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ABSTRACT—In this paper, we present an efficient algorithm tocomputesingularpointsandsingularity-

inducedbifurcationpointsofdifferential-algebraicequationsforamulti-machinepower-

systemmodel.Powersystemsareoftenmodeledasasetof differential-algebraic equations (DAE) whose algebraic 

partbringssingularityissuesintodynamicstabilityassessmentofpower systems. Roughly speaking, the singular 

points are pointsthatsatisfythealgebraicequations,butatwhichthevectorfieldisnot defined. In terms of power-

system dynamics, around singularpoints,thegeneratorangles(thenaturalstatesvariables)arenot defined as a graph 

of the load bus variables (the 

algebraicvariables).Thus,thecausalrequirementoftheDAEmodelbreaksdownanditcannotpredictsystembehavior.Si

ngularpointsconstitute important organizing elements of power-system 

DAEmodels.Thispaperproposesaniterativemethodtocomputesingularpointsatanygivenparametervalue.Withalem

mapresented in this paper, we are also able to locate singularity in-

ducedbifurcationpointsuponidentifyingthesingularpoints. 

 

I. INTRODUCTION 
BIFURCATION theory is the commonly 

used tool to an-

alyzevarioustypesofstabilityproblemsinpowersys- 

tems modeled either as a set of ordinary differential 

equations(ODEs) or as a set of differential-

algebraic equations 

(DAEs)[1].Intheformercase,theequationsarenotorio

uslystiffwhencertain load dynamics are included. 

As a modeling tool, prob-

lemsassociatedwiththisaffectfurtheranalyticalstudie

softhesystem. In order to overcome this problem 

(as well as the factof the nonexistence of a 

universally accepted dynamical loadmodel) DAEs 

have been used based on the approximation 

oftheserelativelyfastandstableloaddynamicsasalgebr

aicequa-tions[2]–[8]. 

 

Thispaperaddressesthelocalbifurcationsan

dalgebraicsingularitiesoftheclassicalpowersystemw

ithacon-stantPQloadmodel,whichismodeledassemi-

explicitindex-1DAEs. It is well known that when 

parameters are subject to varia-tions, the equilibria 

of the DAE power-system model may ex-hibit 

three local bifurcations, namely saddle node (SN), 

Hopf,andsingularityinduced(SI)bifurcations.TheSN

andHopfbi-furcations, which are observed in the 

ODE models of power sys-tems as well, have been 

extensively studied in power 

systemsandtheyarelinkedtovoltagecollapseandoscill

atoryinstabili-

ties,respectively[1].TheSIbifurcationisduetosingula

rityofthe algebraic equations of the DAE model under 

some parametervariations. 

WithanSIbifurcationtheorem([7,Th.3,p.19

99]),animprovedversionofitbasedonthedecompositi

onofparameter dependent polynomials.More recent 

work on the SI bifurcations in-cludes the [10] and 

[11].In [10], Beardmore has extended the 

SIbifurcationtheoremof[7]toincludenongenericcase

swherebybranchingofequilibriaislocatedatthesingul

arity,i.e.,[7,As-sumption 2, SI bifurcation 

Theorem] is removed and applied itto a 3-bus power 

system, which has been also studied by 

Kwatnyetal.in[2].In[11],Riazaetal.haveprovidedadet

ailedstudyon the qualitative nature of singular 

points of relatively simpleindex-1 DAE examples 

indicating that in some cases dynamicbehavior of 

the system is smooth (well-defined vector field) 

evenatsingularpoints. 

Animportantimplicationoftheoccurrenceof

theSIbifurca-

tionistheexistenceofasingularset(orimpassesurface)i

ntheconstraint manifold containing infinitely many 

singular pointsat each parameter value, which may 

play a crucial role in as-sessing the stability of 

DAE power-system models. The litera-

tureinpower-

systemstabilityanalysiswithrespecttothealge-braic 

singularities of the DAEs is rich with references 

describingvoltage instabilities in terms of the 

following. Nearness to 

RESEARCH ARTICLE                              OPEN ACCESS 



Subodh Kumar Mohanty Int. Journal of Engineering Research and Application            www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 10, ( Part -III) October 2018, pp.104-123 

 

 
www.ijera.com                                   DOI: 10.9790/9622-081003104123                   105 | P a g e  

 

 

 

 

animpassesurface[12],[13]suddenchangeinvoltages[

14],[15]and eventual (or actual) loss of voltage 

causality [2], [12], tonameafew.In[14]theexis-tence 

of the impasse surface is closely related to the load 

models,and for constant load model the DAE model 

has the propertiesof voltage instability (i.e., sudden 

reduction in voltages) 

whenoperatinginthevicinityofimpassepoints(ortraje

ctoriescoin-cidingwiththeimpassesurface). 

More related work have reported been 

with similar results and using the bifurcation 

theorytheyhaveshownthatanimportantpartofthestabilit

yboundaryisformedbytrajectoriesthataretangenttothe

singularsurface.More recent studies [16], [17] focus 

on the direct assessmentof the system stability in 

the presence of the impasse 

surfacethatliesonthestabilityboundary.Anewenergyf

unctiontech-nique has been presented to compute 

the critical energy 

overtherelevantsegmentoftheimpassesurfacethatgua

ranteesthecausalityifthesystemhaslessenergythenthe

criticalvalue. 

In spite of the fact that there is no well-

established link be-tween algebraic singularity and 

voltage collapse as in the 

caseoftheSNbifurcation,mostoftheworksuggeststhat

thesystemundergoes some sort of voltage instability 

when the voltagecausality is lost during a transient. 

With respect to loss of voltagecausality, it is 

essential to note that during this, voltages are 

nolonger implicit functions of dynamic variables 

when describedby DAE models. To use DAE as a 

tool, knowledge of wherecausality disappears (or 

where impasse surface(s) ―lie‖) can beapplied 

toward the definition of ―limits‖ of appropriateness 

fora given model. An underlying issue is that at 

singular points(including singular equilibria); the 

DAE model cannot 

predictthevoltagebehavior.Thus,locationofsingularit

ies,whichcon-stitute important organizing elements 

of a power-system DAEmodel, is invaluable 

information for assessing stability of 

thesystem.Thefamilyofsingularpointsformsabounda

ryofwell-defined behavior for a given model. In this 

work impasse 

surfaceisasetofsingularpointsthatexhibitslossofvolta

gecausality. 

