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ABSTRACT—We analyze a 15-year time series of North Americanelectric power transmission system 

blackouts for evidence of self-

organizedcriticality(SOC).Theprobabilitydistributionfunctionsofvariousmeasuresofblackoutsizehaveapowertailan

drescaledrange analysis of the time series shows moderate long-time corre-lations. Moreover, the same analysis 

applied to a time series froma sandpile model known to be self-organized critical gives resultsof the same form. 

Thus, the blackout data seem consistent 

withSOC.Aqualitativeexplanationofthecomplexdynamicsobservedinelectricpowersystemblackoutsissuggested. 

 

I. INTRODUCTION 
ELECTRICpowertransmissionnetworksar

ecomplexsystemsthatarecommonlyrunneartheiroper

ationallimits.Majorcascadingdisturbancesorblackou

tsofthesetransmission systems have serious 

consequences. 

Individually,theseblackoutscanbeattributedtospecifi

ccauses,suchaslightningstrikes,icestorms,equipment

failure,shortsresultingfromuntrimmedtrees,excessiv

ecustomer-

loaddemand,orunusualoperatingconditions.Howeve

r,anexclusivefocusontheseindividualcausescanoverl

ooktheglobaldynamicsofacomplexsysteminwhichre

peatedmajordisruptionsfromawidevarietyofsources

areavirtualcertainty.Weanalyzeatimeseriesofblacko

utstoprobethenatureofthesecomplex 

systemdynamics. 

 

The North American Electrical Reliability 

Council (NERC)has a documented list 

summarizing major 

blackouts1oftheNorthAmericanpowergrid[1].Theya

reofdiversemagnitudeandofvaryingcauses.Itisnotcle

arhowcompletethisdatais, but it is the best-

documented source that we have found 

forblackouts in the North American power 

transmission system.An initial analysis of these 

data [6] over a period of five yearssuggested that 

self-organized criticality (SOC) [2],[3],[23]may 

govern the complex dynamics of these blackouts. 

Here,we further examine this hypothesis [7], [13] 

by extending theanalysis to 15 years. These 

extended data allow us to developimproved 

statistics and give us longer time scales to 

explore.We compare the results to the same types 

of analysis of timesequences generated by a 

sandpile model known to be SOC.The similarity of 

the results is quite striking and is suggestiveof the 

possible role that SOC plays in power system 

blackouts.A plausible qualitative explanation of 

SOC in power 

systemblackoutsisoutlinedinSectionVI. 

As an introduction to the concept, an SOC 

system is one inwhich the nonlinear dynamics in 

the presence of perturbationsorganize the overall 

average system state near, but not at, thestate that is 

marginal to major disruptions. SOC systems 

arecharacterized by a spectrum of spatial and 

temporal scales 

ofthedisruptionsthatexistinremarkablysimilarformsi

nawidevariety of physical systems [2], [3], [23]. In 

these systems, 

theprobabilityofoccurrenceoflargedisruptiveeventsdec

reasesasa power function of the event size. This is 

in contrast to 

manyconventionalsystemsinwhichthisprobabilityde

caysexponen-tiallywitheventsize. 

It is apparent that large blackouts are rarer 

than small black-

outs,buthowmuchrarerarethey?Fig.1showstheproba

bilitydistributionofblackoutsizefromtheNorthAmeri

canblackoutdatathatisdiscussedindetailinSectionII.F

ig.2showsaprob-ability distribution of number of 

line outages obtained from ablackout model that 

represents cascading failure and complexdynamics 

[11]. These data suggest a power law 

relationshipbetween blackout probability and 

blackout size. For compar-ison, Fig. 2 also shows 

the binomial probability distribution ofnumber of 

line outages and its exponential tail that would 

beobtained if the line outages were independent. 

Blackout risk 

istheproductofblackoutprobabilityandblackoutcost.

Here,weassume that blackout cost is roughly 

proportional to 

blackoutsize,althoughlargerblackoutsmaywellhavec

osts(especiallyindirect costs) that increase faster 

than linearly. 
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Fig. 1.Log–log plot of PDF of the number of customers unserved comparingthe totaldata set with the data 

excludingthe weather related events. 

