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ABSTRACT:We investigate the effect of missing atom defect to the mechanical properties of black 

phosphorene nanotube (BPNT) through molecular dynamics finite element method with Stillinger-Weber 

potential.We found that effect of the defect on Young’s modulus of phosphorene tube is insignificant. In 

contrast to, fracture stress and facture strain of defective tube reduce up to 14% and 57%, respectively, 

compared with the pristine one. Simulation results will help to design and use BPNT for its future applications. 
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I. INTRODUCTION 
 Two-dimensional black phosphorous, 

namely, black phosphorene has been recently 

synthesis [1-5]. Black phosphorene is a 

semiconductor with a large direct band gap of 1.51 

eV [6]. Black phosphorene has potential application 

in nanoelectronics, optoelectronics [2, 6, 7], gas 

sensors [8] and the anode material of Li-ion batteries 

[9, 10].The pristine and defective armchair (0, 10) 

black phosphorene nanotube (BPNT) isstudied. 

Defect is assumed to locate at tube’s center. 

 The mechanical properties of pristine black 

phosphorene nanotube have been investigated clearly 

bydensity functional theory (DFT) calculations [11-

14], density functional theory based finite element 

model (DFT-FEM)[15], density functional tight-

binding (DFT-TB)[16], molecular dynamics 

simulations (MD)[17-21], molecular dynamics finite 

element method (MDFEM)[22-24]. However, effects 

of missing atom defect on the mechanical properties 

of black phosphorene nanotube have a little study. 

Liu et al.[25, 26] showed that missing atoms could 

reduce significantly the tensile performance of 

BPNTs. The fracture strength and strain of black 

phosphorene were reported to reduce about 23-50% 

and 40-66%,respectivelyby MD simulation[25]. 

The present work studies through molecular 

dynamics finite element method (MDFEM) the effect 

of a missing atom defect to the mechanical properties 

BPNTsunder uniaxial tension. Since, the zigzag 

BPNT was found to have poorer stability than the 

armchair BPNT [27]. Hence, only the armchair 

BPNT is considered in this study. 

II. Framework for analysis 

Stillinger-Weber potential is here used to model the 

P-P interatomic interactions[28].The potential energy 

E of the atomic structure is the total of the bond 

stretching energy
r

E and bond angle bending energy

E

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 WhereV2corresponds to the bond-stretching 

và V3associates with the angle-bending. M and N 

denote the total numbers of bond-stretching and 

angle-bending element, respectively (Fig. 1). Cutoffs

max max
,

ij ik
r r are geometrically determined by the 

material’s structure. A, Kare energy parameters. ρ, B, 

ρij, ρik, θoare five geometrical parameters. ,ij ikr r are 

length ofij andik. 
ijk

 is angle between bondij and ik.  
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Fig. 1. Two element types used in MDFEM with Stillinger-Weber potential: a) Two-body (bond-stretching) 

element; and b) Three-body (angle-bending) element. 

 

Stillinger-Weber potential parameters are taken from 

[28] for P-P interaction in black phosphorene and 

tabulated in table 1 and 2. 

 

 

Table 1 Two-body (bond-stretching) Stillinger-Weber potential parameters

 A, nN.Å ρ, Å B, Å
4
 ro, Å rmaxij, Å 

P – P 5.7962 0.809 14.287 2.224 2.790 

 

Table 2 Three-body (angle-bending) Stillinger-

Weber potential parameters. Pt and Pb indicate the 

phosphorus atoms belonging to inner and outer tube 

diameter, respectively. 

Typ

es 

K, 

nN

.Å 

𝜃o, 

degre

e 

ρij

, 

Å 

ρik, 

Å 

rma

xij, 

Å 

rmaxik

, Å 

rmaxjk

, Å 

Pt – 

Pt – 

Pt 

57.

06

8 

96.35

9 

0.

8

0

9 

0.8

09 

2.7

90 

2.79

0 
3.89 

Pb – 

Pb – 

Pb 

57.

