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ABSTRACT 
Presented is an observer-based parameter estimation solution for a class of linear, discrete-time systems. The 
proposed formulation embeds the problem of parameter estimation within a parametric uncertain observer 
formulation where the state and output matrices are expressed as A= A0 +ΔA  and C =C0 +ΔC . The 
methodology is developed by creating general solutions for the uncertainty matrices ΔA  and ΔC . A unique 
solution for each is recovered by parameterizing the general solution subject to a rank condition.  The primary 
advantage of the proposed method is that individual parameters within the linear state equation matrices can be 
estimated using input/output data. The methodology is well suited for parameter estimation problems involving 
multi-energy-domain systems where intermediate measurements between fields are not available. Simulation 
examples are provided to demonstrate the utility of the proposed parameter estimation method. This result has 
broad applications to robust feedback solutions and system health monitoring (system diagnostics and 
prognostics). 
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I. INTRODUCTION 
 Quantifying the dynamics of deterministic 
and stochastic systems via mathematical models 
serves as a foundation for the engineering sciences.  
Establishing causalities or discovering mechanistic 
relationships governing the dynamic response of 
systems involves theoretical studies validated 
through empirical observations.  State equation 
systems commonly arise in the framework of multi-
physics dynamical systems and can also be found in 
non-physics based such as macro- and 
microeconomics [1].   
 Parametric mathematical models for linear 
systems generally have two forms, transfer functions 
and state-equations. While a mapping exists between 
these two representations, the state-equation form 
could be considered as the most basic owing to its 
utility in numerical integration and revealing the 
interconnection among system states.  However, the 
calibration of state equation models using 
experimental data has proven challenging. 
Historically, model fusion with data is achieved 
using a transfer function representation (i.e., input-
output model) where least squares or maximum 
likelihood solutions accomplish parameter 
estimation. In these methods, the model parameters 
are estimated by minimizing an error criterion such 
as output error or equation errors.  The primary 

limitation associated with parameter estimation 
using transfer functions is that transfer function 
coefficients are usually a combination of physical 
system parameters thus concealing the individual 
values. This is especially the case when dealing with 
multi-physics systems.   
 The goal of this work is to develop a 
parameter estimation solution that will determine the 
individual values within the A and C matrices. In 
this context, the estimation of model parameters for 
systems represented in state equation form requires 
estimates of the unknown system state variables. A 
class of system identification methods that address 
these challenges employs a prediction-error state 
observer to improve the state estimates based on the 
nominal model contained within the observer. These 
approaches use system input information and 
measureable system output information to improve 
state predictions. There is a longstanding knowledge 
base for state observer design as applied to linear 
systems with a priori known model structures. The 
majority of the state observer methodologies 
converge asymptotically to the system state(s) 
provided observability and stability conditions are 
satisfied. Examples include the Luenberger 
Observer, its derivatives and generalized forms 
detailed in [2-4]. Other observers are based on Least 
Squares Method (LSE) to minimize the state 
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prediction error [5-6]. Finite-time state observers 
have also been discovered [7-8] for both continuous 
and discrete-time systems. These observers 
reproduce state estimates using input/output 
measurements and have convergence within a pre-
specified finite-time that is equal to the delay chosen 
within the observer. It has been shown that it is 
always possible to construct a state observer with 
any nonzero time delay. However, this finite time 
convergence is guaranteed only for system with no 
uncertainty in the model coefficients.  
 A limited knowledge base exists for 
uncertain system identification using observer theory 
known as adaptive observer [9-10]. Adaptive 
observers include the uncertain parameters as 
additional states and are therefore estimated 
simultaneously with other states of the system [11-
17]. The results found using the available methods in 
the literature have been successfully used for 
specific applications. One adaptive observer 
investigation presented in Chen et al. [18] identified 
an Rôssler hyper-chaotic system with two unstable 
poles using adaptive observers. Model coefficients 
as well as the states were estimated using the error 
between measured and estimated states. A number of 
states are assumed to be accessible and therefore 
measurable. Another adaptive observer study given 
in Dochain [19] employed an adaptive observer to 
identify the parameters of a chemical reaction. The 
unknown parameters were assumed to be constant. 
Therefore, the Dochain investigation cannot track 
time-varying model parameters. Additional 
observer-based system identification techniques 
have also been implemented for model-based fault 
detection and diagnosis [20-21]. An augmented 
Luenberger observer is provided in [22] that 
estimate both internal and external uncertainty of the 
system. This estimation cancels the effect of 
uncertainty on the state feedback control design 
offering better robustness and disturbance rejection. 
In [23], augmented states are employed to estimate 
states and unknown parameters simultaneously of a 
nonlinear invariant system. Conditions on the 
uncertainty of the system, under which the method is 
stable, are proposed. In all adaptive observers, 
augmenting the state vector increases the order of 
the estimator and therefore they require more 
computational time. 
 Presented in this manuscript is a solution to 
the problem of recovering model parameters directly 
from observer states. The proposed methodology 
estimates the individual element system parameters 
of A and C matrices using input/output data 
processed through an observer. Estimating these 
internal parameters permits the isolation of the 
subsystems for the purposes of health monitoring. In 
contrast to adaptive observer techniques that 
estimate system states and parameters 