 

 

Fig. 2.Log–log plot of PDF of number of line outages from blackout modelcomparedwith 

binomialrandomvariablewithexponentialtail. 
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In the case ofthe exponential tail, large 

blackouts become rarer much fasterthan blackout 

costs increase, so that the risk of large blackoutsis 

negligible. However, in the case of a power law tail, 

the largerblackouts can become rarer at a similar 

rate as costs increase,and then the risk of large 

blackouts is comparable to, or 

evenexceeding,theriskofsmallblackouts[11].Thuspo

werlawsinblackout size distributions significantly 

affect the risk of 

largeblackoutsandtheevidenceforpowerlawsinrealbl

ackoutdatathatweaddressinthispaperispertinent.Stan

dardprobabilistic 

techniquesthatassumeindependencebetweeneventsi

mplyex-ponential tails and are not applicable to 

systems that exhibitpowertails. 

Large blackouts are typically caused by long, 

intricate cas-cading sequences of rare events. 

Dependencies between the firstfew events can be 

assessed for a subset of the most likely 

oranticipated events and this type of analysis is 

certainly usefulin addressing a part of the problem 

(e.g., [26]). However, thiscombinatorial analysis 

gets overwhelmed and becomes infea-

sibleforlongsequencesofeventsorforthehugenumber

ofallpossible rare events and interactions, many of 

which are unantic-

ipated,thatcascadetocauselargeblackouts.Oneaimof

globalcomplexsystemsanalysisofpowersystemblack

outsistopro-

videnewinsightsandapproachesthatcouldaddressthe

sechal-lenges. As a first step toward this aim, this 

paper analyzes ob-served blackout data and 

suggests one way to understand 

theoriginofthedynamicsanddistributionofpowersyst

emblack-outs. Indeed, we suggest that the slow, 

opposing forces of loadincrease and network 

upgrade in response to blackouts 

shapethesystemoperatingmarginssothatcascadingbl

ackoutsoccurwithafrequencygovernedbyapowerlaw

relationshipbetweenblackout probability and 

blackout size. Moreover, we discussthe 

dynamicaldependencies and correlations between 

blackoutsintheNERCdata. 

 

I. TIMESERIESOFBLACKOUTDATA 

We have analyzed 15 years of data for 

North America from1984 to 1998 that is publicly 

available from NERC [1]. Thereare 427blackouts 

in 15years and 28.5blackouts peryear.The average 

period of time between blackouts is 12.8 days.The 

blackouts are distributed over the 15 years in an 

irregularmanner. We have detected no evidence of 

systematic changes 

inthenumberofblackoutsorperiodicorquasi-

periodicbehavior.However, it is difficult to determine 

long term trends or periodicbehavior in just 15 years 

of data. We constructed time 

seriesfromtheNERCdatawiththeresolutionofadayfor

thenumberof blackouts and for three different 

measures of the blackoutsize. The length of the 

time record is 5479 days. The 

threemeasuresofblackoutsizeare: 

1) energyunserved(MWh); 

2) amountofpowerlost(MW); 

3) numberofcustomersaffected. 

Energy unserved was estimated from the NERC 

data by multi-

plyingthepowerlostbytherestorationtime. 

 

II. ANALYSISOFBLACKOUTTIMESER

IES 

In order to gain an understanding of the 

dynamics of a systemfrom analysis of a time series, 

one must employ a variety oftools beyond basic 

statistical analysis. Among other measureswhich 

should be employed, the tails of the probability 

distri-

butionfunction(PDF)shouldbeinvestigatedfornorma

lityandfrequencyspectrashouldbeviewedinordertobe

gintolookatdependencies in the time domain. The 

time domain is particu-larly important as the 

system dynamics are expressed in 

time.Periodicities and long-time correlations must 

both be exam-ined and compared to systems with 

known dynamics. We 

willpresentdetailsoftheanalysisofthePDFslater;how

ever,the 
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Fig.3.Complementarycumulativefrequencyofthenumberofcustomersunserved. 

