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ABSTRACT 
This paper presents a theoretical exploration of the electrodynamic behaviours of one- and two-dimensional 

photonic crystals, consisting of composite material and dielectric layers. Specifically, we determine the 

photonic-bandgap for various photonic materials, such as Gallium Arsenide (GaAs), Sapphire (Al2O3), and 

Plexiglas (C5O2H8)n. It is shown that the width of the photonic-bandgap depends primarily on the physical 

parameters of the structure. In addition, the higher the permittivity of the material, the greater the number of 

bands of significant width. Using the method of decomposition of plane waves, we show that GaAs is the 

material having a larger prohibited bandwidth. Finally, we compare numerical results in 1-D and 2-D system.  
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I. INTRODUCTION 

 Substantial advances in semiconductor 

physics have allowed researchers to tailor the 

conducting properties of certain materials, which 

initially led to the transistor revolution in 

electronics. Within the last decade, there has been a 

breakthrough in the control of the optical properties 

of materials, which allows the control of the 

emission and propagation of light [1, 2]. Many 

major discoveries in physics originate from the 

study of waves in periodic structures; examples 

include X-ray and electron diffraction by crystals, 

electronic band structure and holography. 

Photonic-bandgap (PBG) materials are a new class 

of periodic dielectrics, which are the photonic 

analogues of semiconductors. Electromagnetic 

waves in photonic crystals behave as electrons 

behave in semiconductors [2-4]. These artificially 

engineered periodic materials, which control the 

propagation of electromagnetic waves, may play a 

role that is as important in the field of photonics as 

the laser plays today in optoelectronic systems. In 

practice, due to their potential ability in controlling 

light propagation, photonic crystals have many 

applications in optoelectronics such as ultra-small 

optical circuit devices, filters, switches, and lasers.  

A photonic crystal is a medium with a 

periodic structure, made up of cells of constant 

values of dielectric permeability. Such a structure 

can be classified as composed of one, two, or three 

dimensions. In the case of a 1-D medium, the 

structure consists of an infinite succession of 

parallel-plane layers of uniform dielectric. In 

addition, each layer or cell consists of two different 

thicknesses of dielectric, each with a constant value 

of dielectric permeability. The 1-D structure is 

isotropic in the two dimensions parallel to the 

layers.  A 2-D photonic structure is represented by 

a bulk dielectric medium in which, in a periodic 

way, cylinders are arranged with specific indices of 

refraction. The 2-D structure is isotropic in the 

dimension parallel to the axis of the cylinders. 

 In recent years, the study of the optical 

and electrodynamic properties of such structures 

has resulted in many publications [2–12]. If the 

medium is infinite, it has fixed frequency bands 

allowing the propagation of electromagnetic waves, 

as well as a bandgap in which the transmission of 

electromagnetic energy inside the structure is 

blocked. These properties, giving rise to a series of 

research topics, are consequences of the Bloch 

theorem and the fact that the oscillatory field in 

such a structure satisfies the Floquet condition. 

 In making practical use of these 

properties, it is necessary to conceive of structures 

with a large, but finite number of periodic 

variations in media, for which the theory just 

mentioned is already strictly incorrect. However, 

such structures will have properties approaching 

those of an infinite structure, if the number of cells 

is sufficiently large. The most natural method to 

theoretically study the properties of such structures 
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is the numerical method of mathematical 

modelling, which is commonly done in the 

majority of publications along this line [13]. There 

are many areas of applications for photonic 

crystals: telecommunications engineering, 

information systems, laser technics and others. In 

nature, we also find structures having the 

characteristics of photonic crystals, such as 

diamond, opal, calcium, and others. 

 This paper aims at studying optical 

properties of both one-and two-dimensional 

photonic crystal by investigating the band structure 

diagram for different types of materials, 

particularly, Gallium Arsenide (GaAs), Sapphire 

(Al2O3) and Plexiglas (C5O2H8)n. The positions and 

widths of the bandgaps in the spectrum depend on 

the thickness and lattice. We make a detailed 

analysis of the influence of the internal and 

external basis vectors for each type of material 

period of the structures, and consider the thickness 

of the materials and the periodicity of the structure 

on the evolution of the bandwidths. Finally, we 

show numerical results of the dispersion relation 

for three different materials and compare a 

photonic band structure for three different 

materials. 