simultaneously, the proposed method first estimates 
the observer states thereby reducing the order of the 
system. A stability analysis of the observer is carried 
out ensuring the convergence of the state estimation 
in the presence of model uncertainty. Using the 
estimated states, measured data is used to solve for 
the time-varying parameters of the system treated as 
system uncertainty. This uncertainty-based 
estimation approach, applicable to linear discrete-
time observable system, is presented in its general 
formulation. The approach used to solve for the 
uncertain parameters includes two steps. The first 
step involves an analytical solution that 
parameterizes a generic form of the solution. To this 
end, mathematical arrangements based on pseudo-
inverse are used. The second step employs a 
numerical solution to recover the unique estimates 
within the general solution via gradient descent 
optimization algorithm. 
 

II. PROBLEM STATEMENT 
Consider a linear discrete-time system with time 
varying parametric uncertainty defined as 
x(k +1) = A(k)x(k)+ Bu(k)
y(k) =C(k)x(k)

⎧
⎨
⎩

 (1) 

where 
A(k) = A0 +ΔA(k)∈ R

nxn ,B ∈ Rnxm ,C(k) =C0 +ΔC(k)∈ R
pxn

and system uncertainty exists in the matrices ΔA(k)  
and ΔC(k) . The matrices A0, B and C0 contain the 
nominal system parameters around which 
uncertainty of the system is added. The system states 
are denoted as x(k)∈ R

n , the system inputs are 
u(k)∈ Rm , and the measurable system outputs are 
y(k)∈ Rp . The class of systems defined in (1) are 

limited to those satisfying the observability matrix 
rank conditions where 

ρ[A,C]= Rank

C
CA
!

CAn−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= n,∀ ΔA and ΔC .  That 

is, the uncertain system must be observable for all 
possible uncertainties.  
 The objective is to estimate the elements 
within the uncertain system matrices ΔA(k)  and 
ΔC(k)  given sampled system inputs u(k) , and 
sampled measurable system outputs y(k)  in real-
time. The proposed method provides a solution that 
uniquely identifies the entire uncertain model 
parameters for a wide range of linear systems in 
their general form. The validity of the method is 
subject to conditions on the system matrices and 
uncertainty to accurately estimate both unknown 
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states and parameters. These conditions will be 
discussed in the main results section. 
 

III. MAIN RESULTS 
 Developed in this section is a model 
parameter estimation methodology using observer 
theory.  The advantage of an observer-based 
approach is the ability to specify the estimation 
convergence rate of the model parameters through 
the design of the observer gain matrix Ke. These 
model parameters are individual elements of the A 
and C matrices of the system model thus enabling 
direct physical meaning in multi-domain systems 
that would otherwise be difficult if not impossible to 
isolate and estimate without additional sensors.  
 The proposed parameter estimation strategy 
shown in Fig. 1 focuses on the estimation of the 
uncertainty matrices defined in (1). The estimated 
observer states are used within a generalized 
analytical solution for the ΔA(k)  and ΔC(k)  
matrices. Estimation of the individual elements 
within ΔA(k)  and ΔC(k)  are computationally 
determined such that the estimation error is 
minimized. 

