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ABSTRACT: In present work, the problem of convective boundary layer flow of a warm laminar non-

Newtonian nanofluid over a vertical surface with melting effect is studied numerically. A non-Newtonian fluid 

is one whose stream bend is nonlinear. The relationship between shear stress and shear rate for this type of fluid 

can be mathematically expressed as τyx  = K(γ 
yx

)n ,so the apparent viscosity for the power law fluid is           

μ = K(γ 
yx

)n−1. The fluid display diverse properties, shear-thinning, Newtonian behaviour, shear thickening for 

different values of power law index. A nanofluid model is employed to incorporate the effects of brownian 

motion and thermophoresis. The governing set of partial differential equations was non-dimensionalized and 

reduced to a set of ordinary differential equations and is then solved numerically using Matlab. Numerical 

results for surface heat transfer rate and mass transfer rate are studied in the presence of different physical 

parameters and are presented graphically. 

Keywords: Melting, Non-Newtonian Nanofluid ,Heat transfer. 

     

 

NOMENCLATURE 

 

(x , y )  Cartesian coordinates  

(u. v)  velocity components along in the vertical (x) 

and horizontal (y) directions, 

Nr  buoyancy ratio parameter 

Nb  brownian motion parameter 

DB   brownian motion coefficient 

Nt  thermophoresis parameter 

DT  thermophoretic diffusion coefficient 

Shx  local sherwood number 

Rax   local Rayleigh number 

Gr∗ Grashof number 

M   melting parameter  

Le Lewis number  

K  modified permeability of the porous medium 

g  gravitational acceleration 

T  local temperature 

C  nanoparticle volume fraction 

k  effective thermal conductivity of the porous 

medium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Greek symbols 

 

β  volumetric expansion of the base fluid  

αm  thermal diffusivity of the porous medium 

ρf∞ density of the base fluid 

ρp   density of nanoparticle 

(ρc)f   heat capacity of the nanofluid  

(ρc)p   effective heat capacity of the nanoparticle 

material. 

θ    dimensionless temperature 

ϕ    dimensionless concentration 

τ  ratio of the effective heat capacity of the 

nanoparticle material and the heat capacity of the 

fluid  

ε   porosity of the porous medium   

μ  consistency index of the power law fluid 

ψ  stream function  

Cf   specific heat of convective fluid 

Csf  specific heat of solid liquid phase 

hsf  latent heat of melting of solid 

Subscripts 

m = melting point  

 = condition at infinity 
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I. INTRODUCTION 

 Recently the study of non-Newtonian 

nanofluids has received much attention due to its 

applications in manufacturing and industry 

technologies. Classical heat transfer fluids such as 

water, ethylene glycol, and engine oil have a some 

limitation in heat transfer efficiency. Metals are 

very good conductivities. To overcome this 

disadvantage of fluids, it would be desired to 

combine metals and fluids to produce a heat 

transfer medium. Numerous intriguing uses of non-

Newtonian power law fluids with yield stress on 

convective heat transport in fluid saturated porous 

media considering geothermal applications and oil 

reservoir engineering applications was presented by 

Shenoy [1]. Ellahi et al. [2] have expounded that 

non-Newtonian nanofluids have potential roles in 

physiological transport as biological solutions and 

also in polymer melts, paints etc.. 

 The effect of melting and nanofluid flow 

over a vertical plate has been investigated by 

several researchers due to its wide range of 

applications. Hady et al. [3] studied boundary layer 

phenomena on non-Newtonian flow over a vertical 

plate in porous medium saturated with nanofluid. 

They observed that nanoparticle volume fraction 

decreases with an increase in Le and n. Kumari and 

Gorla [4] studied the effect of melting on mixed 

convective boundary layer flow over a vertical 

plate embedded in a porous medium saturated with 

a Nanofluid. In their studies they found that 

melting phenomenon increases the heat transfer 

rate at the solid interface. The effects of melting 

heat transfer in a nanofluid flow past a permeable 

continuous moving surface was studied by Gorla et 

al. [5] They observed that as melting parameter 

increases the velocity profile increases, whereas the 

temperature and concentration profiles decreases. 

Kairi and Ram Reddy [6] explored the effects of 

melting on mixed convective heat and mass 

transfer in non-Newtonian nanofluid saturated in 

porous medium. Their findings indicates that 

Nusselt and Sherwood number decrease with 

increase of melting parameter for both pseudo 

plastic and dilatants fluids. 