 

 

firststrikingcharacteristicofthedataisthepowerlawtai

lofthesePDFs.ThispowerlawtailisshowninFig.1,whe

rewehaveplottedthePDFofthenumberofcustomersun

servedforallevents(thesquares)onalog–

logplot.ThePDFfallsoffwithapowerofapproximately

 ,whichimpliesadivergentvari-

ance.ThePDFisclearlynotadistributionwithexponential

tails.Inthispaper,thePDFsarenoncumulativePDFsobt

ainedbybinningthedata.2Analternativewaytoestimatet

hedistributionistoplotthenumberofblackoutswithmor

ethan customersunservedagainst

 togivethecomplementarycumulativefre-

quencyshowninFig.3.TheempiricaldatainFig.3fallso

ffwithapowerofapproximately 

 (alltailpointsconsidered)or 

 (lastseventailpointsneglectedduetosparsedata

).Therelationshipforanexactdistributionisthatapower

lawexpo-nent

 inaPDFyieldsapowerlawexponentof 

 in thecorresponding complementary 

cumulative frequency. Thus 

thepowerlawexponentsobtainedfromFigs.1and3arecon

sistent.Lookinginthetimedomain,atimeseriesissaidto

havelong-

rangedependenceifitsautocorrelationfunctionfallsoff

asymptoticallyasapowerlaw.Thistypeofdependencei

sdiffi-

culttodeterminebecausenoisetendstodominatethesig

nalforlongtimelags.Onewaytoaddressthisproblemist

herescaledrange(R/S)statisticsproposedbyMandelbr

otandWallis[24]andbasedonaprevioushydrologicala

nalysisbyHurst[21].TheR/Sstatisticsconsiderblocks

of 

 successivepointsintheintegratedtimeseriesa

ndmeasurehowfasttherangeoftheblocksgrowsas

 

 increases.ThecalculationoftheR/Ssta- 

tisticsisfurtherdescribedinthe Appendix. 

Itcanbeshownthatinthecaseofatimeseries  

withanautocorrelationfunctionthathasapowerlawtail

,theR/S 

 

 

TABLEI 

HURSTPARAMETERHFROMR/SANALYSISOFBLACKOUTSIZETIMESERIES 

 

 

 

statistic scales proportionally to , whereis the 

Hurst ex-ponent. Thus,    is the asymptotic slope on 

a log–log plot oftheR/Sstatisticversusthetimelag.If

   ,therearelong-

rangetimecorrelations,for 

 ,theserieshaslong-

rangeanticorrelations,andif

 ,theprocessisdeterministic.Uncorrelatednoi

secorrespondsto   .A constant      

parameter over a long range of time-lag valuesis 

consistent with self-similarity of the signal in this 

range [32]and with an autocorrelation function that 

decays as a power ofthetimelagwithexponent . 

We have determined the long-range correlations in the 

15 yearblackout time series using the R/S method. 

The time series 
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has5479daysand427blackouts.ThecalculatedHurste

xponents 

[21]forthedifferentmeasuresofblackoutsizeareshow

ninTableI.The

 valuesareobtainedbyfittingovertimelagsbet

ween100and3000days.Inthisrange,thebehaviorofthe

R/Sstatisticispowerlike. Thevaluesof

 obtained for all 

thetimeseriesarecloseto0.6.Thisseemstoindicatethat

theyareallequallycorrelatedoverthelongrange.These

valuesofaresomewhatlowerthanthepreviouslyobtain

edvalues[6],butstillsignificantlyabove0.5.Notethatt

he“events”inthetimeseriesaretheeventsthathaveprod

ucedablackoutandnotalltheeventsthatoccurred.Thel

atteraresupposedtoberandom(

 );however,theeventsthatproduceablackout

mayindeedhavemoderatecorrelationsbecausetheyde

pendonthestateofthesystem. 

A method of testing the independence of the 

triggering eventshas been suggested by Boffettaet 

al. [4]. They evaluated thetimes between events 

(waiting times) and argued that the PDFof the 

waiting times should have an exponential tail. Such 

isclearly the case for the waiting times of sandpile 

avalanches(Fig.4).Inthecaseofwaitingtimesbetween

blackouts,wealsohaveobservedthesameexponential

dependenceofthePDFtail(Fig.5).Thisobservationisc

onfirmedin[13].Thisstrengthensthecontentionthatth

eapparentcorrelationsintheeventscomefrom SOC-

like dynamics within the power system rather 

thanfromthe events drivingthe 

powersystemdynamics. 

Examining the R/S results in more detail, Fig. 6 shows 

the 

R/Sstatisticforthetimeseriesofthenumberofcustomer

saffectedbyblackouts.Theaverageperiodoftimewith

outblackoutsis 

12.8days,hence,inlookingovertimelagsofthisorderw

etyp-

icallyfindeitheroneblackoutornone.Fortheshortertim

elagsless than 50 days, we are unable to get 

information on correla-

tionsbetweenblackoutsbecausethetimeintervalsareto

oshortto contain several blackouts. We see a 

correlation between ab-sence of blackouts, and 

because these time intervals tend to 

onlycontainabsencesofblackouts,weseecloseto1(triv

iallyde-terministic). For time lags above 50 days, the 

R/S shows a 

powerbehaviorandgivesacorrectdeterminationofblac

koutcorrela-

tion.TheR/Scalculationissensitivetothischangeinreg

ime 
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Fig.4.Distributionofwaitingtimesbetweenavalanchesinasandpilefortwovaluesoftheprobabilityofaddinggrainsofsa

nd. 