 

Even though many researchers either in the 

field of power sys-tems[2], [5]–[8], [12]–[17] or in 

the field of the general DAEtheory [9]–[11] have 

long recognized the importance of 

singularpoints(orlossofvoltagecausalityinpowersyst

ems)includingsingularequilibriaintermsofsystemdy

namics,thereisnorig-orous method available in the 

literature for computing their loca-

tionsintheparameterspace.Mostoftheeffortfocuseson

char-acterizing qualitative description of system 

dynamics aroundsingularities without providing a 

systematic method for 

locatingthem,especiallyforlargerpowersystems. 

 

Our main purpose here is to propose a 

simple and efficientmethod to identify algebraic 

singularities (including singularequilibria) of the 

DAE model of power systems and to visu-alize 

singularities together with the equilibria and their 

asso-ciated local bifurcations as a function of the 

parameters usingtraditional nose curves. The 

proposed method involves the fol-

lowingtwomainsteps. 

1) Computing singular points at various 

parameter valuesalong the nose curve defined by a 

designated bus injectionchange pattern and 

illustrating singular points in a two-di-mensional(2-

D)nosecurve 

2) Developing a lemma showing that any 

singular point ata given set of generator bus 

injections is also an 

equilibriumpoint(thus,itisanSIbifurcationpoint)atan

othersetofbusinjections. 

 

In the method for computing singular 

points, we first usegenerator angles to parameterize 

the algebraic part of the DAEmodel at any given 

parameter value (i.e., bus injections) and for-mulate 

the problem of identifying singular points as a 

bifurca-

tionproblemofasetofalgebraicequationswhoseparam

eters 

The rest of the paper is organized as 

follows. Section II dis-cuses bifurcations and 

singularities of the DAE model of theclassical 

power system. Section II also includes a lemma to 

iden-tify the SI bifurcations and presents two 

examples of the DAE(oneofwhichisa5-buspower-

systemexample)to 

illustratetheapplicationofthelemmaandthek

eyconceptofthepaper.Sec-tion III describes 

methods to compute equilibria and singularpoints of 

the DAE model in details. Section IV presents the 

sim-ulation results using voltage stability toolbox 

(VST)[18], [19]for the IEEE 118-bus system and 

illustrates singular points inthe nose curve. Finally, 

Section V summarizes main contribu-

tionsofthisworkandsuggestssomeoftherelatedfuture

work. 

 

II. DIFFERENTIAL-ALGEBRAIC 

POWER-SYSTEM MODEL AND 

SINGULARITIES 
A. ClassicalPowerSystemModel 

The dynamics of a classical power system with 

constant PQload buses are commonly described by 

semi-explicit DAE of theform[2] 
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 (2.1) 

 

 

 

where is the vector of generators’ rotor angles,is the 

vectorof generators’ angular velocities, is the 

vector of phase anglesof voltages at the load buses,is 

the vector of voltage magni-tudes,      is the inertia 

matrix,     is the damping matrix, isthe vector of 

net real power injections at the generator buses,and 

finally and are the vectors of net real and 

reactivepower injections at the load buses, 

respectively. The differen-tial equation is the swing 

equation representing generator dy-namics, and 

algebraic equations are the power flow equations 

attheloadbuses.Inordertoobtainacompactformof(2.1),le

t 

, ,  
and ,then,wehave 

 

(2.2) 

 

whereand 

 

Foranetworkconsistingof  number of 

generators andnumberofPQloadbusesthe

 parametervectorisintheformof

anddenotesnetrealpowerinjectionstothe

 number of generators (note that generator 

bus 

#1ischosenastheswingbusofthesystem).Thesetofpar

am-eters  

denotestheloaddemandsatthenumberofloadbuseswh

ere   and 

 are the real and reactive powerdemands, 

respectively. For the sake of simplicity in the nota-

tion,fromthis pointforward,weassumethat , 

and where . 

The DAE model of (2.2) has two essential features: 

1) ex-plicitparameterdependenceand2)differential-

algebraicstruc-ture. The parameter dependence 

implies that the system equi-libria may exhibit 

local bifurcations when parameters are sub-

jecttovariation.ThesebifurcationsareSN,Hopf,andSI

bifur-

cations.TheSIbifurcation,whichisnotobservedforthe

ODEsmodel of power systems, is due to the 

algebraic structure. Themain focus of this paper is 

singularities of DAE model (2.2)including SI 

bifurcations. In Section II-B, we briefly 

describethosebifurcationsfocusingon 

theSIbifurcations. 

 

B. Local Bifurcations and Singularities of the 

DAE PowerSystemModel 

Localbifurcationsoftheequilibriaassociatedwiththec

hanges of the parameter have been observed in 

the DAEmodel of power systems. Various types of 

bifurcations 

andassociatedcomputationalissuesaresummarizedin

[5]and[7].The first step to analyze bifurcations is to 

compute variousequilibriawhentheparameter

isvaried.Foragivensetof this parameter, an 

equilibrium point satisfies two sets 

ofalgebraicequations.Thesetofallequilibriumpointsi

sdefinedasfollows: 

 

(2.3) 

 

The stability of the DAE systems is more 

complicated than forsystems described by ODEs 

due to algebraic structure of themodel. The 

algebraic part of (2.2) requires that any motion 

beconstrainedtotheset 

on.The vectorfieldmay not be well definedatall 

points of 

.Atanypoint  ,wehave , andif is 

nonsingular, then,is uniquely definedby 

 

 (2.6) 

 

If is singular at a point , then, 

thevectorfieldisnotwelldefinedatthatpoint.Typically

,suchsingularpoints lie on codimension1 

submanifoldsof. 

Definition [5]:Suppose       is a regular manifold for 

allnear    ,andthat atapoint , 

.Then, is saidto be causal. 

Otherwise,itisnoncausal. 

Thecausalityofapointcouldbeextendedtothecausalit

yofaregionasfollows[14],[15]: 

 

hasnegativerealeigenvalues (2.7)Theregion

iscalledavoltagecausalregionorsolutionsheet 

[13] andis the voltage causal region index. Within any 

voltagecausal region, load bus voltages and angles 

follow generatorangles’behavior.Atanycausalpoint

 inthere-gion, the implicit function theorem 

ensures that there exists afunction

 definedonaneighborhoodof 

 with andthatsatisfies  

 .It 

follows that within a voltage causal region, 

trajectories of theDAEarelocallydefinedbytheODEs 

(2.8) 

Typically,inamajorpartoftheconstraintmanifold,suc

. 
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hare-duction is possible and the ODEs uniquely 

define the dynamicbehavior of DAEs. However, 

the constraint manifold will, ingeneral, contain 

noncasual points (or singular points) at 

whichequivalenceisnotpossible.Thesesingularpoints

thatlieintheboundary of voltage causal regions form 

a singular surface (orimpasse 

surface)intheconstraint manifold[7],[15] 

 

 constant  

(2.4) 

 

Typically, we expectto be composed of one or 

more dis-connected (differentiable) manifolds [20] 

called components. Ingeneral, when we refer to, we 

will mean a particular one ofthese components 

called the principal component.is a reg-

ularmanifoldofdimensionif 

 

on (2.5) 

 

Thestructureofdepends,ofcourse,ontheparameter

.Evenfor very simple power-system models, (2.5) may 

not be satisfiedfor some values of. The manifoldis 

the state space for 

thedynamicalsystemdefinedby(2.2)whichinducesav

ectorfield 
 

(2.9) 

Over casual regions, system dynamic behavior 

evolves ac-cording to a locally equivalent ODE 

system representation.However, trajectories that 

encounter the singular surface typ-ically undergo 

loss of existence/uniqueness. The DAE 

modelbreaksdownand fails to 

predictthesystembehavior. 

