control strategy is 

based on subjective criteria. Therefore, IA-

2useslinguisticrulesthatstemfromphysicalla

ws[48,53] and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.Organizationdiagramoftheproposedcontrolalgorithm. 
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a a 0 1 0 0 0 1 

0 0 1 

5 

i 

xd xd 

forthecontrolprobleminabuildingenvironm

ent,whereamaster–

slavecoordinationmechanismisadopted.Inte

lligentagent IA_1 is the master agent and 

intelligent agent IA_2 is theslave. The 

organization diagram exposes the 

interaction betweensub-problems, which is 

confronted by the coordination mechan-

ism. In the lower level, coordination is local 

with dynamic 

priority.Thepriorityofeachfieldcontrollerisd

ecidedbyIA_2. 

 

4.2.4. Uncertaintyinuser’spreferencesusinga-

levelset 

The desired value or set point is 

chosen as a trapezoidal fuzzyinterval 

whose membership function is illustrated 

in Fig. 6. Thetrapezoidaltype-

1fuzzysetequippedbyana-

cutlevelcaneffectivelymodeltheuncertainty

ofcomfort[117]. 

Thecoreiscomposedofthemostacceptableus

er’spreferencesandthefuzzyintervalisdefine

das 

 

 

aninferenceenginethatgeneratesacompensa

tionpolicy.Thispolicyisdecisiveastotheincr

easeofthesystem’sperformance. 

½xd—;xdþ] ¼½xd— 

 

 þaðx 

d——xd—Þ;xdþ 

—aðx 

dþ—xdþÞ] 

 

 

SlaveagentIA_2consistsoftwoFuzzyNegotiat

ionMachines(FNMs)[55].Anexampleofarule

usedbyFNMsfollows: 

IfEIinis(NEorPO)andEIoutis(NEorZE)andDEou

tisZEthen 

Thedesirevaluesbelongtointerval½xd—

d
a
;xdþd

a
],x= {PMV, 

CO2,ILL},wherexdisthesetpoint,xd—

andxdþdenotetheupperand 

lowerboundsofx,respectively,andd
a
¼x   —aðx—x  

Þisthe 

 

NP NP 

xd dþ 

dþ dþ 

 

a1isOFFanda2isON.

 bandaroundthedesiredvalue.Thea-

cutoffuzzydesiredvaluesis 

IfEPMVisNEandDToutisNEthena
NP

isOFFanda
NP

 isONand 

3 4 

a
NP

isON. 

 

wherea
NP

ðkÞaretheoutputfromFNM1andFN

M2,andai(k)isthe acknowledgement signal. 

For more see Ref. [117]. The two 

IAscanbeviewedaspartsofanintegratedrealtim

edecisionsupport 

systemthatderivescompensationactionsinor

dertoincreaseenergyefficiencyofthebuildin

g,minimizetheconflictsthatarisefrom the 

simultaneous operation of the controllers 

and satisfy 

theoccupants’preferencesbyobtainingtherm

alandvisualcomfort. 

Theaboveanalysisshowsthatintelligenceoft

heentiresystemis embedded not only in the 

controllers–agents but also mainly 

inthestructureoftheircommunication. 

 

4.2.3.Organizationdiagram 

The result of the design of a multi-agent 

control system is 

ahierarchicalorganizationofintelligentagent

s,calledtheorganiza-

tiondiagram.Inessence,theorganizationdiag

ramisamodelthatrepresents the operation of 

a multi-agent control system. Fig. 

5showstheorganizationdiagramoftheoveral

lcontrolalgorithm 
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0:5 
¼75lx,d

2
 

a 
0 otherwise 

a A a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.Trapezoidalfuzzyintervaldesiredvalues. 

 

thesetofallvaluesofxdsatisfyingtheuser’spre

ferencesatleastwithadegreeofpreferenceorac

ceptancea=0.5.Wehavechosen 

 

 

 

IfcandVarenonemptythenE(c,V)=E(V,c)2[0,

1],E(c,c)=1andE(c,1)=0.Thefuzzyequalitym

easuregivesavaluenear1if 

0:5 

PMVd 

¼0:4,dILLd 

0:5 

CO 

d 

¼50ppmv. 

the two fuzzy sets equal well. It gives a 

value near 0 if they 

equalpoorly.The3Dfuzzycomfortsetisanew

representationfor 

4.2.5. Computingthemembershipgradeofmea

surementsPMV,ILL,andCO2usinga-

levelfuzzyset 

Thefuzzy a-cutor a-levelfuzzy setofA 

characterizedby 

the word ‘‘comfort’’ [117]. This 

methodology of 

approximationrepresentationofthecomforti

sverysignificantbecauseitisusedintheproced

ureofdecision-makingforthemasteragent. 