 The paper is organized as follows: In 

Section II, theoretical model of the photonic 

structure is presented. Section III considers one-

dimensional photonic structure. The two-

dimensional structure is considered in Section IV. 

Numerical results are shown in Section V. Finally, 

Section VI is devoted to the conclusion. 

 

II. THEORETICAL MODEL OF PHOTONIC 

CRYSTAL 

 According to the general theory developed 

for periodic structures, when the lattice spacing 

a0 = (2p + 1) ×
λ

2
  (λ is a wavelength, p =

0,1,2…), the wave resulting from interactions with 

the crystalline lattice is reflected from the 

corresponding crystalline plane. The interference of 

incident and reflected waves leads to the formation 

of standing waves. In this process, the propagation 

of photonic energy, which satisfies the Bragg’s 

condition in an ideal crystal, turns out to be 

impossible. In plots of the energy spectrum, energy 

gaps are formed; i.e., the formation of prohibited 

zones of wave transmission, which appear in 

general for all periodic structures [9]. 

 Theoretical descriptions of photon 

dispersion and the optical behaviour of photonic 

crystals begin by solving Maxwell equations for a 

periodically modulated heterogeneous dielectric 

medium. For 1-D and 2-D photonic crystals, 

Maxwell’s equations are conveniently presented in 

the form of a system of equations involving the 

electric (Е) and magnetic (Н) fields separately [8]: 

 

{
μ−1∇ × [ε−1(r)∇ × H(r)] = (ω c⁄ )2 H(r)

ε−1(r)∇ × [μ∇ × E(r)] = (ω c⁄ )2 E(r)
,  (1)

  

where ω is the frequency, c is the speed light in 

vacuum, ε and μ are dielectric and magnetic 

permeability of the materials. Here, we will focus 

on H(r) as the eigenvector, where  (ω c⁄ )2 is the 

eigenvalue. Since the value ε(r)  in this case is 

material-dependent, the goal with Eq. (1) is to find 

the eigenvalues (ω c⁄ )2 for the Hermitian 

operator  Â = μ−1∇ × ⌊ε−1(r)∇ × H(r)⌋,  as 

expressed in Eq. (2): 

  

                         Â H = (ω c⁄ )2H.                     (2)

   

All the information about the characteristics of 

photonic crystals, necessary for the analysis of Eq. 

(1), is contained in the functions of the dielectric 

and magnetic permeabilities which are assumed to 

be local functions of the position coordinate. For a 

non-magnetic substance, μ = 1. Equation (1) is an 

eigenvalue equation, whose solution comprises a 

problem often encountered in the mathematical 

physics. This equation is the main equation to 

characterize the photonic crystals. 

Figure 1. Geometry of a 1-D photonic crystal 

structure. 1 and 2 are constant permittivities 

of the first and second materials, respectively. 

1n and 2n are the refractive index constants of 

the first and second materials, respectively. a is 

the periodic spacing. 

    

III. ONE-DIMENSIONAL PHOTONIC 

CRYSTAL 

III.1. Statement of the problem 

 Let us consider the 1-D photonic crystal 

formed of alternating dielectric layers of 

permittivities 1 and 2 , with spacings 1a and 2a  

(Figure 1). The crystal is subject to a wave at 

normal incidence. The period of the array is
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21 aaa  . Along the x-axis, the Bloch 

electromagnetic waves propagate in a direction 

perpendicular to the surface of the dielectric layers. 

The polarization of the wave is linear, and the 

electric field vector is taken to be parallel to the y-

axis. The goal of the computations is to determine 

the forbidden bands and their widths for the various 

materials mentioned in the Introduction. 

 

III.2. Formulation of equations 

 It is known that functions satisfying Eq. 