 

 

 

Fig. 5.PDFofthewaiting timesbetweenblackouts. 

 

and there is an obvious change of behavior for time 

intervalsaround 50 days. An alternative method of 

determining correla-

tionsisthescaledwindowvariancemethod.Wedonotus

ethescaled window variance method in this paper 

because in thismethod, the correlations between 

absences of blackouts skewthecorrelationsbetween 

blackoutsatlarger timelags [7]. 

 

 

III. EFFECTOFWEATHER 

Approximatelyhalfoftheblackouts(212blackouts)are

char-

acterizedasweatherrelatedintheNERCdata.Inattempt

ingtoextractapossibleperiodicityrelatedtoseasonalw

eather,weconsiderseparatelythetimeseriesofallblack

outsandthetimeseriesofblackoutsthatarenotweatherr

elated.Animportant 

Fig.6.R/S for the number of customersaffected by 

blackouts. 
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TABLEII 

HURSTPARAMETERHFORMEASURESOFBLACKOUTSIZECOMPARINGALLDATAWITHDATA

EXCLUDINGBLACKOUTSTRIGGEREDBYWEATHER 

 

  
 

issue in studying long-range dependencies 

is the possible pres-

enceofperiodicities.BothR/Sanalysisandspectralanal

ysisofthisdatadonotshowanyclearperiodicity.Howev

er,sincetheweatherrelatedeventsmayplayanimportan

troleintheblack-

outs,onemaysuspectseasonalperiodicities.However,

thedatacombinesbothsummerandwinterpeakingregi

onsofNorthAmerica.Becauseofthelimitedamountof

data,itisnotpos-

sibletoseparatetheblackoutsbygeographicallocationand

redotheanalysis.Whatwehavedoneistoreanalyzethed

ataex-

cludingtheblackoutstriggeredbyweatherrelatedevent

s.TheresultsaresummarizedinTableII.Ascanbeseen,t

heexclu-

sionoftheblackoutstriggeredbyweatherrelatedevents

doesnotsignificantlychangethevalueof

 .Whenlookingsolelyattheblackoutstriggere

dbyweatherrelatedevents,thevalueofiscloserto0.5(ra

ndomevents), althoughtheavailabledata 

istoosparsetobesure ofthesignificanceofthisresult. 

Another question to consider is the effect of 

excluding theweather related events on the PDF. 

We have recalculated 

thePDFforallthemeasuresofblackoutsizewhenthewe

atherre-lated events are not included. The PDFs 

obtained are the samewithin the numerical accuracy 

of this calculation. This is illus-trated in Fig. 1, 

where we have plotted the PDFs of the number 

ofcustomers unserved for all events and for the 

nonweather relatedevents.Therefore,forbothlong-

rangedependenciesandstruc-ture of the PDF, the 

blackouts triggered by weather events do 

notshowanyparticularpropertiesthatdistinguishthem

fromthe 

 

other blackouts. Therefore, both the long time 

correlations 

andthePDFsoftheblackoutsizesremainconsistentwit

hSOC-likedynamics. 

Inadditiontoweathereffects,onemightexpectspatialst

ruc-ture of the grid to have an effect on the dynamics. 

However, anal-

ysisoftheNERCdatabyChenetal.in[13]suggeststhatsi

m-ilar results are obtained when data for the eastern 

and westernNorth American power systems is 

analyzed separately. Sincethe eastern and western 

power systems have different charac-teristics, this 

interesting result tends to support the notion 

thatthere are some underlying common principles 

for the systemdynamics. 