 
Figure 1. Parameter Identification Flow Chart 

 
3.1. Estimation of the Observer States  
 Consider the standard error driven observer 
that asymptotically estimates the states of a system. 
The observer, in its traditional form, is  
x̂(k +1) = A0 x̂(k)+ Ke (y(k)−C0 x̂(k))+ Bu(k)  (2) 

 where Ke is an observer gain matrix. The 
design of Ke is such that the observer poles are fast 
enough to track the system state without 
unnecessarily extending the observer bandwidth 
thereby amplifying sensor noise.  
Stability of the Observer  
 The stability of the observer is essential to 
ensure convergence of the states estimates. The 
required conditions for the stability of the observer 
depends if the system uncertainty is constant or time 
varying. For linear time invariant (LTI) systems 
where the uncertain system matrix A0 +ΔA  is Schur 
stable, the observer is asymptotically stable if the 
observer state matrix (A0 − KeC0 )  is also Schur 

stable, that is, eigenvalues of the observer state 
matrix are inside the unit circle, namely 
λ j A0 +ΔA( ) <1  

and  λ j (A0 − KeC0 ) <1        j =1,...,n  
(3) 

 Inequalities (3) set conditions on the 
uncertainty of the system, that is, they define a 
region in which uncertainty of the system is located. 
Since condition (3) is sufficient to ensure stability of 
the observer exclusively in case of linear time 
invariant systems, it is employed when the unknown 
parameters of the system are constant. The observer 
gain is designed by placing observer poles in the 
desired positions using Ackermann method [24]. 
Therefore, the observer states as well as the 
parameters estimated based on pseudo-inverse 
converge asymptotically. 
 For linear time variant (LTV) systems, 
eigenvalues placement method becomes insufficient 
to guarantee stability of the observer and the 
application of Lyapunov method is necessary in 
designing the observer. The observer system is 
described in the following expression 

x(k +1)
e(k +1)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

A0 0

0 A0 − KeC0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x(k)
e(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

          +
ΔA(k) 0

KeΔC(k)−ΔA(k) 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
x(k)
e(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⇒ ξ (k +1) = A
ξ
ξ (k)+Δ(k)ξ (k)

 (4) 

where ξ (k) =
x(k)
e(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 and Δ(k) is the uncertainty 

in parameters. Bounds in the uncertainty matrix Δ(k) 
will be sought that guarantee stability of observer. 
For this purpose, the norm of the uncertainty is 
assumed to be bounded; Δ(k) ≤ δ . 

Let Lyapunov function be V (ξ ) = ξ T Pξ ≥ 0⇒ P ≥ 0  
where P is a symmetric matrix. The Lyapunov 
function discrete difference is given by 
V (ξ (k +1))−V (ξ (k)) = ξ T (k +1)Pξ (k +1)−ξ T (k)Pξ (k)

        = A
ξ
ξ (k)+φ(k)( )

T
P A

ξ
ξ (k)+φ(k)( )−ξ T (k)Pξ (k)

        = ξ T A
ξ

T PA
ξ
− P( )ξ +ξ T AξT Pφ +φ T PAξξ +φ T Pφ

 

given ζ = ξ

φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  . Quadratic stability is guaranteed 

when 

V (ξ (k +1))−V (ξ (k)) = ξ

φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

T
A
ξ

T PA
ξ
− P A

ξ

T P

PA
ξ

P

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ξ

φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟< 0

 
(5) 
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for ξ (k) =
x(k)
e(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≠ 0  that satisfy bounded norm 

condition 
Δ(k) ≤ δ⇒ φ Tφ ≤ δ 2ξ Tξ ⇒ φ Tφ −δ 2ξ Tξ ≤ 0.  

⇒
ξ

φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

T

−δ 2I 0
0 I

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ξ

φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≤ 0  (6) 

 In order to apply S-procedure to transform 
the problem into Linear Matrix Inequality (LMI), the 
set A={(ξ ,φ) |ξ ≠ 0,(6)}  should be equal to the set 
B ={(ξ ,φ) | (ξ ,φ) ≠ 0,(6)} . It suffices to show that 
{(ξ ,φ) |ξ = 0,φ ≠ 0,(6)}=∅ . But this is immediate: 
If φ ≠ 0 , then condition (6) cannot hold without 
having ξ ≠ 0 , 
 Combining 2 inequalities using the S-
Procedure, we find that quadratic stability is 
equivalent to finding P satisfying 

P > 0,
A
ξ

T PA
ξ
− P +δ 2I A

ξ

T P

PA
ξ

P − I

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≤ 0  (7) 

 Stability margin is defined as the largest 
δ ≥ 0  for which the system remains stable and 
computed by solving the LMI problem 
maximize  δ

subject to δ ≥ 0,P > 0,
A
ξ

T PA
ξ
− P +δ 2I A

ξ

T P

PA
ξ

P − I

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≤ 0

 (8) 

 To find the maximum bound δ , δ  is 
maximized subject to the Linear Matrix Inequality 
constraints (8). In this case, when uncertainty is less 
in amplitude than the maximum bound, the 
Lyapunov function is positive and its derivative is 
negative around the equilibrium and therefore 
stability of the observer (4) is guaranteed. Therefore, 
the observer error goes to zero asymptotically. 
 