Ã¼
AðxÞifAðxÞ ≥a

or
 

ÃΞfðx;mðxÞÞjx2Ag 

 

4.2.7.Simulationresults 
 

Basedontheabovedefinition,wecanconclude

thata-levelfuzzy 

set is obtained by reducing part of the 

fuzziness in the originalfuzzyset[117]. 

In each iteration, the membership grades 

of the 

measurementsPMV,ILL,andCO2arecomput

edbythea-

levelfuzzyset(Fig.7).Thesegradesdetermine

apointinafuzzycube. 

 

4.2.6.A3Dfuzzymodelforglobalcomfort 

Theunitcubegeometryofdiscretefuzzy

setsassistsuswhenwedefinefuzzyconcepts.Th

ecomfortisrepresentedasaninformation 

granule; the size of granules is problem-

oriented anduser-dependent.Inparticular, the  

size  of information granule  ofthe comfort 

consists of three parts (PMV, ILL, CO2), and 

the formalrepresentation of this information 

granule is a fuzzy set in a fuzzycube [55]. 

Therefore, a 3D discrete fuzzy set models 

higher leveluncertainty than does a Type-1 

FS. This technique opens up 

anapproachablewayformodelinghumandecisi

on-making. 

Let V be a set of three elements V ¼ fPMVd; 

CO2d ;ILLdg. 

Thenonfuzzypowerset2Vcontainseightsets.T

hesesetscorrespond 

respectively to the eight bit vectors (0,0, 0), 

..., (1, 1,1).Empty set1 lies at the origin (0, 

0, 0) of the cube, and space V lies at 

vertex(1,1,1). The 1 and 0 s indicate the 

presence or absence of the ithelement in the 

AtrapezoidalMFisdefinedasaquadruplex{a,b,c,d}where 

d 
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3 3 

d 2d d 

subset. A fuzzy subset c ⊂ V defines the 

fuzzy unit(fit)orfitvector:  

c¼ðmPMVa;mCOa;mILLaÞ 2I¼½0;1] 

pointin fuzzy cube 

 

mc¼½c;c̄]⊆½0;1] 

c and c¯ denote lower and upper bounds, and 

mc denotes an 

intervalset,thatis,thesetoftherealnumbersfro

mc¼atoc¯¼1. 

Thefuzzya-

cutsetofmeasurementvariablesPMV(k),ILL(

k), 

CO2(k) defines a 3D fuzzy comfort set c 

with membership functionmc. If a = 0.5 then 

the 3-D fuzzy set is a cube with origin (0.5, 

0.5,0.5)andtheoptimalcomfortvaluecorresp

ondstothevertex(1,1, 

1).Usingthesymmetricfuzzyequalitymeasur

e[117]wemeasures the degree to which 

fuzzy set c matches fuzzy set 

V,thatis,themembershipgradeof3Dfuzzyco

mfortset: 

these parameters (with a <b ≤ c <d) 

determine the coordinates ofthe four corners 

of the trapezoidal MF. In particular, the 

users’preferencesforcomfortconditionsares

pecifiedviatrapezoidal 

fuzzysetswiththemembershipfunctionsofth

eform: 

T1(PMV;PMVd—0.5,PMVd—

0.3,PMVd+0.3,PMVd+0.5). 

T2(ILL;ILLd—100,ILLd—

50,ILLd,ILLd+50,ILLd+100). 

T3(CO2;CO2d—75,CO2d—

25,CO2d,CO2d+25,CO2d+75). 

where, as usual, the parameters denote the 

characteristic points ofthe piecewise 

membership functions of the fuzzy sets (see 

Fig. 6).The first, one trapezoidal form T1, 

can be regarded as a descriptor ofuser’s 

preference regarding the PMV, where 

PMVd= 0. The 

secondform,T2,characterizestheuser’sprefere

nceregardingtheilluminance,whereILLd= 

{800–600–500–800} lx.The  last  one,T3,  

describes  theuser’s  preference  of 

CO2concentration,where 

CO2d=1000ppmv.Inthesimulationexamplet

hea-cutoffuzzy 

desired values is a = 0.5. The simulations 

concerned a passive 

solarbuildingcharacterizedbyanimportantso

uth-

facingwindow,glazedarea(3m
2
),area45m

2
,v

olume135m
3
andbyahigh 

thermal inertia, light transmittance of the 

window glazing mean(t = 0.817), 

reflectance of all indoor surfaces (r = 0.4) 

[117]. In 

theTRNSYSthereisanelectriclighting(10la

mps),ashadingdevice 

(curtain)andheating/coolingactuator.Simul

ationtimestepis6min. 