Localbifurcationanalysesofpowersystemsidentifyqu

alita-

tivechangesinsystemequilibriaofODEssystemof(2.8

)suchas number of equilibria and their stability 

features as the pa-rameters are subject to vary 

slowly; and these bifurcation con-

ceptscanbeeasilyextendedtoDAEssystemsof(2.2)[5]

.Thestabilityfeatureofanequilibriumpoint 

 and associatedlocal bifurcations are 

determined by the eigenvalues of the re-

ducedsystemmatrixif is nonsingular 

(2.10) 
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TheSNbifurcationoccurswhenastableequilibriumpoi

nt(SEP), ,meetsatype-

1unstableequilibriumpoint(UEP),ataparametervalue

 toformanequilibrium 

point 

 .Thecorrespondingreducedsystemmatrix

 hasasimpleeigenvalueattheorigin,andcertai

ntransversalityconditionsaremet[21],[22].Ifthepa-

rameter increasesbeyondthebifurcationvalue

,then,disappearsandtherearenootherequilibriumpointsn

earby. 

Theconsequenceofthelossofequilibriaisthatthesystemst

ateschangedynamically.Inparticular,dynamicscanbe

suchthatthesystemvoltagesfallinavoltagecollapse.T

heSNbifurca-

tionhasbecomeawidelyacceptedparadigmforoneimp

ortantformofvoltageinstabilityandlinkedtovoltageco

llapse[23],[24].Inanappropriateparameterspacesuchas

megawatt(MW)realpowertransfertheSNbifurcationp

oint,alsoknownasthemaximumloadingpointorpointo

fcollapse,providesinforma-

tiononthestaticstabilitymarginofthecurrentoperating

point.Hopf bifurcationoccurs whena pair 

ofcomplex 

conjugateeigenvaluesmovesfromthelefttorighthalfo

fthecomplexplane,orviceversa,crossingtheimaginar

yaxisatpointsotherthantheorigin.TheimportanceofH

opfbifurcationhasbeenincreasinglyrecognized,asitb

ecameclearthatstabilityoftheequilibriumcouldbelost

bythismechanismwellbeforereachingthepointof 

collapsefor thereal 

largepowersystems.Suchadetailedanalysisofoscillat

oryinstabilityrelatedtoHopfbifurcationforthedisturb

anceoccurredonJune12,1992,ontheMidwesternseg

mentofUSinterconnectionsystemhasbeenreportedin

[25]foraDAEmodelofarealpowersystem.Thelastloca

lofbifurcationofinterestistheSIbifurcationthatoccurs

whenanequilibriumpoint,say

 encountersthesingularityofthealgebraicequ

ation  at theparameter

.TheSIbifurcationreferstostabilitychangeduetoaneig

envalueofthereducedsystemmatrixassociated 

withtheequilibriumpointdivergingtoinfinityfromeith

er 

to,orviceversa[7].Similartypeofinstantaneouschang

esintheeigenvaluesofreducedsystemmatrixisalsoobs

ervedinthe case of limit induced (LI) bifurcation 

that occurs when 

thecontrollimitssuchaslimitonthefieldvoltagearerea

ched[26].However, in the LI bifurcation case, these 

changes are smallcompared to those of SI 

bifurcation case. The set of SI bifur-

cationsisdefinedasfollows: 

[27] have proposed a singularly perturbed 

differential equation(SPDE)asthepower-

systemmodelandtheirsimulationresultsindicatethatr

apiddeclineinbusvoltagemagnitudesmayoccurif 

trajectories pass close to the singular surface. More 

recently,Huangetal.[28]hasalsousedSPDEmodeltoa

nalyzesystembehaviorandthrougheigenvalueanalysi

stheyhaveshownthatthe SPDE model will have the 

same dynamic behavior as 

thereducedODEsifsomeadjustmentsonthesignofthea

lgebraicequationsaremade. 

NotethatintheDAEof(2.2),theparameter

isdecoupledfrom the rest of the equations, and at 

the singular points (notsingualarequilibria) there 

exists real power mismatches at thegeneratorbuses 

(i.e.,        )This 

decoupled-parameter structure allows us to locate 

SI bifurca-tion point when a singular point, say 

, belonging to thesingular set of (2.9) and 

the corresponding nonzero real powermismatches 

at the generator buses are known. The 

followinglemma,whichexploitsthisdecoupledstructu

re,showsthatitispossible to find a new set of 

parameters such that 

willbeasingularequilibriumpoint. 

Lemma:A singular point of (2.2) at a 

givenparameter value is also an equilibrium 

point, hence, 

anSIbifurcationpoint,atanotherparametervalue

. 

Proof:Suppose that is a singular point of the 

de-coupledDAEof(2.2)attheparametervalue  

suchthat 

 
(2.12) 

Observe that since is not (in general) an 

equilibriumpoint, and we have a nonzero mismatch 

at the generator buses.Letthismismatchbe

 .In 

order to force a zero mismatch at the generator 

buses, we canalwaysdefineanewsetofinjections

atthegeneratrbusessuchthat 

 

 
 

 
(2.13) 

 
 

 
 

 
 

(2.11) 

 

The singularity of  (similarly, 

unboundedeigenvalueof

 )impliesthatthesystemwillexperiencesomes

ortofinstabilityproblemresultingfromfastinteraction

sof network variables. However, it is difficult to 

predict the natureof instability owing to modeling 
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limitations. The DAE modelcannot predict the 

system behavior and the validity of the 

model,asacharacterizationofthepowersystem,isquest

ionable.Itis likely that uncertainties, neglected in 

the DAE model, nowbecome central to the local 

behavior of the system. In order 

toavoidalgebraicsingularityproblems,PraprostandL

oparo[13](muchearlierDeMarcoandBergen[12]and

Arapostathisetal. 