 The main desire of the commenced inquire 

is to interpret the effects of melting in non-

Newtonian nanofluid over a vertical plate. Most 

reviews published in the literature have not 

considered the melting effect on non-Newtonian 

nanofluid flow over a vertical surface. Numerical 

solutions for various parameters are represented 

graphically. 

 

 

 

 

II. MATHEMATICAL ANALYSIS 
 In this work we consider melting effects 

steady two-dimensional boundary layer non-

Newtonian nanofluid flow over a vertical surface in 

a porous medium. Further we consider a Cartesian 

coordinate system (x, y),where x and y are 

coordinates measured along the plate and normal to 

it, respectively. It is assumed that this plate 

constitutes the interface between the liquid and 

solid phases during the melting inside the porous 

matrix. The plate temperature is 𝑇𝑚 , which is 

constant and the liquid phase temperature 𝑇∞and 

temperature of the solid far from the interface is 𝑇𝑠. 
Nanoparticle fraction C to be taken as constant 

values 𝐶𝑤and 𝐶∞ respectively. Based on the above 

suppositions, the governing equations for steady 

laminar flow heat and mass transfer can be 

composed as follows 

 

 
                 

            Fig 1. Physical model of a problem 
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where 𝛼𝑚 =
𝑘

(𝜌𝑐 )𝑓
 and  𝜏 =

𝜀(𝜌𝑐 )𝑝

(𝜌𝑐 )𝑓
   

The boundary conditions for equations (1)-(4) are 

given in the form 

 

𝑘
𝜕𝑇

𝜕𝑦
= 𝜌 𝑕𝑠𝑓 + 𝑐𝑠 𝑇𝑚 − 𝑇0  𝑣, 𝑇 = 𝑇𝑚  , 𝐶 = 𝐶𝑤  at  

 𝑦 = 0 

𝑢 → 0, 𝑇 = 𝑇∞ , 𝐶 → 𝐶∞ as 𝑦 → ∞        (5)                                      
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 Here u, v are the velocity components in 

the vertical (x) and horizontal (y) directions, n is 

the power law index, K is the modified 

permeability of the porous medium, g is the 

gravitational acceleration, β is the volumetric 

expansion of the base fluid, ρ𝑓∞is the density of the 

base fluid, μ is the consistency index of the power 

law fluid, T is the local temperature, C is the 

nanoparticle volume fraction, 𝜌𝑝 is the density of 

nanoparticle, τ is ratio of the effective heat capacity 

of the nanoparticle material and the heat capacity of 

the fluid, 𝐷𝐵 is the Brownian motion coefficient, 

𝐷𝑇 is the thermophoretic diffusion coefficient, ε is 

the porosity of the porous medium respectively. k 

is the effective thermal conductivity of the porous 

medium, (𝜌𝑐)𝑓 is the heat capacity of the nanofluid 

and (𝜌𝑐)𝑝 is the effective heat capacity of the 

nanoparticle material. 

The modified permeability of the porous medium K 

of the non - Newtonian power law fluid is defined 

as 

𝐾 =
1

2𝑐𝑡
(

𝑛𝜀

3𝑛 + 1
)𝑛(

50𝑘∗

3𝜀
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and                      
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The continuity equation (1) is satisfied by 

introducing a stream function 𝜓 𝑥, 𝑦  such that 

𝑢 =
𝜕𝜓

𝜕𝑦
     and  𝑣 = −

𝜕𝜓

𝜕𝑥
 

 where 𝜓 = 𝛼𝑚𝑅𝑎𝑥

1

2𝑓 𝜂 , 𝑓 𝜂  is the dimensionless 

stream function and 𝜂 =  𝑦/𝑥 𝑅𝑎𝑥

1

2  .The velocity 

components are given  

𝑢 =  
𝛼𝑚

𝑥
  𝑅𝑎𝑥𝑓

′ 𝜂  and 
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1
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1
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𝑥
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 1−𝐶∞ 𝐾𝑔𝛽𝜌 𝑓∞∆𝑇

𝜇
 

1

𝑛
 . 