 

IV. COMPARISONTOSOCSANDPILEM

ODEL 

The issue of determining whether power 

system blackoutsare governed by SOC is a difficult 

one. There are no unequiv-ocal determining 

criteria. One approach is to compare charac-teristic 

measures of the power system to those obtained 

from aknown SOC system. The prototypical model 

of a SOC systemisaone-

dimensionalidealizedrunningsandpile[22].Themass

ofthesandpileisincreasedbyaddinggrainsofsandatran

domlocations. However, if the height at a given 

location exceeds athreshold, then grains of sand 

topple downhill. The topplingscascade in avalanches 

that transport sand to the edge of the sand-pile, where 

the sand is removed. In the running sandpile, 

theaddition of sand is on average balanced by the 

loss of sand atthe edges and there is a globally 

quasi-steady state or 

dynamicequilibriumclosetothecriticalprofilethatisgi

venbytheangleof repose. There are avalanches of 

all sizes and the PDF of 

theavalanchesizeshasapowerlawtail.Theparticularfo

rmofthesandpile model used here is explained in 

[25] and the 

sandpilelengthusedinthepresentcalculationsis . We 

are, ofcourse, not claiming that the running 

sandpile is a model 

forpowersystemblackouts.Weonlyusetherunningsan

dpileasablack box to produce a time series of 

avalanches characteristicofaSOCsystem. 

Itisconvenienttoassumethatevery 

timeiterationofthesand-

pilecorrespondstooneday.Whenanavalanchestarts,w

einte-

grateoverthenumberofsitesaffectedandthenumberof

stepstakenandassignthemtoasingleday.Thusweconst
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ructatimeseriesoftheavalanchesizes.Thesandpilemo

delhasafreepa-rameter

 ,whichistheprobabilityofagrainofsandbein

gaddedatalocation. ischosenso 

thattheaveragefrequencyofavalanchesisthesameasth

eaveragefrequencyofblackouts.Inevaluatingthelong

-rangetimedependenceoftheblack-

outs,weusetherescaledrangeorR/S[24]techniquedes

cribedearlier.Asstatedbefore,theR/Stechniqueisusef

ulindeter-

miningtheexistenceofapowerlawtailintheautocorrela

tionfunctionandcalculatingtheexponentofthedecayo

fthetail(seeAppendixfordetails).ThesameR/Sanalysi

susedfortheblackouttimeseries 

isappliedtotheavalanchetimeseries.Fig.7showstheR/

Sstatisticforthetimeseriesofavalanchesizes from the 

sandpile and for the time series of power lost 

bytheblackouts.Thesimilaritybetweenthetwocurvesi

sremark-

able.AsimilarlygoodmatchoftheR/Sstatisticsbetwee

ntheblackoutandsandpiletimeseriesisobtainedforthe

othermea- 

suresofblackoutsize. 

 
Fig.7.R/SforavalanchesizesinarunningsandpilecomparedtoR/Sforpowerlostinblackouts. 

 

 

Fig.8.RescaledPDFofenergyunservedduringblackoutssuperimposedonthePDFoftheavalanchesizeintherunningsan

dpile. 
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Fig. 8 shows the PDF of the avalanche sizes from the 

sandpiledata together with the rescaled PDF of the 

energy unserved fromthe blackout data. The 

resemblance between the two distribu-

tionsisagainremarkable.Therescalingisnecessarybec

auseofthedifferentunitsusedtomeasureavalanchesize

andblackoutsize. That 

is,weassumeatransformationof the form 

 

(1) 

 

isthevariablethatweareconsidering, isthecorre-

spondingPDF,andistherescalingparameter.Ifthetran

sfor-mation(1)works,   

istheuniversalfunctionthatdescribesthe 

 

 

PDFforthedifferentparameters.Transformation(1)is

usedtooverlaythesandpileandblackoutPDFs. 

We can consider PDFs of the other measures of 

blackout sizeand use transformation (1) to plot each 

of these PDFs with 

thesandpileavalanchesizePDF.Inallcases,theagreem

entisverygood. Of course, the rescaling parameter 

differs for each mea-sure of blackout size. The 

exponents obtained for these PDFstailsarebetween

 and.Theseexponentsimplydiver-gence of 

the variance, one of the characteristic features of 

sys-

temswithSOCdynamics.Infact,divergenceofthevaria

nceisageneralfeatureofsystemsnearcriticality.Thisco

mparisonofthePDFs 

ofthemeasuresofblackoutandavalanchesizesisuseful 

in evaluating the possible errors in the 

determination 

ofthepowerlawdecayexponentofthePDFs.Onecanse

ethatforthe large size events where the statistics are 

sparse, there maybe deviations from the curve. These 

deviations can influence thecomputed value of the 

exponent, but they are probably of 

littlesignificanceforthepresentcomparisons. 