Therefore,asingularpoint 

atthe  parameter

isanequilibriumpoint.Indeed,itisaSIbifurcationpoint

atthenewparameter 

where . 

This lemma enables us to identify the SI 

bifurcation 

pointsoncesingularpointsandthecorrespondingnonz

erorealpowermismatch values at the singular points 

are available. Note thatthe injections at the load 

buses remain the same. In order to makea singular 

point an SI bifurcation point we need to adjust 

onlythe injections at the generator buses, which are 

the 

mechanicalinputtogenerators.Thislemmaassumesth

atmechanicalinputto the generators are controllable, 

which is realistic. This as-

sumptionalsoindicatesthatwecancontrolthegenerator

angles 

, which leads us to propose an iterative method to 

identify sin-gular pointsandthus,theSI 

bifurcationpointsbytheprevious 

 

 

 
 

Fig.1.Three-dimensionaldepictionofbifurcationdiagramwithasingularset. 

 

lemma. The application of the lemma and illustration 

of the con-straint manifold for a 3-machine 5-bus 

system are presented inSectionII-C. 

The main focus of local bifurcation analysis is to 

determinequalitative changes in the equilibria when 

the paramaters slowlychange. Recall that the 

parameter vector represents the bus in-

jectionsinthenetwork.Changesinbusinjectionsareach

ievedthroughparameterizationofbusinjectionswithas

calarparam-eterknownasabifurcationparameter 

direction (2.14) 

where isthebasecasebusinjections,

 isthescalarbifurca- 

tion parameter and is the direction          

vectorintheparameterspace,whichallowsustovarybus

injectionsatasinglebusand/orgroupofbuses.Theelem

entsofdirection are 

 

   
(2.15) 

The elements of , , and, can be set to be 

positive,negative,orzerodependingontheloadincreas

escenarioofin-terest. For example, if one wants to 

increase real power injec-tions into some selected 

generator buses, and then the corre-sponding 

elements of are set to be positive. Similarly, 

inorder to increase real/reactive power demand at 

some 

selectedbusesoneneedstosetthecorrespondingentries

of and 

tobenegative. 

The bifurcation diagrams and singular surfaces are 

multi-di-

mensionalevenforrelativelysmallsizedpowersystem

smaking it difficult to visualize them in a multi-

dimensionalspace. Therefore, a 2-D or 3-D 

projection is usually used toillustrate the 

equilibrium and singular points of (2.2) 

uponparametervariations.Fig.1illustratesa3-

Dequilibriumset(orsurface) with a 2-D singular 
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surface cutting it. It is worth to statethat there is no 

reason to expect the singular surface to form 

asmoothsurfaceasshowninFig.1.However,wedoexp

ectittobe a set (not necessarily) connected with a 

boundary. This 2-

Dsingularsurface(shownasplanar)isreallyanapproxi

mationofa nonplanar surface that will actually cut 

the 3-D 

equilibriumsurface.Notethatanosecurvethatshowsth

eevolutionof 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.Illustration of bifurcations of equilibria and singular points in a 2-Dnosecurve. 

 

 

theequilibria is plotted for a particular load increase 

pattern.Two equilibrium points of the nose curve at 

a given parametervalueare also depicted, namely 

upper and lower 

voltagesolutions,andtheyarelabeledas and

 ,respectively. This nose curve represents 

the equilibrium set of(2.3) and dashed surface 

represents the singular surface givenby (2.9). When 

the nose curve crosses the singular surface, 

theSIbifurcationoccurs.TheSIbifurcationpointonthe

surfaceislabeledby

.Itisexpectedthatfordifferentloadincreasepat-terns 

the nose curve will cross the singular surface at 

differentpoints indicating other SI bifurcations as 

can be seen in Fig. 2.Fig. 2shows twonose curves 

each representinga differentbus injection increase 

pattern defined by direction and direction

.Notethatalongthenosecurveof direction two local 

bifurcations, SN, and SI bifurcations and 

stabilitycharacteristics of the equilibria are 

illustrated schematically.Note that various singular 

points are denoted by as 

thebifurcationparametervaries. 

Our main idea here is to depict stability limits of 

operatingpointsinthepresenceofalgebraicsingularitie

s.Thetraditional 
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Fig.3.IllustrationofSNandSIbifurcations. 

 

 

Fig.4.    SNandSIbifurcationswithqualitativechangesinthenumberofequilibriumpointsasafunctionofc      andc . 

 

nosecurves(orPVcurves)areusuallyusedtoindicatest

abilitymarginsimposedbyvariouslocalbifurcationsin

theparameterspace. We bring singularity information 

into the nose curve andillustrate changes in both 

equilibria and singular points as thebifurcation 

parameterslowly changes. This way of 

bringingsingularity information gathered from the 

constraint manifold tothe parameter space gives a 

visual representation of both staticand dynamic 

stability boundaries together in the same 

picture,asshowninFig.2. 

In Section II-C, we provide two illustrative 

examples of theDAEmodel(oneofwhichisapower-

systemexample)inordertoshowthetypesofbifurcatio

nsinthesolutionstructureofthesystem equilibria, 

singularities of the constraint manifold, 

andtheapplicationofthelemma. 

 

C. TwoIllustrativeExamples 

ExampleI:Considerthefollowingparameter-

dependentDAE: 

 

 (2.16) 



Subodh Kumar Mohanty Int. Journal of Engineering Research and Application            www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 10, ( Part -III) October 2018, pp.104-123 

 

 
www.ijera.com                                   DOI: 10.9790/9622-081003104123                   112 | P a g e  

 

 

 

 

whereis the dynamic state variable,is the algebraic 

variableand,andaretheparameters. 

NotethattheDAEof(2.16)isintheformof(2.2)wherepa

-

rametersandaredecoupledfromtherestoftheequations

.Observethatforanygivenparametervalues,equilibriu

mpointsaretheintersectionofthetwocurves:1)

 ,aline,and 

2)   

,acirclecenteredattheoriginwitharadius

 .Fig.3showstheconstraintmanifold(i.e.,

)andvariousequilibriaaswellastheirbifurcationsdepe

ndingontheparameter .For  

  

 ,therearetwodynamicSEPslabeledas 

  and   

 for  in Fig. 3. However, 

whenissubjecttovaryineitherpositiveornegativedirec

tionweobservebifurcationsoftheequilibria.Firstbifur

cationoccursattheparameters  
  
whenoneofthestableequilibriafor

 increasinginpositivedirectionor for

 in-

creasinginnegativedirection)coincideswiththesingulari

tiesofthe constraintmanifold. Thisisan SI 

bifurcation. Observe 

thattheconstraintmanifoldhassingularitiesat 

forwhichtheJacobianmatrixofthealgebraicequationof(2

.16)(i.e.,     

   )hasasimple 

eigenvalueat theorigin.Furtherincreasein

 causesoneofthestableequilibriatocrossthesi

ngularsurfaceandtobecomeatype-1UEP.Thesecond 

 

 

 
Fig.5.Five-bussystemwiththreegeneratorsandtwoloadbuses. 