The temperature and concentration are represented 

as 

𝑇 =  𝑇𝑚 + ∆𝑇𝜃 𝜂  and 𝐶 =  𝐶∞ +  ∆𝐶𝜙 𝜂        (7) 

where 𝜃 𝜂  and 𝜙 𝜂  are the dimensionless 

temperature and dimensionless concentration. On 

using equation (5)and (6), equations (2) - (4) 

transform into the following two-point boundary 

value problem       

 𝑛 𝑓 ′ 𝑛−1 + 2𝐺𝑟∗𝑓 ′ 𝑓" − 𝜃′ + 𝑁𝑟𝜙′ = 0,       (8) 

𝜃" +
1

2
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𝜙"+
1

2
 Le𝑓𝜙'+

Nt
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𝜃" = 0,       (10) 

𝑓 0 + 2𝑀𝜃 ′(0) = 0, 𝑓 ′(∞) → 0,      (11) 

𝜃 0 = 0, 𝜃 ∞ → 1,                    (12) 

𝜙 0 = 0, 𝜙 ∞ → 1                    (13) 

 where the primes denote differentiation 

with respect to η. The non-dimensional constants in 

equations (8) - (10) are the Grashof number 𝐺𝑟∗, 
buoyancy ratio parameter Nr, coefficient of 

Brownian motion parameter 𝑁𝑏, thermophoresis 

parameter 𝑁𝑡, the Lewis number 𝐿𝑒 and the 

melting parameter 𝑀. These are defined as 

𝐺𝑟∗ = 𝑏  
  1 − 𝐶∞ 𝑔𝛽∆𝑇 

2−𝑛𝐾2𝑝𝑓∞
2

𝜇2
 

1

𝑛

, 

 𝑁𝑟 =
 𝜌𝑝−𝜌𝑓 ∆𝐶

 1−𝐶∞ 𝛽𝜌 𝑓∞∆𝑇
 , 𝑁𝑏 =

𝜏𝐷𝐵∆𝐶

𝛼𝑚
,  

𝑁𝑡 =
𝜏𝐷𝑇∆𝑇

𝛼𝑚𝑇∞

, 𝐿𝑒 =
𝛼𝑚

𝜀𝐷𝐵

, 𝑀 =
𝐶𝑓 𝑇∞ − 𝑇𝑚  

𝑕𝑠𝑓 + 𝐶𝑠𝑓 𝑇𝑚 − 𝑇0 
 

Heat and Mass transfer Coefficients  

The local heat flux at the vertical wall is given by 

𝑞𝑤  = -𝑘  
𝜕𝑇

𝜕𝑦
 
𝑦=0

        (14) 

The local Nusselt number is defined as                  

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇∞−𝑇𝑚 )
        (15) 

Where is the effective thermal conductvity of the 

porous medium, which is the sum of the molecular 

thermal conductivity and the dispersion thermal 

conductivity. Using equation in equation the 

dimensionless Nusselt number can be represented 

as below 
𝑁𝑢𝑥

𝑅𝑎𝑥

1
2

=  −𝜃 ′(0)        (16) 

The mass flux at vertical wall is given by  
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The local Sherwood is defined as  

𝑆𝑕𝑥 =
𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
        (18) 

Using this the dimensionless Sherwood number 

obtained as 
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1
2

=  −𝜙 ′(0)        (19) 

Where   𝑅𝑎𝑥 =
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𝜇
)

1

𝑛  is the local 

Rayleigh number. 

 

III. RESULTS AND DISCUSSION 

 
 Equations(8)-(10) were solved 

numerically along with the boundary conditions 

(11)-(13) for parametric values of Le (Lewis 

number), Nr (Buoyancy ratio number), Nb 

(Brownian motion parameter) and Nt 

(Thermophoresis parameter) using MatLab bvp4c. 

The results obtained were in good agreement with 

the previously published works. 
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Figure 2: Variation of velocity profiles with 

similarity variable η for (a) 𝐺𝑟∗ = 0 (b) 𝐺𝑟∗ =
0.01  and (c)𝐺𝑟∗ = 1, when 𝑁𝑏 = 𝑁𝑡 = 0.3, 𝑁𝑟 =
0.1 , 𝐿𝑒 = 1 

 
Fig 2(a) 

 
Fig 2(b) 

 
Fig 2(c) 

 

 

 

 

 

 

 

 

Figure 3:Variation of velocity profiles with 

similarity variable η for (a) 𝐺𝑟∗ = 0 (b) 𝐺𝑟∗ =
0.01  and (c)𝐺𝑟∗ = 1,when 𝑁𝑏 = 𝑁𝑡 = 0.3, 𝑁𝑟 =
−0.1 , 𝐿𝑒 = 1 