3.2. General Solution for the Uncertainty 
Matrices 
 Given that the observer estimates will 
asymptotically converge subject to condition (3) for 
LTI systems or condition (8) for LTV systems, the 
estimated states may be matched to the exact state 
equation as 
x̂(k +1) = Ax̂(k)+ Bu(k) = (A0 +ΔA) x̂(k)+ Bu(k)
y(k) =Cx̂(k) = (C0 +ΔC) x̂(k)

⎧
⎨
⎪

⎩⎪
 (9) 

where 
ΔAx̂(k) = x̂(k +1)− A0 x̂(k)− Bu(k)
ΔCx̂(k) = y(k)−C0 x̂(k)

⎧
⎨
⎪

⎩⎪
 (10) 

There exists a solution to (10) if and only if  

x̂(k +1)− A0 x̂(k)− Bu(k)( ) x̂+ (k) x̂(k) =

                           x̂(k +1)− A0 x̂(k)− Bu(k)( )
y(k)−C0 x̂(k)( ) x̂+ (k) x̂(k) = y(k)−C0 x̂(k)( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (11) 

where x̂(k)  is the Moore-Penrose pseudo-inverse 
[25] of the state estimation.  Condition (11) is 
equivalent to saying that there exists a solution to 
Ax = b  in A for known vectors x and b if and only 

if bx+x = b .  
Proof: Solve for A in the equation Ax = b . If 
bx+x = b , then clearly bx+  is a solution to the 
equation. This proves existence of a solution. 
Conversely, if a solution exists, say M, then Mx = b   
⇒ Mxx+x = b  using xx+x = x  by definition of 
pseudo-inverse. 
⇒ bx+x = b  using Mx = b .  
The equality in (11) is equivalent to the rank 
conditions 

Rank
x̂(k)

x̂(k +1)− A0 x̂(k)− Bu(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= Rank x̂( )

Rank
x̂(k)

y(k)−C0 x̂(k)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= Rank x̂( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

(12) 

 
where Rank x̂( ) =1  since x̂  is a non-zero vector. 

Equation (12) is equivalent to bx+x = b  if and only if 

Rank
x
b

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=Rank x( )

 

Proof: bx+x = b ⇔ b−bx+x = 0⇔ Rank(b−bx+x) = 0  
We know from the properties of matrices that 

Rank x
b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= Rank(x)+ Rank(b−bx

+x)  

Consequently, bx+x = b ⇔ Rank
x
b

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=Rank x( ) .  

Under condition (11) or (12), the uncertainty 
matrices of the system can be written in the 
following parameterized form 
ΔA= x̂(k +1)− A0 x̂(k)− Bu(k)( ) x̂+ (k)

                              + Z(I − x̂(k) x̂+ (k))
ΔC = y(k)−C0 x̂(k)( ) x̂+ (k)+W (I − x̂(k) x̂+ (k))

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (13) 

where variables Z and W are arbitrary matrices of 
appropriate dimensions. 
Aside: Equation (13) is equivalent to saying that a 
complete set of solutions to Ax = b  is given by 
M (Z ) = bx+ + Z(I − xx+ )  as Z, an arbitrary matrix, 
varies over all possible values [26]. 
Proof: Consider M (Z ) = bx+ + Z(I − xx+ )  ∀Z . 
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Then 
M (Z )x = bx+ + Z(I − xx+ )( ) x = bx+x + Z(x − xx+x)
                                              = bx+x + Z(x − x) = bx+x

 

By a condition of existence of solution previously 
demonstrated; bx+x = b  
⇒  M (Z )x = b ⇒ M(Z) is a solution of equation 
Ax = b  ∀Z . 

Conversely, now suppose a matrix K is a solution to 
Ax = b . Then bx+ + K (I − xx+ ) = bx+ + K − Kxx+ .  