(2) in a periodic medium have the Bloch form: 

                      φk(x) = e
ikx u(x),                            (3) 

 

where x is the coordinate in the direction of 

propagation, and k is the wave vector. The 

eigenfunctions of operator Â as defined in Eq. (2), 

are determined by the defining functions, ε(x), and 

the appropriate boundary conditions: 

 

             ε(x) = {
ε1,             na ≤ x < a1 + na
ε2,     a1 + na ≤ x < (n + 1)a

     (4) 

 

where n is a whole number. The eigenfunctions in 

the regions with dielectric permeability 1 and 2  

have the corresponding form 

 

                {
φ1(x) = Ae

ik1x + Be−ik1x

φ2(x) = Ce
ik2x + De−ik2x

                  (5) 

 

where A, B, C and D are constant coefficients and 

ki = √εiω c⁄ . 

 Since at the zone boundaries separating 

layers with different dielectric permeability the 

eigenfunctions and their derivatives must be 

continuous, we can form a system of equations 

based on these boundary conditions: 

 

(A + B)eika = Ceik2a + De−ik2a

k1(A − B)e
ika = k2(Ce

ik2a − De−ik2a)

Aeik1a1 + Be−ik1a1 = Ceik2a1 + De−ik2a1

k1(Ae
𝑖𝑘1𝑎1 − 𝐵𝑒−𝑖𝑘1𝑎1) = 𝑘2(𝐶𝑒

𝑖𝑘2𝑎1 − 𝐷𝑒−𝑖𝑘2𝑎1)

 

           (6)  

In matrix form, this system of equations relative to 

A, B, C and D can be written in the for 

 

                        𝑀(𝑘1, 𝑘2, 𝑘)𝑉 = 0,                       (7) 

where 

 

𝑀(𝑘1, 𝑘2, 𝑘)   

=

(

 

1 1 −𝑒𝑖𝑎(𝑘2−𝑘)

𝑘1 −𝑘1 −𝑘2𝑒
𝑖𝑎(𝑘2−𝑘)

𝑒𝑖𝑘1𝑎1 𝑒−𝑖𝑘1𝑎1 𝑒−𝑖𝑘2𝑎1

𝑘1𝑒
𝑖𝑘1𝑎1 −𝑘1𝑒

−𝑖𝑘1𝑎1 −𝑘2𝑒
−𝑖𝑘2𝑎1

−𝑒−𝑖𝑎(𝑘2+𝑘)

𝑘2𝑒
−𝑖𝑎(𝑘2+𝑘)

−𝑒−𝑖𝑘2𝑎1

𝑘2𝑒
−𝑖𝑘2𝑎1 )

 ,  

and 

𝑉 = (

𝐴
𝐵
𝐶
𝐷

). 

This system of homogeneous equations has a 

solution different from zero if and only if 𝑑𝑒𝑡 𝑀 =
0. Calculating the determinant, we can obtain an 

implicit form of the dispersion relation, 𝜔(𝑘): 
 

𝑐𝑜𝑠(𝑘1𝑎1) 𝑐𝑜𝑠(𝑘2𝑎2) 

−
1

2

𝜀1+𝜀2

√𝜀1𝜀2
𝑠𝑖𝑛(𝑘1𝑎1) 𝑠𝑖𝑛(𝑘2𝑎2) = 𝑐𝑜𝑠 (𝑘𝑎).          (8) 

 

Since we must have |cos(𝑘𝑎)| ≤ 1, forbidden 

zones arise in the spectrum, i.e., values of 𝑘i for 

which, 

𝑐𝑜𝑠(𝑘2𝑎2) −
1

2

𝜀1+𝜀2

√𝜀1𝜀2
𝑠𝑖𝑛(𝑘1𝑎1) 𝑠𝑖𝑛(𝑘2𝑎2)| > 1.  In 

these zones, the propagation of radiation in the 

crystal is not possible. 