 

V. POSSIBLEEXPLANATIONOFPOWE

RSYSTEMSOC 

To motivate comparisons between power 

system blackoutdata and SOC sandpile data, we 

suggest a qualitative descrip-tion of the structure 

and effects in a large-scale electric 

powertransmission system which could give rise to 

SOC dynamics.The power system contains many 

components such as gener-ators, transmission lines, 

transformers and substations. Eachcomponent 

experiences a certain loading each day and whenall 

the components are considered together, they 

experiencesome pattern or vector of loadings. The 

pattern of componentloadings is determined by the 

power system operating policyand is driven by the 

aggregated customer loads at substations.The 

power system operating policy includes short term 

actionssuch as generator dispatch as well as longer 

term actions suchas improvements in procedures 

and planned outages for main-tenance. The 

operating policy seeks to satisfy the 

customerloadsatleastcost.Theaggregatedcustomerlo

adhasdailyandseasonal cycles and a slow secular 

increase of about 2% peryear. 

Events are either the limiting of a component 

loading to 

amaximumorthezeroingofthecomponentloadingifth

atcom-ponent trips or fails. Events occur with a 

probability that de-pends on the component 

loading. For example, the probabilityof relay 

misoperation[13] or transformer failure generally 

in-

creaseswithloading.Anotherexampleofaneventcould

be anoperator redispatching to limit power flow on a 

transmission lineto its thermal rating and this could 

be modeled as probabilityzero when below the 

thermal rating of the line and probabilityone when 

above the thermal rating. Each event is a limiting 

orzeroing of load in a component and causes a 

redistribution ofpower flow in the network and 

hence a discrete increase in 

theloadingofothersystemcomponents.Thuseventscanca

scade.Ifacascadeofeventsincludeslimitingorzeroingt

heloadatsub-

stations,itisablackout.Astressedpowersystemexperi

encinganeventmusteitherredistributeloadsatisfactoril

yorshedsomeloadatsubstationsinablackout.Acascad

eofeventsleadingto 

blackoutusuallyoccursonatimescaleofminutestohou

rsandiscompletedinlessthanoneday. 

It is customary for utility engineers to make 

prodigious effortsto avoid blackouts and especially 

to avoid repeated blackoutswith similar causes. 

These engineering responses to a 

blackoutoccuronarangeoftimescaleslongerthanoned

ay.Responsesinclude repair of damaged equipment, 

more frequent mainte-

nance,changesinoperatingpolicyawayfromthespecif

iccon-ditions causing the blackout, installing new 

equipment to in-crease system capacity, and 

adjusting or adding system alarmsor controls. The 

responses reduce the probability of events 

incomponents related to the blackout, either by 

lowering theirprobabilities directly or by reducing 

component loading by in-creasing component 

capacity or by transferring some of 

theloadingtoothercomponents.Theresponsesaredirec

tedtowardthe components involved in causing the 

blackout. Thus the prob-ability of a similar blackout 

occurring is reduced, at least untilload growth 

degrades the improvements made. There are sim-

ilar, but less intense responses to unrealized threats 

to systemsecurity such as near missesand simulated 

blackouts. 
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Thepatternorvectorofcomponentloadingsmaybetho

ughtof as a system state. Maximum component 

loadings are drivenup by the slow increase in 

customer loads via the 

operatingpolicy.Highloadingsincreasethechancesof

cascadingeventsand blackouts. The loadings of 

components involved in theblackout are reduced or 

relaxed by the engineering responsesto security 

threats and blackouts. However, the loadings 

ofsome components not involved in the blackout 

may increase.These opposing forces driving the 

component loadings up andrelaxing the component 

loadings are a reflection of the stan-dard tradeoff 

between satisfying customer loads 

economicallyand security. The opposing forces 

apply over a range of timescales. We suggest that 

the opposing forces, together with theunderlying 

growthin customerloadanddiversity give riseto a 

dynamic equilibrium and conjecture that this 

dynamicequilibrium could be SOC-like. It is 

important to note that 

thistypeofsystemorganizesitselftoanoperatingpointn

eartobutnot at a critical value. This could make the 

system intrinsicallyvulnerable to cascading failures 

from unexpected causes as therepair and 

remediation steps taken to prevent a known 

failuremodearepartofthesystemdynamics. 