Since K is a solution, then 
Kx = b ⇒ bx+ + K (I − xx+ ) = bx+ + K −bx+ = K  
⇒  Every matrix K in the set of solutions may be 

written in the form bx+ + K (I − xx+ ) .  
Note that the general solution of (4) contains an 
infinite set of possible uncertainty matrices ΔA  and 
ΔC  since number of unknowns is higher than the 
number of equations in (4). For each couple of 
parameters Z and W, there is a corresponding 
solution given by (13). 
 
3.3. Determining Z and W 
 First a special case where Z and W are 
simultaneously zero for the solution to (13) is 
considered. The uncertainty matrices, in this special 
case, will be unique and written as 
ΔA= x̂(k +1)− A0 x̂(k)− Bu(k)( ) x̂+ (k)
ΔC = y(k)−C0 x̂(k)( ) x̂+ (k)
⎧
⎨
⎪

⎩⎪
 (14) 

The solution (14) is valid under the following 
conditions  

ΔAx̂(k)x̂+(k) = ΔA⇔ Rank x̂+

ΔA

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= Rank x̂+( )

ΔCx̂(k)x̂+(k) = ΔC⇔ Rank x̂+

ΔC

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= Rank x̂+( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

(15) 

 Condition (15) contains both estimated 
states and system uncertainty matrices. Collectively, 
both define a set of uncertainty matrices ( ΔA  and 
ΔC ) for which this simplification is applicable. In 
general, the uncertainty of the system does not meet 
condition (15) and the actual solution of the problem 
can be located at another nonzero value of 
parameters Z and W depending on the uncertainty 
present in the system.  When condition (15) is not 
true, the actual solution may be determined using a 
minimization technique. 
General Solution to (13) 
 Since condition (15) is stiff, the general 
form of uncertainty matrices (with parameters Z and 
W) will be conserved for the remainder of the work. 
This imposes no loss in generality and takes into 
account a wide range of uncertainties in the system. 
Batching of data including estimated states will be 

used to find the unique solution corresponding to the 
problem and is the approach employed here. A 
minimization procedure is developed to find the 
solution for wide range of problems without 
constraining the system and the uncertainty to meet a 
stiff condition (15).  
A gradient descent approach is developed to 
calculate the Z and W matrices that minimize the 
fitness functions E1(Z) and E2(W) defined as  
Min
Z
E1(Z ) =MinZ (A0 +ΔA(Z )) x̂(i)+ Bu(i) - x̂(i +1)

i
∑

2

Min
W
E2 (W ) =MinZ (C0 +ΔC(W )) x̂(i) - y(i)

i

∑
2

 

(16) 

 where Z and W are considered as vectors of 
dimension that matches the unknown parameters N. 
For the gradient descent approach, the n-dimensional 
space is discretized. The objective of the method is 
to decrease the fitness functions iteratively by 
moving along the steepest descent direction in Z-
space and W-space until convergence. The gradient 
descent procedure [27] is summarized as 

i. Select an initial point Z0 in Z-space and W0 
in W-space 

ii. The opposite of gradient of E1(Z) and E2(W) 
give the best direction to minimize the functions. 
Next iteration guess of Z and W: 
Zi+1 = Zi −γ1∇E1(Zi ) and Wi+1 =Wi −γ 2∇E2 (Wi )  

iii. Stop when convergence is reached, 
Zi+1 − Zi ≤ dZmin  OR E1(Zi ) ≤Tol  

And Wi+1 −Wi ≤ dWmin  OR E2 (Wi
) ≤Tol  

Gradient Descent Step Size Selection 
The step size γ can be calculated adaptively for each 
step using Barzilai and Borwein approach [28], 
which has been proven for large dimensional 
problems. Defining ΔZ = Zi − Zi−1  and 

Δg(Z ) =∇E1(Zi )−∇E1(Zi−1) , the step size for 
minimizing E1 is given by  

γ1 =
Δg(Z )TΔZ

Δg(Z )TΔg(Z )
. (17) 

 The same approach to calculate the step 

size γ 2  minimizing E2 is used. The step size is 
calculated directly using (17) that approximates the 
inverse of Hessian matrix in the Newton method, 
which is costly to form. Using this variable step size, 
the method computational cost to convergence is 
reduced.  
 In the following section, the method of this 
section will be demonstrated using a double mass-
spring-damper system. Two cases of parameter 
uncertainty will be studied. The first case considers 
constant uncertainty while the second case studies 
step change in the parameters. In both cases, the 
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method will exhibit stability and convergence of the 
estimates to the exact parameters. 
 