06

8 

96.35

9 

0.

8

0

9 

0.8

09 

2.7

90 

2.79

0 
3.89 

Pt – 

Pt – 

Pb 

51.

16

2 

102.0

94 

0.

8

0

9 

0.8

09 

2.7

90 

2.79

0 
3.89 

Pb – 

Pb – 

Pt 

51.

16

2 

102.0

94 

0.

8

0

9 

0.8

09 

2.7

90 

2.79

0 
3.89 

 

 While density functional theory (DFT) 

calculations and molecular dynamics (MD) 

simulations are time-consuming, molecular dynamic 

finite element methods (MDFEM), sometime known 

as atomic-scale finite element methods or atomistic 

finite element methods, have been developed to 

analyze nanostructured materials in a 

computationally efficient way, see e. g. [29, 30]. To 

achieve the atomic positions of the BPNT under 

specific boundary conditions, molecular dynamic 

finite element method (MDFEM) is here adopted. In 

MDFEM, atoms and atomic displacements are 

considered as nodes and translational degrees of 

freedom (nodal displacements), respectively. Both 

first and second derivatives of system energy are 

used in the energy minimization computation, hence 

it is faster than the standard conjugate gradient 

method which uses only the first order derivative of 

system energy as discussed in [29]. The stiffness 

matrices of these elements are established based upon 

interatomic potentials. Similar to conventional finite 

element method, global stiffness matrix is assembled 

from element stiffness matrices. Hence, relations 

between atomic displacement and force can be 

derived by solving a system of equations.Molecular 

dynamics finite element method (MDFEM)with 

Stillinger-Weber potential is used to simulate the 

uniaxial compression and tension of BPNT[22-24]. σ 

and ε are the nominal axial stress (engineering stress) 

and nominal axial strain (engineering strain), 

respectively. Young’s modulus Y is determined from 

the first derivative of the stress-strain curve at strain 

=0. Due to an ambiguous value of the tube’s 

thickness t, we use the product Yt and t to denote 

2D Young’s modulus and 2D stress, respectively. 

Pristine and defective (0, 10) armchairBPNT is 

considered.  

 

III. RESULTS AND DISCUSSION 
 Fig.2 shows the stress-strain curves of 

pristine and defective (0, 10)armchair BPNT under 
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uniaxial tension. The axial stress increases 

monotonously with the rising of the axial strain up to 

a peak value, then the stress drops suddenly as shown 

in Fig. 2. Hence, maximal axial stress and strain at 

maximal stress refer to fracture stress and fracture 

strain, respectively.   

 
Fig. 2. The stress-strain curves of pristine and 

defective (0, 10) armchair BPNT under uniaxial 

tension 

 

Table 3 showsthe Young’s modulus, fracture stress 

and fracture strain of pristine and defective (0, 10) 

armchair BPNT under uniaxial tension. 

 

Table 3 Mechanical properties of pristine and 

defective (0, 10) armchair BPNT under uniaxial 

tension 

Armchair 

nanotube 

Young’s 

modulus 

Yt, N/m 

Fracture 

stress t, 

N/m 

Fracture 

strain , % 

(0, 10) 

pristine 

51.68 3.689 16.5 

(0, 10) 

defective 

51.93 3.243 10.5 

 The results show that the defective tube 

exhibit almost the same Young’s modulus as the 

pristine one as indicated in Table 3. Therefore, the 

defect has almost no effect on Young’s moduli of 

phosphorene tube. In contrast, the 

defectaffectssignificantly on the fracture stress and 

strain. Due to a single defect in the tube’s center, the 

fracture stress and facture strain of defective tube 

reduce up to 14% and 57%, respectively, compared 

with the pristine one. Our results are in good 

agreement with those from MD simulations[25]. Fig. 

3 shows snapshots of defective (0, 10) armchair 

BPNT under uniaxial tension. 

 

 
Fig. 3. shows snapshots of defective (0, 10) armchair 

BPNT under uniaxial tension. 
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