 

bifurcationisobservedatparameters for whichtwoequilibriumpoints,        and        meetat  ,which is an 

SN bifurcation as shown in Fig. 3. Finally, beyondtheparameter

 theDAEof(2.16)doesnothaveanyequilibrium.TheoccurrenceofSNandSIbifurcationswiththe qualitative 

changes in the number of system equilibria as afunctionofisalsosummarizedinFig.4. 

The singular set of (2.16) separates the constraint manifoldinto tworegions thatare connectedthroughthe 

singularpoints and . These two regions, which are the half cir-clesinFig.3,aredefinedasfollows: 

 and (2.17) 

 

 and 
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(2.18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.Voltagemagnitudeatbus4(V)andsingularpointsversusparameter 

 

Within the region, or , the DAE example of 

(2.16) couldbe reduced to the locally equivalent 

ODEs given below, andthe dynamics of the DAE is 

uniquely determined by the cor-

respondingODEineachregion 

 

(2.19) 

ThisexampleillustratesthatevenasimpleDAEmodel

mayex-hibit local bifurcations. In the next example, 

we study bifurca-

tionsandsingularitiesofaDAEmodelofa5-

buspowersystemandillustratetheapplicationofthele

mmaforlocatingSIbifur-

cationpointspresentedinSectionII-B. 

Example II:We now present a 5-bus power-system 

exampleto study bifurcations and demonstrate the 

application of thelemma for identifying SI 

bifurcations. The 5-bus system, whoseone-line 

diagram is shown in Fig. 5, has three generators 

andtwo constant PQ load buses [13]. The base case 

bus injectionsinperunit  pu witha100-

MWbaseareasfollows: 

, , 

and . 

Generators,whichareundampedhavetheinternalvolta

ges 

puthatareequaltoterminalvoltages 

alpha(). 

 

sincethereactance 0.1puincludesthetransientreac-

tances of the generator and transmission line. 

Generator 1 

ischosenastheswingbuswithzeroangleandalltheother

phaseangles are relativeto the swingbus. In orderto 

determine aset of equilibrium points including the 

SI bifurcation, we 

varymechanicalinputstothegenerators2and3( and

);andreal/reactivepowerdemandatbus4.Theresulting

searchdirec-tioninthebusinjectionspaceisasfollows: 

 

 
 

 
 

 
Fig.6illustrateshowtheequilibriaforthevoltagemagni

tudeat bus 4and their corresponding stability 

characteristicschange with parameter variations. 

Observe that as the param-etervaries, the system 

equilibria undergo SI and SN bifurca-

tionslabeledasSI,SN.Asthebusinjectionsareincrease

dthrough the scalar parameter, both the high-

voltage equdilib-rium andlow-

voltageequilibrium are 

dynamicallystable.However,at low-

voltageequilibriumpointundergoesastabilityexchang

e(stableunstable)duetoanSI 

 
 

on 
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Fig.7.CriticaleigenvaluesofthesystemmatrixA     astheparameteralpha 

()variesindicatingtheSIandSNbifurcations. 

 

bifurcation and it becomes a type-1 UEP. Further 

increase in theparametercausesthehigh-andlow-

voltageequilibriatomeetatanSNbifurcationfor . 

TheSNandSIbifurcationsaredetectedbymonitoringth

eeigenvalues ofsystemmatrix (2.10)as 

thesystemmoves 

fromoneequilibriumpointtoanotherwithchangesinth

ebifurca-tionparameters

 .Fig.7showshowtwocriticaleigenvaluesofth

esystemmatrixmoveas changesfrom

 toalongthelowerbranchofnosecurve;whichl

eadto 

SIandSNbifurcations.Thearrowsindicatethedirectio

nofin-creaseintheparameter  . JustbeforetheSI 

bifurcation;say at 

,thecriticaleigenvalues(pleasenotethatnoncrit-

icalonesarenotshowninFig.7)arelocatedinthelefthalf

plane,whichimpliesstability.Astheparameterchange

sfromto oneofthecomplexeigenvaluemoves 

(in jump fashion) to the right half plane and 

becomes a 

largepositivenumberwhiletheothereigenvaluestaysi

nthelefthalfplane but it becomes a large negative 

real number. Therefore,stability feature of the 

equilibria undergoes an instantaneouschange from 

stable to unstable with exactly one eigenvalue. 

ThisstabilityexchangeisduetoanSIbifurcationatwhic

htheJaco-bianmatrix 

 hasasimpleeigenvalueattheoriginandoneoft

heeigenvaluesofsystemmatrix becomes un-

bounded [7]. A clear picture of the occurrence of 

the SI bifur-

cationwithamuchlargerrealeigenvaluecanbeobtaine

dattheexpense of simulation time [18]. Asincreases 

further, an SNbifurcationoccursat 

 andoneofthecriticaleigen-valueof

 becomeszerowhiletheotheroneremainsinth

eleft half plane. The SN bifurcation corresponds to 

the point 

ofmaximumloadingforthisparticularloadincreasepat

ternoftheDAEsystem. 

Fig.6alsoshowssingularpointsatvariousvaluesof

 alongthenosecurve,whicharedepictedby

andlabeledas

.InSectionIII,wewillpresentamethodtocomputethese

sin-

gularpoints.Itisworthmentioningherethattherearemu

ltiplesingularpointsatanygivenparameter.However,

wearein-

terestedinthosethateventuallymeetwithoneoftheequi

librialocated in the lower branch of the nose curve 

as the 

parameterissubjecttovaryasillustratedinFig.6.Noteth

atthesingular 
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Fig.8.Constraintmanifoldprojectionontothe(V; )-space at    =0:4. 

 

Fig.9.Constraintmanifoldprojectionontothe(V; )-spaceat    =0:785 

illustratingtheoccurrenceofaSIbifurcation. 

 

point at coincideswithlow-

voltageequilibriumindicatingaSIbifurcation.InFig.6,

wealsodepictanothersin-gularpoint         for 

 and astoclearlyshow the relative 

locations of other singular points that are 

notassociatedwiththeSIbifurcation. 