IV. APPLICATIONS OF OBSERVER 
BASED PARAMETER ESTIMATION 

 
 To demonstrate the utility of the proposed 
parameter estimation method, simulation examples 
are performed for double-mass-spring-damper 
system (see Fig. 2). The objective is to estimate the 
uncertain parameters of the system about the 
nominal values given observer estimated states. 
Input/output data is generated via simulations of the 
double-mass-spring-damper system. Changes in 
stiffness and/or damping of the system will be 
introduced within the simulation environment. The 
method is verified as estimates of the system 
parameters change during the simulation. 
 

 
Figure 2. Double Mass Spring Damper System 

 
 The differential equations governing the 
motion of this two-degree of freedom system are 
derived from Newton’s second law of motion for 
each mass m1 and m2 
m1!!x1 + B1 !x1 + B2 ( !x1 − !x2 )+ k1x1 + k2 (x1 − x2 ) = 0
m2
!!x2 + B2 ( !x2 − !x1)+ k2 (x2 − x1) = u

⎧
⎨
⎪

⎩⎪

 

(18) 

where x1  and x2  are displacements of mass m1 and 
m2 respectively. Input u is a force applied to mass 
m2. 
 The system comprises two outputs and one 
input. Hence, the system is described with two 
transfer functions G1(s) and G2(s). The transfer 
functions G1(s) and G2(s) describing the behavior of 
m1 and m2 respectively due to input u are 

G1(s) =
X1(s)

U (s)

=
B2s+ k2

m1m2s
4 + (m2(B1+ B2)+m1B2)s

3+ (m2(k1+ k2)+m1k2 + B1B2)s
2 + (B2k1+ B1k2)s+ k1k2

G2(s) =
X2(s)

U (s)

=
m1s
2 + (B1+ B2)s+ k1+ k2

m1m2s
4 + (m2(B1+ B2)+m1B2)s

3+ (m2(k1+ k2)+m1k2 + B1B2)s
2 + (B2k1+ B1k2)s+ k1k2

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

(19) 

 Using transfer functions to describe the 
behavior of the dynamic system, the relationship 
between coefficients and physical parameters is 
complicated making the recovery of stiffness and 
damping coefficients of the system problematic. 
When the system is discretized and transfer 
functions are transformed into the z-domain, the 

relationship becomes more complicated. The 
physical parameters are combined into the model 
coefficients. Hence, state space representation is 
used to gain access to physical parameters of the 
system directly from the A, B and C matrices. 
Particularly, when the system to be studied is 
composed of multiple subsystems of different 
physical nature including mechanical, thermal, fluid, 
and electrical, the interior physical parameters are 
lumped together into transfer functions coefficients.  
Consequently the recovery of individual parameters 
is difficult if not impossible. Under these 
circumstances, the proposed parameter estimation 
approach is more beneficial as it permits direct 
access to interior model parameters of every 
subsystem. 
Defining the states of the system as displacement 

and velocity of the two masses  x =

!x1
!x2
x1
x2

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

and the 

measured output comprising displacement of each 

mass y =
x1
x2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, we obtain the state space 

representation of the system by transforming system 
of second order equations (18) to first order vector 
equation 
!x(t) = A

c
x(t)+ Bcu(t)

y(t) =C
c
x(t)

⎧
⎨
⎪

⎩⎪
 (20) 

where the continuous form of state equation 
representation matrices in (20) are given by 

Ac =

−
B1 + B2
m1

B2
m1

−
k1 + k2
m1

k2
m1

B2
m2

−
B2
m2

k2
m2

−
k2
m2

1 0 0 0
0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

Bc =

0
1
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,Cc =
0 0 1 0

0 0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (21) 

 
Discrete form of the system after adding uncertainty 
is given by 
x(k +1) = (A0 +ΔA)x(k)+ B0u(k)
y(k) = (C0 +ΔC)x(k)

⎧
⎨
⎪

⎩⎪
 (22) 

where x(k)=x(kTs) and discrete system nominal 
matrices A0, B0 and C0 are approximated using the 
first order finite derivative as 



Oussama Hattab Journal of Engineering Research and Application                               www.ijera.com            
ISSN : 2248-9622 Vol. 8, Issue 10 (Part -II) Oct 2018, pp 51-60 

	 www.ijera.com                                                    DOI: 10.9790/9622-0810025160                            57 | P a g e  