Equation (8) illustrates the close analogy 

between the one-dimensional model of photonic 

crystals and the electronic model of Kronig-

Penney, which helps clarify the nature of the 

photonic forbidden zone.  In a 1-D photonic crystal 

with two different dielectric layers having a 

periodicity of length a, the band structure will start 

to open at the border of the Brillouin zone and a 

forbidden band appears. In the forbidden band, 

there is not any state which can propagate; on the 

contrary each state is evanescent, being 

characterized by a complex wave number.  In one 

dimensional crystals a forbidden band will always 

appear, since there is a periodic variation of the 

dielectric constant. The greater the variation, the 

greater the width of the forbidden band. 

 

IV. TWO-DIMENSIONAL (2-D) PHOTONIC 

CRYSTAL 

IV.1. Statement of the problem 

 This section generalizes the preceding 

results with the case of 2-D photonic crystals. We 

study square structures of 2-D photonic crystals 

formed into an array of dielectric cylinders of 

permittivity ε2  embedded in a dielectric medium 

of permittivity ε1 (Fig. 2a). The media are assumed 

to be non-magnetic, i.e., their magnetic 

permeability corresponds to that of the vacuum, 

equal to 𝜇0. The array is generated by the 

elementary basis vectors 1a and 2a . The cross-

section of the cylinders is arbitrary, but is identical 

for all the cylinders. Finally, the z-axis is selected 

parallel to the axis of the cylinders. As in sub-

section III.1, it is necessary to determine the 

forbidden zones and the widths of the bands for 

these various materials. 
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Figure 2. (a) Structure of a 2-D photonic crystal 

and (b) the corresponding Brillouin zone 

(purple line). ε1 and ε2 are constant 

permittivities of the first and second materials, 

respectively. 1a and 2a  are the basis vectors of 

the network, in the y and x-directions, 

respectively. 

 

IV.2. Formulation of equations 

 

 For a two-dimensional photonic crystal, 

the numerical solution of Eq. (1) can be obtained 

more easily in the matrix representation for the 

polarisation of 𝐸 and 𝐻, given in the form [8]: 

 

∑ 𝜀−1(𝑀(𝑘 𝐺𝐺′) − (𝜔 𝑐⁄ )⁄ 2
) 𝐹(𝑛𝑘 𝐺⁄ ) = 0,𝐺′    (9) 

 

where 𝐺 = |𝐺| is the size of the inverse grating or 

lattice, vector 𝐹 is equal to 𝐸 or 𝐻 depending on 

the polarization, 𝑛 is an index zone, and 𝑘 is wave 

vector of Brillouin. The matrix 𝑀(𝐾 𝐺𝐺 ′⁄ ) =
|𝐾 + 𝐺||𝐾 + 𝐺 ′|𝜖−1(𝐺 − 𝐺 ′) for 𝐸 polarization, 

and 𝑀(𝐾 𝐺𝐺 ′⁄ ) =  (𝐾 + 𝐺)(𝐾 + 𝐺 ′)𝜖−1(𝐺 − 𝐺 ′) 
for 𝐻 polarization. The solution of Eq. (9) can be 

obtained numerically for different filling factors, 

indices of refraction, and the chosen number of 

plane waves. 

 

V. RESULTS AND DISCUSSION 

 The simplest photonic crystal that we can 

conceive is the traditional Bragg mirror, obtained 

by periodic alternation of dielectric plane layers 

with optical thickness 𝜆/4 [7, 8]. The in-depth 

analysis of its properties nicely illustrates multiple 

aspects related to the concept of forbidden photonic 

bands. 

 

 
Figure 3. The photonic band structures for a 1-

D photonic crystal. This relation is presented for 

the GaAs material of permittivity εa = 12.29 

and the coefficient r/a was varied over the range 

from 0.1 to 0.3, with 𝑎 = 0.775 𝜇𝑚.  The 

number of elements is 𝑁 = 5.  Two photonic 

bands are counted and the greatest bandwidth 

obtained is 0.24µm with 𝑟 𝑎 = 0.1⁄ . 

 

 The figures below present the dependence 

of the wave vector and the normalized frequency 

for various photonic materials (gallium arsenide 

(GaAs), sapphire (Al2O3) and Plexiglas (C5O2H8)n. 