The relative location of singular points with respect 

to equi-libria and SI bifurcation point can be 

clearly seen using 2-Dprojections of the constraint 

manifold. Fig. 8 shows a 2-D pro-

jectionoftheconstraintmanifoldontothe -

spacefor 

.Theconstraintmanifoldconsistsoftwovoltagecausalr

egions( and )separatedbysingularpoints and

.Note that each voltage causal region contains 

dynamically SEPslabeledas and

 .Theseequilibriumpointscorre-

spondtohigh-andlow-voltageequilibriumpointsat 

shown in Fig. 6. Singular points and are the 

same onesshowninFig.6at

 ,andtheyindicatethebifurcationsofthe 

algebraic variables (i.e., load bus voltage magnitudes 

and an-gles) when generator angles are considered as 

parameters. It willbe informative to illustrate the 

occurrence of the SI bifurcationby using the 

constraint manifold projection. Fig. 9 shows 

thesame2-Dprojectionontothe -spacefor

 .Thistime,however,thelow-

voltageequilibriumpoint 
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movesalongtheregion as    increasesfrom

 toandcoincideswiththesingularpoint

while 

thehighvoltageone, ,staysintheregion

.Notethatfor this load increase pattern, both 

equilibria move toward thesingularpoint

nottoward alongtheregionsastheparam-eter    

varies. Therefore, or any other singular points 

ratherthan arenotassociatedwiththeSIbifurcation. 

We now illustrate the application of the lemma to this 

power-system example. According to the lemma, 

recall that we canfind a new set of bus injections 

such that any of the singularpoints along the nose 

curve shown in Fig. 6 can be an SI bi-furcation 

point. For illustrative purposes, we choose the sin-

gularpoint at .Forthe5-bussystem,thevec-tors 

of andcontain net power injections at the 

buses.Specifically,  and 

 where ,   ,and

  . 

Attheparameter ,thebusinjectionvectors wouldbe 

pu, puand  

pu. The corresponding mismatch vector at 

thesingularpoint      is where 

pu. We can adjust 

theinjectionofthebuses2and3suchthatthesingularpoi

nt will be an SI bifurcation point. The new 

injection at the gener-atorbuseswouldbe where
 

pu. Note that 

injectionsattheloadbuses(buses4and5)remainuncha

ngedandthecor-respondingswingbusinjectionis

puobtainedby 

. 

Afterhavingillustratedlocalbifurcationsandsingularit

iesoftherelativelysimpleDAEs,wearenowatastageof

presentingmethods for computing them. In Section 

III, we first 

brieflysummarizeacommonlyusedalgorithmtocomp

uteequilibriumpoints and their associated 

bifurcations, and then we present asearch method 

for computing singular points at any given pa-

rameteralongthenosecurve. 

 

III. IDENTIFICATION OF 

EQUILIBRIUM AND SINGULAR 

POINTS 
A. IdentificationofSystemEquilibria 

In this section, we summarize the method 

implemented inVST for computing equilibria and 

their associated static bifur-

cationsastheparametervaries.Thestartingpointforthe

bifur-cation analysis of the power-system model 

(2.2) is the identifi-

cationofsystemequilibria.Foragivensetofparameters

,anequilibriumpoint

 satisfiestwoalgebraicequations 

 

(3.1) 

 

Load flow analysis is basically the identification of 

the set 

ofequilibriumpointsof(3.1).TheVSTimplementsloa

dflowcal-culations that function up to the point of 

collapse (SN bifur-cation point). Conventional 

numerical methods for computingequilibria, such 

as the NR method, must be modified in orderto 

obtain reliable results near bifurcation points. Two 

methodshave been applied to power-system 

analysis: the 

continuation(orhomotopy)[29]methodandthedirect(

orpointofcollapse)method[30].Thedirectmethodpropo

sedbySeydeltocompute 

thebranchpointsinsingle-

parameternonlinearalgebraicequa-tions has proved 

remarkably effective in power-system appli-

cations. Many investigators have implemented 

variants of thisapproach, imaginatively tailored to 

the special features and re-

quirementsofpowersystems[31]–

[34].Werefertotheseasa group as the NRS method. 

We describe our implementationof the Seydel’s 

direct method. For convenience, we collect 

thedependent variablesandinto a single vector 

which we de-noteby   (i.e., 

 ).Similarly,wecollectthepairoffunctions

 and  intothesinglefunction 

 .Notethatthevector 

of parameters is replaced by the scalar bifur-

cation parameterthat parameterizethrough (2.14). We 

seektoinvestigatethezerosof   ,  

 (equilibria) as a functionofthebifurcation 

parameter  where 

 (3.2) 

ThestandardNRmethodappliedto (3.2)is 

(3.3) 

where istheloadflowJacobianmatrix. 

However, the NR method breaks down near (static) 

bifurca-tion points,i.e.,when issingular(

  ). Ingenericone-

parameterfamiliesthedimensionof  

 atabifurcationpointispreciselyone,i.e.,

   

 .Thus,tolocatesuchapointweseekvaluesfor

 , 

andnontrivial   or        whichsatisfy 

 (3.4a) 

or (3.4b) 

Therequirement fornontrivialityof  ,  

maybestatedby 

or (3.4c) 

Onebasicapproachtofindingbifurcationpointsistoap

plytheNRmethodto(3.4).ThisistheNRSmethod.Data

thatsatisfies(3.4)willbedenotedas , ,

 , andwedesignatetheJacobian

.Notethatthevectors
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 ,havespecialsignificance.Theyare,respectiv

ely,therightandlefteigenvectorscorrespondingtothezer

oeigenvalueof .Theeigenvector

 spansthekernelof and 

 spansthekernelof . Once a bifurcation 

point is located, it is feasible to 

modifytheabovemethodtocomputepointsaroundthef

old(nose)oftheequilibriumsurface 

 

(3.5) 

forvaluesof        with . 

This allows computation of equilibrium points close 

to the bi-furcation point where the conventional NR 

calculations wouldfail.Ofcourse

 correspondstotheSNbifurcationpoint.The 

above method can be effective but it has the 

disadvantagethatissignificantlymorecomputationall

yintensivethanastan-dardloadflow.Itinvolvessolving

 equationsasop-

posedto,anditrequirescomputingsecond-

orderderivativesof.However,itpossibletodevisepote

ntiallymoreefficient 

 

 

 
 

Fig.10.Graphicalillustrationofthemethodforcomputingsingularpoints. 

 

methodsthatexploitthefactthat(3.4b)and(3.4c)arelin

earinand[33]. 

In VST, governing equations of the classical model 

andJacobian matrix including the second 

derivatives have 

beenconstructedsymbolicallyandathree-

stageloadflowmethod, 

, has been implemented to computeequilibria and 

bifurcations. First, the standard NR method isused 

until it fails to converge. Then, it automatically 

switchesto the NRS method to find load flow 

solutions at and aroundSN bifurcation point. After 

passing through the SN bifurcationpoint, the 

standard NR method is switched back to 

computelow-voltagesolutions. 