 

 

 

A0 = e
AcTs ≅ I +TsAc

=

−
B1 + B2
m1

Ts +1
B2
m1
Ts −

k1 + k2
m1

Ts
k2
m1
Ts

B2
m2

Ts −
B2
m2

Ts +1
k2
m2

Ts −
k2
m2

Ts

Ts 0 1 0

0 Ts 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

,

B0 = eAcλ dλ
0

Ts∫ Bc ≅

0
Ts
0
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

,C0 =
0 0 1 0

0 0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

(23) 

As detailed previously, relationships between state 
equation representation matrices and physical 
parameters are accessible. Recovery of physical 
parameters from matrices coefficient is not 
computationally consuming. 
The proposed method is validated through two case 
of studies applied to the double mass spring damper 
system described above. The same system 
arrangement as well as nominal values of physical 
parameters is used for both cases. In the first case, 
only spring uncertainties are applied to the system. 
In the second case, both spring and damper 
uncertainties are applied. Furthermore, in the latter 
case the uncertainties are time varying to represent a 
linear parameter varying dynamic system. 
Case 1: Spring Stiffness Uncertainty 
Let the double-mass-spring-damper system have the 
nominal parameters  
m1 = 5 kg, m2 = 3 kg, B1 = 5 Nm-1s, B2 = 5 Nm-1s, k1 
= 25 Nm-1, k2 = 100 Nm-1. 
The integration step size h is related to the sampling 

frequency as fs =
1
Ts
=1000Hz . The uncertainties for 

k1 and k2 are respectively Δk1 = 25Nm
−1,Δk2 = 50Nm

−1 . 
No uncertainty is given to the damping coefficients 
B1 and B2 for this example. These values of 
uncertainty are verified to be located in the permitted 
region meeting the validity conditions of the method 
(3). In this case, the exact uncertainty matrix is given 
by 

ΔA=

−
ΔB1 +ΔB2
m1

Ts
ΔB2
m1
Ts −

Δk1 +Δk2
m1

Ts
Δk2
m1
Ts

ΔB2
m2

Ts −
ΔB2
m2

Ts
Δk2
m2

Ts −
Δk2
m2

Ts

0 0 0 0
0 0s 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

     =

0 0 −0.015 0.01
0 0 0.01667 −0.01667
0 0 0 0
0 0s 0 0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 

(24) 

 
 The method is implemented within the 
Matlab software environment. Shown in Fig. 3 are 

the estimated outputs from the observer compared to 
measured outputs for initial condition problem of 
double mass spring damper system. The initial 
condition on state variables is defined as 

x(0) = x
init
=

0.01
0.01
0.01
0.01

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. The input is set to zero so 

that the system oscillates freely. 
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Figure 3. Asymptotic Observer Output Estimation 

 
 The implemented observer estimates the 
internal states of the system. The gain of the 
observer is chosen so that the poles of the observer 
are placed to the left of the poles of the continuous 
time nominal system to be fast enough to track the 
plant dynamics but to the right of noise range of 
frequencies so as to attenuate it. The continuous time 
nominal plant poles are [-1.48938 ± 7.28846 i, -
0.290431 ± 1.71413 i]. Based on these values, the 
observer poles are placed at [-45, -40, -35, -30] 
requiring the gain matrix 

Ke =

1.24028
-0.192081
0.0731667
-0.00744765

-0.192081
1.24028

-0.00744765
0.0731667

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.  

The observer converges asymptotically to the system 
states. 
 Once converged, the estimated state 
variables found by observer can be used to find the 
uncertain parameters of the system using the 
approach described in previous section (see (1)-
(17)). Gradient descent algorithm (see (16)) is 
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employed to the general form of the solution 
calculated analytically (see (13)). In this case, 17 
iterations are sufficient for the routine to converge 
and give a value of parameter Z that minimizes the 
fitness function. Thus, the method proves effective 
with regard to computation time required in this 
example. 
 The cost function at optimum is accurate to 
the order of 4 10-10. The difference between the final 
two values of parameter Z is 10-8 quantifying 
convergence of the results. The tangent plane to the 
graph of the cost function is locally horizontal at the 
region of the optimum. These gradient descent 
properties observed at convergence prove robustness 
of the result returned by the algorithm. Deviation 
from nominal matrix A0 is estimated as 