In 1-D, the dispersion curves are presented for TM 

polarization. The band structure as a function of the 

normalized frequency is given in Fig. 3 for the 

GaAs material with permittivity εa = 12.29. The 

coefficient ar was varied from 0.1 to 0.3, with 

a = 0.775 μm. The analysis of the results shows 

that the greatest bandwidth corresponding to the 

optical field, 0.24µm, is obtained with r a = 0.1⁄ . 

The optimal number of bands is equal to 2 for a 

number of elements equal to N = 5. Let us note 

that for r a = 0.3⁄ , we obtain three forbidden bands 

but with a total width that is lower than that 

obtained for r a = 0.1⁄ . We also note that an 

increase in the number of layers does not change 

anything in the dimensions bandwidths obtained. 

Thus, for different values of crystal spacing 

 ....a  21 the number of bands and their 

widths does not change. We choose to work with 

𝑎 = 2. 
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Figure 4. Dispersion relation for the Al2O3 

material with permittivity εa = 11.7 for the 

same values of the coefficient r a⁄   as in Fig. 3. 

Two photonic bands are observed with a 

greatest bandwidth of 0.23µm obtained for 

r a = 0.1⁄ . The number of elements is the same 

as in Figure 3. 

 

 Figure 4 reveals the presence of two 

photonic forbidden bands for sapphire (Al2O3) with 

permittivity εa = 11.7, using the same values of 

the coefficient r a⁄  as in Fig. 3. The greatest 

bandwidth here, 0.23µm, is again obtained for 

r a = 0.1⁄ . As in the preceding case, the number of 

bands and elements is the same. We also note that 

for the ratio r a = 0.3⁄  we obtain three forbidden 

bands, but their total width is lower than that 

obtained with r a = 0.1⁄ . 

 

 
Figure 5. Dispersion relation for the Plexiglas 

(C5O2H8)n material with permittivity εa = 2.6 

for the same values of the coefficient ar  as in 

Fig. 3. Two photonic bands are observed with a 

greatest bandwidth of 0.11µm obtained for 

10.ar  . The number of elements is the same 

as in Figures 3 and 4. 

 

 Lastly, Fig. 5 presents the results for 

Plexiglas (C5O2H8)n with permittivity εa = 2.6. In 

this case, the greatest bandwidth, 0.11µm, is 

obtained with r a = 0.1⁄ . As in Figs. 3 and 4, the 

number of bands and elements is the same. Let us 

observe that in general, for all these materials, the 

number of bands can be higher for certain values of 

N, but the total width of the bands is then lower. 

 
Table 1. Summary of results for the three 

materials in terms of the number of bands (NB) 

and their total width (TW) for different values 

of a and of N  in TE and TM modes. We note 

that in 1-D, the TE and TM modes have the 

same values. GaAs is the material having the 

best prohibited bandwidth. 

 

 Table 1 presents a summary of results for 

the three materials in terms of the number of bands 

(NB) and their total width (TW) for different 

values of a and N, for TE and TM  modes. We 

note that in 1-D crystals, the TE and TM modes 

give the same values. In other words, there is not 

any difference between these modes. We also 

notice that the bandwidths are higher 

when r a = 0.1⁄  for all materials. GaAs is the 

material having the largest forbidden bandwidth. 

For this material, the number of forbidden bands 

increases when the basis vector of the cylindrical 

array reaches the value of 0.3a. Moreover, the 

forbidden bands for GaAs appear only for N equal 

to or higher than 5.  

 
Figure 6. Band diagram for a 2-D structure 

showing the photonic bandgap in polarization 

TM for the material GaAs. The diagrams 

represents propagation of the wave vector in the 

x-direction, giving the points of high symmetry 

Γ, Μ, Κ in the first Brillouin zone. On the y-axis 

are plotted the frequencies of the calculated 

modes. In the TM mode, there is a forbidden 

band of width 0.1367µm for the ratio 20.ar  . 
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 A photonic crystal is generally 

characterized by its band diagram. In what follows, 

we study periodic crystals with two-dimensional 

structure that are isotropic in the third dimension. 