The performance of the agent-based 

intelligent control systemapplied in a 

single zone building is evaluated. Some 

significantresults (16 July) are shown in 

Figs. 8–13. Figs. 8–10 present 

timehistories for of the PMV index, 

illuminance and CO2. These figuresillustrate 

that the comfort conditions are maintained 

within 

theacceptablelimitsoftheusers’preferences.

Fig.11showsthetimeevolutionofmembershi

pgradeofnewfuzzycomfortvariable 

withinthe3Dfuzzycomfortsetwithdegreeofa

cceptance>0.65. 

Fig.12givesthecurvesofthedailyandpredicte

denergyconsumption.Energyconsumptiona

ndcomfortusuallyaffect 

Eðc;VÞ¼m 

¼Degreeðc¼V 

 

cardinalityðc\VÞ 
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P 

¼P
¼ 

cðkÞ 

3 

i 1 

3 

i¼1 

 

minðci;ViÞ 

maxðci;ViÞ 

Þ ¼
cardinalityðc[VÞ 

 

wherekisthediscretetimestep.Thefuzzyequa

litymeasureE(c, 

V)measuresthedegreetowhichfuzzysetcequ

alsfuzzysetV. 

 

Fig.7.Thea-levelfuzzysetoffuzzysetA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.TimehistoryofPMV. 

 

 

 
 

Fig.9.Timehistoryofindoorilluminance. 
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Fig.11.Timeevolutionofcomfort. 

 

eachotherinoppositeways.Theoptimizedage

nt-basedintelligentcontrol system improves 

occupant’s comfort while the 

energysavings is significant. Fig. 13 

presents time history of the PPD.These 

simulation results indicate that the 

Percentage of PeopleDissatisfied (PPD) 

index [4] is less than 6% and therefore it 

ismaintainedwithintheacceptablelimits(bel

ow10%). 

 

4.3. Reinforcementlearningagent 

Dalamagkidis et al. [118] have 

developed a reinforcement-learning 

controller that takes into account user 

preferences inorder to achieve energy 

savings, high comfort and indoor 

airquality. The advantage of this approach 

is that the reinforcement-

learningagentcontinuouslylearnsfromdiffer

entcharacteristicsofthebuildingsandimprov

esitspolicy.However,thisreinforcementcont

roller temporarily increases users’ 

dissatisfaction and 

totalenergyconsumption. 

Anderson et al. [119] used a 

reinforcement-learning agent inparallel 

with an existing feedback PI controller. This 

combination isdesigned within a robust 

control framework. Its main goal is 

toimprove the control of a non-linear 

model of a heating coil. Theresults show 

that the reinforcement learning agent 

learns how tomodify the PI controllers’ 

output only when the PI controller in 

notadequatetosatisfythecontrolobjectives. 

 

 

Fig.10.TimehistoryofCO2. 
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Fig.12.Timehistoryofthedailyrealandpredictedenergyconsumption.  

 

Fig.13.TimehistoryofPPD. 

 

4.4. Ambientintelligence—AMI 

In[106,107,120,121,69,122,123],theauthorsd

ealwiththescenario of ‘‘Ambient 

Intelligence—AmI’’. AmI is a new paradigm 

ininformation technology that ‘‘triggers’’ 

imagination. It is a 

digitalenvironmentthatperceivesthepresence

ofusers  and  adapts  totheir needs, 

depending on their behavior. In such 

environments,interconnectedintelligentfuzzy

agentsareused.Theseagentssupporttheusers’a

ctionsandtheeffectorsofthebuilding.Experim

ents performed at Essex intelligent 

dormitory showed 

thatthissystemcouldapproachtheideaofanInte

lligentEnvironment. 

 

V. CONCLUSIONS 
5.1. Thesurvey 

Inthisarticle,wepresentedareviewof

controlsystemsforenergymanagementandc

omfortinbuildings.Atthebeginningofthispa

per,wedefinedtheproblemasawhole,wheree

nergy,comfortandcontrolareinvolved.Next,

wepresentedconventionalcontrolsystemsfo

rbuildingsandtheirdisadvantages.Thedevel

opmentofintelligentcontrolsystemsinthefra

meworkofcomputationalintelligencehassett

hebasisforimprovingtheefficiencyofcontrol

systemsinbuildings.Newwaysofdesigningh

uman-

centricsystemsarosefromthedevelopmentof

thescientificfieldofcomputationalintelligen

ce.Applicationofsuchsystems to buildings 

results in the so-called ‘‘intelligent 

buildings’’.Thearchitectureofamulti-

agentcontrolsystemforenergyefficiencyand

comfortinabuildingenvironmentwasthenpr

esented.Infinishing,wereferredtoanewparad

igmininformationtechnology,AmbientIntel

ligent,whichisanewapproachtowardsthecre

ationofanintelligentbuildingenviron-
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ment.Implementationmethodsformulti-