ΔAest =

2.49e−05 −1.66e−05 -0.0149 0.0099
-2.76e - 05 2.76e - 05 0.0166 -0.0166
-5.26e - 07 −5.62e−07 −9.27e−08 −1.01e−07
−2.19e−07 −2.34e−07 −3.87e−08 −4.25e−08

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 
 Physical parameters (stiffness of the springs 
k1 and k2 as well as both damping coefficients B1 
and B2) are calculated using estimated uncertainty 
matrix ΔAest  and equation (24) as shown in Table 1. 
Table 1. Estimated and actual values of uncertainty 

for case 1 
 Δk1  Δk2  ΔB1  ΔB2  
Actual 
Value 25 50 0 0 

Estimated 
Value 24.86 49.74 -0.04 -0.08 

Percent 
Error 0.56% 0.52% _ _ 

 
Case 2: Time Varying Uncertainty 
 To further validate the method, spring and 
damper uncertainties are hereafter step changing in 
time (see Table 2). The method is verified to track 
change of individual parameters of the system. 
Table 2. Time varying uncertainty applied for case 2 

 1-1000 samples  1001-2000 samples 2001-3000 samples 

U
nc

er
ta

in
ty

 A
pp

lie
d Δk1 = 25N /m  

Δk2 = 50N /m  

ΔB1 = 0Ns /m  

ΔB2 = 0Ns /m  

Δk1 = 0N /m  

Δk2 = 0N /m  

ΔB1 = −3Ns /m  

ΔB2 = −3Ns /m  

Δk1 = 50N /m  

Δk2 = −25N /m  

ΔB1 = 0Ns /m  

ΔB2 = 0Ns /m  

 
 

 
 For this purpose, the observer gain matrix 
(i.e., its poles) are maintained as in Case 1. An 
adaptive procedure is implemented that estimates 
system parameters and thus evaluates their change in 
time.  
 In this example, the adaptation is performed 
in batch mode meaning that estimation of parameters 
at time t takes into account the measurements from 

the interval [t-Δt, t]. Windowing the data in batch 
mode is used to isolate the system state before and 
after parameter changes so that after Δt, the 
estimation relies exclusively on measurements after 
the change in parameters occurs. In this example, a 
window of 250 back-samples is used to estimate 
parameters at each time to track changes in the 
system if any occur and neglect the original system 
state as the window advances and data is spanned. 
Shown in Fig. 4 are the estimated physical 
parameters as function of time. 
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Figure 4. Parameters Estimation Adaptation 

 
 The procedure estimates the changes in 
model parameters. When system parameters change, 
the method asymptotically tracks those variations. 
The exact change is found when window of data 
used for estimation completely contains the 
estimated states of the altered system. Tracking the 
mechanical characteristics of the system in this 
manner enables diagnostic and prognostic decisions. 
Summarized in Table 3 are the actual value, the 
estimated value at convergence and the 
corresponding percent error for each combination of 
uncertainty parameters applied to the system.  

 
Table 3. Estimated and actual values of uncertainty 

for case 2 
  Δk1  Δk2  ΔB1  ΔB2  

1st 
Combination 

Actual Value 25 50 0 0 

Estimated Value  24.86 49.74 -0.04 -0.08 

Percent Error 0.56% 0.52% _ _ 

2nd 
Combination 

Actual Value 0 0 -3 -3 

Estimated Value -0.12 -0.29 -2.99 -2.99 

Percent Error _ _ 0.33% 0.33% 

3rd 
Combination 

Actual Value 50 -25 0 0 

Estimated Value 49.9 -24.91 -0.08 0.04 

Percent Value 0.2% 0.36% _ _ 

 
 

V. CONCLUSIONS 
 Presented is a parameter estimation 
methodology formulated as an uncertain linear 
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discrete state space model having measured 
input/output data. The method utilizes observer 
theory to estimate system states and upon 
convergence employs a pseudo-inverse solution 
computationally solved via gradient-descent to 
estimate unknown system parameters. This “in-
series” approach solves the parameter estimation 
problem without increasing the observer order 
thereby reducing computation costs. Validity 
conditions on model parameters and states of the 
system have been also been developed. The 
implementation of this parameter estimation process 
is suitable for real-time computing and health 
monitoring applications.  Demonstration of the 
parameter estimation method is applied to a double-
mass-spring-damper system where individual 
parameters are changing in real-time. 
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