The structure that we treat is an array of size 5x5 

with a square symmetry as shown in Fig. 2(a). 

Figures 6 and 7 present the dependence of the wave 

vector and the normalized frequency for two 

materials, GaAs and Al2O3, respectively. These 

materials are 2-D planar photonic crystals of square 

arrays, consisted of an array of air pockets. The 

dispersion curves are presented for polarizations 

TM and TE. In the TM mode (Fig. 6), there exists a 

forbidden band of width 0.1367µm for the ratio 

r a = 0.2⁄ . The first material is considered to be 

air, of index 1, and the second is gallium arsenide 

(GaAs) of index 12.29. It is important to note that 

the more we increase the ratio r a⁄ , the more 

forbidden bands we obtain. On the other hand, if 

we reverse the materials we do not observe any 

forbidden band, no matter what the value of the 

ratio r a⁄ . 

Figure 7 presents the sapphire (Al2O3) 

material dispersion curves for the TM mode. The 

bandwidth of this mode equal to 0.1331µm. It is 

slightly lower than that observed with gallium 

arsenide (GaAs). Finally, when calculating the 

dispersion curves for Plexiglas (C5O2H8)n, we do 

not observe any forbidden bands in either TM or 

TE mode. 

 

 
 

 

Figure 7. Band diagram for a 2-D structure 

showing the photonic bandgap in polarization 

TM for the sapphire (Al2O3) material. The 

bandwidth is equal to 0.1331µm. It is slightly 

lower than that observed with the gallium 

arsenide (GaAs) material. In the TE mode, we 

do not observe any forbidden band. 

 
Table 2. Summary of results for 2-D structures 

of the three materials. The numerical results 

show that there is not any forbidden band for 

the Plexiglas material and that the TE mode 

does not result in any forbidden band for these 

materials. GaAs is the material having the best 

forbidden bandwidth, for a vector of 0.2a with 

N = 6. Taking into consideration these two 

tables, it is advisable to use the 2-D structure 

with vectors of 0.2a and N = 6 bands, because it 

is on this level that we observe a higher 

prohibited bandwidth. 

 

 Table 2 presents the results for the three 2-

D materials. The numerical results show that there 

is not any forbidden band for the Plexiglas 

material. Further, the TE mode does not result in 

any forbidden bands for any of these materials. As 

in Table 1, the forbidden bands appear only for 

N ≥ 5. GaAs is still the material having the largest 

forbidden bandwidth, for a vector of 0.2a with 

N = 6. Let us note that for r = 0.4a and larger, we 

do not observe any forbidden bands for any of 

these materials. Taking into consideration the 

results for GaAs shown in both tables, we conclude 

that it is advisable to use the 2-D structure with 

basis vector r = 0.2a and N = 6 bands, because it 

is on this level that we observe a higher prohibited 

bandwidth. Moreover, normally in a waveguide we 

would prefer that only one mode be propagated, 

and this is one of the fundamental advantages of 

the 2-D structures over the 1-D structures, in which 

two modes are propagated. 

 

VI. CONCLUSION 

 In summary we have studied the optical 

properties of 1-D and 2-D periodic photonic 

structures for various materials. We explored the 

dynamic change of the forbidden zone picture with 

dependence on the physical parameters of the 

structure. We observe that a number of bands and a 

significant bandwidth are obtained for materials 

having high permittivities. Moreover, we conclude 
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that the 2-D structure is preferable because it gives 

a higher prohibited bandwidth and single-mode 

propagation. Ultimately, photonic crystals present 

themselves as having qualitatively new properties 

for the control and propagation of light due to the 

presence of the full forbidden zones in the 

electromagnetic spectrum in the desirable 

frequency range. Such capabilities have already 

been demonstrated for the microwave region. 

Finally, the structures studied can be used as an 

independent solution to the problem of 

backscattering from patch antennas. In addition, the 

properties of photonic crystals may be utilized as a 

first step in further optimization of these antenna 

structures, with the help of non-linear programming 

methods. Future research will investigate this 

question as well. 
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