 

B. IdentificationofSingularPoints 

In this section, we present an algorithm to compute 

singularpoints of the DAE model of (2.2) at any 

given parameter valuealong the nose curve. The 

method is an iterative technique thatcombines well-

known NR and NRS methods, which are com-

monlyusedtocomputeSNbifurcationsinpowersystem

sasex-plainedinSectionIII-

A.Theproposedalgorithmbenefitsfromthe 

knowledge of the system equilibria and the 

occurrence ofthe SI bifurcation. Generator angles 

are parameterized througha scalar parameter in the 

constraint manifold. Then, at any 

givenparametervalue,theidentificationofasingularpo

intisformu-lated as a bifurcation problem of a set of 

algebraic 

equationswhoseparametersarethegeneratorangles.In

thefollowing,weexplainwhyweparameterizegenerat

oranglesandhowthispa-rameterizationisachieved. 

1) ParameterizationofGeneratorAngles:Recall

thattheal-gebraic part of the DAE model of (2.2) 

represents the real 

andreactivepowerequationsatthePQloadbuses 

(3.6) 

Atafixedparametervalue,theconstraintmanifoldconsi

stsofaset of points satisfying (3.6). As 

explained and illustratedin Section II (see Figs. 8 

and 9 of Example II) the 

constraintmanifoldcontainsvoltagecausalregionsand

singularpoints 
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connecting them. Fig. 10 hypothetically illustrates 

a 

magnifiedsegmentoftheconstraintmanifoldcompose

doftwovoltagecausalregions, and

,andasingularpoint   .Notethat theregion

contains the upper equilibrium pointwhiletheregion

containsthelowerequilibrium 

point . These equilibria correspond to the high- 

andlow-voltage solutions at a given parameter 

value along thenose curve (see Fig. 6 for an 

example), which are known to usfrom the 

computaion of equilibria and bifurcations 

explainedinSectionIII-A. 

Observe that for any given generator angle there 

are twocorresponding solutions for the algebraic 

variablethat repre-sents the load bus voltage 

magnitude and phase angle. As thegenerator angle 

increases, these two solutions move along 

theregions and until theymeetat thesingularpoint

 . 

Atthesingularpoint,theJacobianmatrix 

becomes singular and there is no solution forifis 

futherincreased. This observation indicates that 

algebraic variablesshow a nose curve type of 

behavior as the generator angles vary,and they 

undergo an SN bifurcation at the singular point. 

ThisbehaviorissimilartotheSNbifurcationoftheequili

briaasthebus injections change. This observation 

leads us to use gener-ator angles as parameters and 

to seek methods to compute theSN bifurcations of 

algebraic varibles, which is a singular 

pointoftheDAEmodel. 

A recent work by Singh and Hiskens[16] on the 

characteriza-tion of the stability boundary of the 

DAE model has 

illustratedthefactthatsingularsurfaceslieonthebound

aryofthestabilityregion of a SEP and they contain 

infinitely many singular points.However, as 

illustrated in Figs. 6–9 of Section II, we are 

onlyinterestedincomputingthosesingularpointsthate

ventuallyin-tersect with an SI bifurcation point for a 

given bus injection pat-

tern.Specifically,wealsoassumethatwespecifyaprior

iwhichinjections will changeto create othersingular 

points. 

In order to trace the corresponding segment of the 

manifoldandtocomputethesingularpointshowninFig.

10weneedtoimplementaniterativemethodthatinitiate

satapointin  

 

andendsupatanotherpointin

passingthroughthesingularpoint . The upper 

and lower equilibrium points are theobvious choice 

for the starting and ending points of the algo-rithm 

since they are available to us from the 

equilibriacompu-tation. The following 

parameterization of the generator 

angleswillachievethatpurpose: 

 

 (3.7) 

 

where      and are -dimensional vectors 

representingthe generator angles at the upper and 

lower equilibrium pointsat a given parameter value 

[or equivalentlyby (2.14)], re-

spectively,andisanewscalarbifurcation parameter. 

With this parameterization, the identification of the 

singularpoint of the constraint manifold at a fixed 

parameterreducesto a single parameter bifurcation 

problem of the following equa-tion: 

 

(3.8) 

 

Note that we drop the parameter in (3.8) for the 

sake ofsimplicity in the notation. Clearly, the SN 

bifurcation of thealgebraic variablesas the 

bifurcation parameterchangeswould be a singular 

point of the constraint manifold at the cor-

respondingparameter.InSectionIII-B-

2,wedescribeatwo-staged algorithm that 

implements the NR and NRS methods tolocate the 

singular points. A similar method has also been re-

portedin[16]tocomputethesingularpointontheimpass

esur-face that has the minimum potential energy as 

to characterizethe stability boundary for the case 

when the boundary does notcontain any unstable 

equilibria and/orperiodicorbits. 

2) Combined NR and NRS Method:As we 

have explainedinSectionIII-B-

I,asingularpointoftheDAEmodelatagivenparameter 

is a static bifurcation point of the load bus 

voltagemagnitudeandphaseangleswhenthegenerator

anglesaresub-

jecttovary.Thus,theproblemofcomputingasingularp

ointis equivalent to identification of the SN 

bifurcation of the al-gebraic (3.8) as the scalar 

parametervaries 

[thus,changesthrough(3.7)].Therefore,weseekasing

ularpoint in theconstraintmanifoldsuchthat

  . 

Inotherwords,thesingularpointsmustbelongtothecon

straintmanifold and the Jacobian matrix must have a 

simple 

eigenvalueattheorigin.Wecanrewritetheseconditions

asfollows: 

 

(3.9) 

(3.10) 

(3.11) 

 

where

 isthealgebraicvariables(loadbusvoltagema

g-nitudeandphaseangles), istheJaco-

bianmatrixofthealgebraicequations, 

 istherighteigenvector corresponding to the 

zero eigenvalue of the Jaco-bian matrix, and          
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is the bifurcation parameter used tovary the 

generator angles. Observe that (3.11) assures that 

theeigenvectoris nontrivial. Equation (3.10) together 

with 

(3.11)establishesthesingularityofJacobianmatrix. 