We briefly indicate the roughly analogous structure 

and ef-

fectsinanidealizedsandpilemodel.Eventsarethetoppl

ingofsandandcascadingeventsareavalanches.Thesys

temstateisavector of maximum gradients at all the 

locations in the sand pile.The driving force is the 

addition of sand, which tends to 

increasethemaximumgradient,andtherelaxingforceis

gravity,whichtopples the sand and reduces the 

maximum gradient. SOC is 

adynamicequilibriuminwhichavalanchesofallsizeso

ccurandin which there are long time correlations 

between 

avalanches.Theroughanalogybetweenthesandpilean

dthepowersystemisshowninTableIII.Therearealsoso

medistinctionsbetweenthe two systems. In the sand 

pile, the avalanches are coinci-

dentwiththerelaxationofhighgradients.Inthepowersy

stem,eachblackoutoccursonfasttimescale(lessthano

neday),buttheknowledgeofwhichcomponentscaused

theblackoutdeter-

mineswhichcomponentloadingsarerelaxedbothimm

ediatelyafter theblackout and forsometime after the 

blackout. 

 

TABLEIII 

ANALOGYBETWEENPOWERSYSTEMANDSANDPILE 

 

 
 

II. CONCLUSION 
We have calculated long time correlations 

and PDFs forseveral measurements ofblackout size 

in the NorthAmer-ican power transmission grid 

from 1984 to 1998. These longtime correlations 

and PDFs seem consistent with long-rangetime 

dependencies and PDFs for avalanche sizes in a 

runningsandpile known to be SOC. That is, for 

these statistics, 

theblackoutsizetimeseriesseemindistinguishablefro

mthesand-pile avalanche size time series. This 

similarity suggests thatSOC-like dynamics may 

play an important role in the 

globalcomplexdynamicsofpowersystems. 

We have outlined a possible qualitative 

explanation of thecomplex dynamics in a power 

system which proposes some ofthe opposing forces 

that could give rise to a dynamic equilib-rium with 

some properties of SOC. The opposing forces 

are,roughly speaking, a slow increase in loading (and 

system aging)weakening the system and the 

engineering responses to black-outs strengthening 

parts of the system. Here we are suggestingthat the 

engineering and operating policies of the system are 

im-portant and integral parts of the system long-

term complex dy-namics. Carlson and Doyle have 

introduced a theory of highlyoptimized tolerance 

(HOT) that describes power law behaviorin a 

number of engineered or otherwise optimized 

applications[5]. After this paper was first submitted, 

Stubna and Fowler 

[33]publishedanalternativeviewbasedonHOToftheo

riginofthepowerlawintheNERCdata.3 

The PDFs of the measures of blackout size have 

power tailswithexponentsrangingfrom

 toandthereforehavedivergent variances. 

Thus large blackouts are much more fre-quent than 

might be expected. In particular, the application 

oftraditional risk evaluation methods can 

underestimate the risk oflarge blackouts. R/S 

analysis of the blackout time series 

showsmoderate(

 )longtimecorrelationsforseveralmea-
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suresofblackoutsize.Excludingtheweatherrelatedbla

ckoutsfrom the time series has little effect on the 

results. The expo-

nentialtailofthePDFofthetimesbetweenblackoutssup

portsthe contention that the correlations between 

blackouts are 

duetothepowersystemglobaldynamicsratherthancorr

elationsintheeventsthattriggerblackouts. 

 

The strength of our conclusions is naturally somewhat 

limitedby the short time period (15 years) of the 

available blackout dataand the consequent limited 

resolution of the statistics. To furtherunderstand the 

mechanisms governing the complex dynamics 

ofpowersystemblackouts,modelingofthepowersyste

misindi-cated. There is substantial progress in 

modeling and analyzingtheapproachinspiredby 

SOCoutlined inSection VI[8]–[12], 

[17] and in modeling blackouts and cascading 

failure from otherperspectives[14]–[16],[18]–

[20],[27], [29]–[31],[34]. 

If the dynamics of blackouts are confirmed to have 

some char-acteristics of SOC, this would open up 

possibilities for moni-

toringstatisticalprecursorsoflargeblackoutsorcontrol

lingthepower system to modify the expected 

distribution of blackoutsizes [11]. Moreover, it 

would suggest the need to revisit the tra-

ditionalriskanalysisbasedonrandomvariableswithex

ponen-

tialtailssincethesecomplexsystemshavestatisticswit

hpowertails. 
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