agentcontrolsystemsareFuzzyLogic,Neural

Networks,Neuro-

FuzzySystems,MarkovChainModels,FiniteSt

ateAutomata,LearningAutomata,Depen- 

denciesOrganization,etc. 

Acomparisonhasbeenmadebetweendifferen

tadvancedcontroltechniques.Themaincomp

arativeresultsare: 

 

● The fuzzy PI (or fuzzy P) control 

algorithm is adequate for 

thelocalcontrollers. 

● The tuning of the fuzzy PI 

controller could be achieved on-linewith 

fuzzy system [50] and off-line with genetic 

algorithms[100]. 

● Inintelligentcoordinatorlevelcouldb

eusedpredictivecontrol 

givingprioritytopassivetechniquestoachiev

ecomfort. 

● Basedonusers’preferences,theoptim

umtuningofset-

pointsofthecontrollersisachievedbysupervi

sorycontroltechnique. 

● The on-line learning of the control 

system with reinforcementlearningmethod. 

● Allmentionedadvancedcontrolsyste

mssatisfytheindoorrequirementswithinacce

ptablelimitsandsimultaneouslyachieveacon

siderablereductioninenergyconsumption. 

● By using these advanced control 

systems, high comfort levels 

andenergysavingscanbeobtained.Itshouldal

sobementioned, 

however,thattherearesomelimitationsinprac

tice.Forexample, 

theuser’sactivitylevelandthermalresistance 

ofclothing,involvedinthePMVequation,can

notbemeasuredbysensors. The cost 

reduction of the PMV sensor would have a 

greatpotentialfortheHVACapplication[46]. 

● Advancedcontrolsystems  

aredefined  asintelligentcontrol 

systems, and include two levels. The first 

level is a low-

levelfeedbackcontrolofindoorconditionsfore

achbuilding’szone.Thesecondlevelisahigh-

levelsupervision(intelligentcoordinator)an

dplanning.Thishigh-

levelmanagementprovidesoptimal 

operation strategies for energy 

conservation and 

environmentalcomfort.Therefore,anadvanc

edcontrolsystemrepresentsabasicstructural 

unit in an integrated indoor environment 

and energymanagementsystem. 

 

5.2. Futureperspectives 

Futuretrendsandopenquestionsthataremore

generalaregivenhere. 

1. EnergyIssues,OtherFactors(Weather,B

uildingDesign,Occupancy, etc.), 

Thermal comfort issues, Passive 

Solutions(Architectural and Structural 

Design), Naturally Ventilated 

andMixedModeBuildings. 

2. Hierarchical and supervisory control 

structure using autono-mousagents—

‘divideandconquer’approach. 

3. Balancebetweenthermalcomfortandene

rgyusage. 

4. Hybridcontroltheorythatcanbeusedtode

signasupervisorycontroller. The task of 

a supervisory controller involves 

theoptimalcontrol-

basedsetpointpolicygeneration. 

5. Agent–controller methodology from 

artificial intelligence canbe used for 

coordinated task achievement. Learning 

paradigmsforagents: 

● learningfeedforwardrandomneuralnetw

ork[124]; 

● random 

neuralnetworkswithreinforcementlearn

ing[124]; 

● adaptivestochasticfinite-

statemachines[125]. 

6. AmbientIntelligenceSystems. 

7. Open-

LoopCoordinatorofLocalControllers. 

8. Closed-LoopReal-TimeOn-

lineLearningAbility. 

9. Type-2 fuzzy sets [126], order-2 fuzzy 

sets [55] or Routh 

setssupportingthedevelopmentofhigher,

conceptuallycompositeconceptsforcom

fort,userpreferences,andenergy. 

10. Granular Computing (GrC) as a 

new paradigm of Computa-tional 

Intelligence in user-centric systems [108]. 

The 

collectionofcomplexinformationentities(the

rmalcomfort,visualcomfort and indoor 

quality) can be considered as an informa-

tiongranule. 

11. Thedecreasingcostofhardwareandi

mprovementsinsoftwarewillmakethewirele

sssensor–

actuatornetworksveryusefulinthecomfortco

ntrolofbuildings[127]. 
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