 
Fig 3(a) 

 

 
Fig 3(b) 

 
Fig 3(c) 
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Figure 4:Variation of temperature profiles with 

similarity variable η for (a) 𝐺𝑟∗ = 0 (b) 𝐺𝑟∗ =
0.01and (c) 𝐺𝑟∗ = 1,when 𝑁𝑏 = 𝑁𝑡 = 0.3, 𝑁𝑟 =
0.1 , 𝐿𝑒 = 1 

 
Fig 4(a) 

 
Fig 4(b) 

 
Fig 4(c) 

Figure 5: Variation of temperature profiles with 

similarity variable η for (a) Gr∗ = 0 (b) Gr∗ = 0.01  

and (c) Gr∗ = 1,when Nb = Nt = 0.3, Nr =
−0.1 , Le = 1 

 
Fig 5(a) 

 
Fig 5(b) 

 
Fig 5(c) 
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Figure 6:Variation of concentration profiles with 

similarity variable η for (a) Gr∗ = 0 (b) Gr∗ = 0.01 

and (c)    Gr∗ = 1,when Nb = Nt = 0.3, Nr =
0.1 , Le = 1 

 
Fig 6(a) 

 
Fig 6(b) 

 
Fig 6(c) 

 

 

Figure 7:Variation of concentration profiles with    

similarity variable η for (a) Gr∗ = 0 (b) Gr∗ = 0.01 

and (c) Gr∗ = 1,when Nb = Nt = 0.3, Nr =
−0.1 , Le = 1 

 
Fig 7(a) 

 
Fig 7(b) 

 
Fig 7(c) 
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Figures 2-7, display results for the variation in the 

velocity, temperature, concentration within the 

boundary layer for different values of Grashof 

number Gr∗ with  Nb =  Nt =  0.3 and Le =  1. 

As the melting parameter M increases, the velocity, 

temperature and concentration decrease in both 

aiding and opposing cases. 

 

Figure 8: Heat transfer coefficient as a function of 

melting parameter M for different values of 

Grashof number Gr∗when n =  0.5, Nb =  Nt =
 0.3, Le =  1, (a) Nr =  0.1 and (b) Nr =  − 0.1. 
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Fig 8(a) 
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Fig 8(b) 

 

In figure 8, it is observed that as  Gr∗ increases th 

heat transfer rate increases with melting parameter 

M for fixed n = 0.5, Nb =  Nt =  0.3, in both 

aiding and opposing flows. 

 

Figure 9: Mass transfer coefficient as a function of 

Lewis number Le for different values of M, when  

Nr = 0.1, Nb =  Nt =  0.3, (a) Gr∗ =  0 and (b) 

Gr∗ =  0.3. 
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Fig 9(a) 
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Fig 9(b) 

 

 From figure 9, It was observed that the 

mass transfer coefficient as a function of Lewis 

number Le increases with melting parameter M 

for Nr =  0.1, Nb =  Nt =  0.3, in the presence 

and in the absence of Gr∗ 
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Figure 10: Heat transfer coefficient as a function 

of melting parameter  M for different values of Nr, 

when n=0.5,  Nb =  Nt =  0.3, for (a) Gr∗ =  0 

and (b) Gr∗ =  0.3. 
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Fig 10 

 

 Figure 10 shows that the heat transfer 

coefficient increases as a function of melting 

parameter for different values of Nr for Gr∗ =  0 

and Gr∗ =  0.3. But this increase is more for the 

increasing values of Grashof number Gr∗ 
 

IV. CONCLUSIONS 
 In this work, Numerical outcomes for 

surface heat and mass transfer rates have been 

presented for parametric variations in Melting 

parameter M, Buoyancy ratio parameter Nr, 

Brownian motion parameter Nb, Thermophoresis 

parameter Nt, Grashof number Gr∗and Lewis 

number Le.  

The results indicate that : 

1. as Lewis number Le increases the heat and 

mass transfer rates increase.  

2. as melting parameter M increases, the heat and 

mass transfer rates increase. Also it is observed 

that the melting phenomenon increases the 

heat transfer (Nusselt number) rate at the solid 

fluid interface.  

3. as Grashof number Gr∗ increases, velocity , 

temperature and nanoparticle concentration 

profiles decreases.  

4. as Grashof number Gr∗ increases, heat transfer 

coefficient increases  for different values of Nr  
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