The conventional NR method is the most common 

iterativetechnique to compute the roots of nonlinear 

algebraic 

equations.Thismethodcanbeappliedto(3.8)asfollows: 

 

(3.12) 

 

Theabove 

iterativeschemeworkswellalmosteverypointintheco

nstraintmanifold.However,itwillfailtoconvergearou

ndasingularpointsincetheJacobianmatrixisclosetoth

esingularity.TheNRSmethodhasbeeneffectivelyuse

dtocompute static bifurcation points in power 

systems. In order toapplytheNRSmethodto(3.9)–

(3.11),arealeigenvalue ofisintroducedasan 

independentvariable. Thatwill 

make it possible to implement an iterative scheme 

that goesaroundthesingularpoint 

 

 

 
 (3.13) 

Thereareatotalof

 in(3.13)andthesamenumberofunknownvari

ableswhileistheindependentvariable.Foragiven   

,(3.13)canbesolvedfortheunknowns 

 

  
 

(3.14) 

 

where and is the corre-

spondingextendedJacobianmatrixof(3.13). 

TheNRSalgorithm,likeanyotherNewton-

iterativemethod,needs a good initial condition, that 

is a point in the constraintmanifold close enough to 

the singular point along with 

thesmallestrealeigenvalueof 

 andthecorrespondingright eigenvector. 

Otherwise, we may experience conver-gence 

problems. Therefore, we first use the NR method. 

TheNR computations proceed starting at the upper 

equilibriumpoint  

alongtheconstraintmanifolduntilitfailstocon-verge. 

The last successful NR data point is used to 

implementan inverse iteration method [35] for 

estimating the eigenvalueof nearest , and 

the corresponding righteigenvector. These data are 

then used to initiate an NRSprocedure using (3.14) 

to compute around the singular pointforvaluesof        

with  .Thevalue 

isalwaysincludedanddataatthesingularpointisthereb

y 

obtained. 

In order to compute singular points at various 

parametersalong the nose curve and depict them 

together with the equi-libria in a 2-D nose curve, 

the following procedure, which 

isalsographicallyillustratedinFig.11,isimplementedi

nVST. 

Step 1)   Choose a load (bus injections) increase 

pattern.Step2)Computeequilibriumpoints(nosecurv

e),thesta-

bilitypropertiesoftheequilibriaandlocatelocalbifurcatio

ns.Step3)Chooseaparameter alongthe 

nosecurve and fixit. 

Step4)Computethesingularpointatthisparameter. 

Step 5)Repeat the steps 3–4 as many times as 

desired up totheparameter . 

Step6)Depict singular points in the nose curve. 
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Fig. 11.Graphicalillustrationof the procedurefor computing singularpoints anddepictingthemalongthe nose 

curve. 

 

InSectionIV,weillustratetheapplicationofourmethodthatincludesthestepsgivenabovetotheIEEE118-bussystem. 

 

IV. SIMULATIONRESULTS 
In this section, we present results on the SI 

bifurcation andsingular points for the IEEE 118-

bus test system. The real andreactive powers at bus 

75 have been increased according to(2.14). Fig. 12 

illustrates how the voltage magnitude at bus 

75changes with parameter variations. As can be 

seen, two kindsof bifurcations are identified, 

namely SN and SI bifurcations.As the parameter      

increases both upper and lower parts 

ofthenosecurvearedynamicallystable.At

 ,thesystem undergoes a stability exchange 

associated with the SIbifurcation and the stability 

feature of the lower equilibriumpoints changes 

qualitatively, from stable to unstable. As 

theparameter further increases, one stable (upper 

part) and onetype-1 unstable (lower part) 

equilibrium point meet at an SNbifurcationpointfor

 ,whichisthetipofthenosecurve. Beyond the 

SN bifurcation point, there is no feasiblesolution to 

the load flow equations. The stability properties 

ofthelowerpartofthenosecurvearecertainlymodeldep

endent.When the load dynamics are included the 

entire lower part ofthenosecurvemightbeunstable. 

Fig.12alsodepictssingularpointsatdifferentparamete

rvalues.Theparametervalue

 isespeciallyimpor-

tantinthesensethatitenablesustocheckwhetherthesin-

gularpointsearchmethodgivescorrectresults.Recallth

atattheSIbifurcationoccursandallthestateinfor- 

mationatthisparametervalueisavailabletousfromequi

libria 
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Fig. 12.Voltage magnitude at bus 75 versus parameter alpha () with singularpointswhenthe realandreactive 

poweratbus75increase. 

 

and bifurcation analysis. The SI bifurcation point 

also belongsto the singular set defined by (2.9). It is 

expected that the pro-

posedmethodshouldgivethesameresultasthatofthebif

urca-tionanalysisat

 .AsseenfromFig.12,thisisindeedthe case. 

Observe that for the voltage magnitude at bus 75 

sin-

gularpointsateachparametervalueliesbetweenthehig

herandlower voltage solutions until the SI occurs. 

Note that the 

lowerpartofthenosecurvemaynotbepracticaloperatin

gpointsduetothelow-

voltageprofile.However,thisisnotthegeneralcaseass

howninFig.13thatdepictsthevoltagemagnitudeatbus

63 

 

 

 
 

Fig. 13.Voltage magnitude at bus 63 versus parameter alpha () with 

singularpointswhentherealandreactivepoweratbus75increase. 

 

 

for the same load increase pattern. The lower part 

of the nosecurve and singular points including the 

SI bifurcation point lieabove 0.95 pu, which is 

usually considered to be the low-

voltagethreshholdvalueforanormaloperationofthepo

wersystems. 

 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have presented an 
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iterative method to lo-cate and identify singular 

points of the DAE model of 

powersystem.Inthemethod,weusegeneratoranglesto

parameterizethe algebraic part of the DAE model 

and we identify the sin-

gularpointsasbeingtheSNbifurcationofthealgebraicp

artofthe DAE model. We have shown by a lemma 

that any singularpoint at a given set of bus 

injections is an SI bifurcation 

pointatanothersetofbusinjections.Wehavecombined

staticinfor-

mationfromtheSNanddynamicinformationfromthesi

ngularpoint together in order to provide a 

comprehensive picture of thesystem stability. We 

have updated the VST to include singularpoint 

computations. Simulation results on a 5-bus system 

andthe IEEE 118-bus system have been presented. 

We have illus-trated singular points with the 

traditional nose curve for 

differentloadchangescenarios. 

As future work, an energy function approach 

should be im-plemented in order to provide a 

dynamic security index 

thatconsidersthesingularpoints.Specifically,thedyna

micstabilitymarginofagivenoperatingpointcouldbec

omputedastheen-

ergydifferencebetweenthecurrentoperatingpointand

thesin-gularpoint.Thisscalarenergyvaluewouldbethe 

dynamicse-

curityindex.Moreover,inordertocompletethepicture

astaticsecurity index as being the energy difference 

between the cur-rent operating point and the point 

of collapse should be com-

binedwiththedynamicsecurityindex. 
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