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ABSTRACT 
Traditional detection techniques use the signature of the tested application and compare it with already stored 

signatures of previously captured viruses to detect malicious applications. This method is widely used in static 

devices and now is being used even in mobile devices, mainly the ones that use the Android OS. The malware 

detection avoidance techniques have improved radically making the traditional techniques obsolete. To solve 

these problems, this paper proposes a new method, that will increase the detection of malicious applications on 

Android OS devices. This will happen by monitoring the system calls of the mobile device and detecting any 

anomaly in their usage. We present the mathemat ical foundation of our new method, which will be used to learn 

the normality of the usage of the system calls and their parametrizat ion. Finally, we present future challenges and 

steps. 
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I. INTRODUCTION 
In recent years the popularity of mobile 

devices has increased exponentially. Android is the 

“king”. He has over 2.8 billion active users. 

According to Stat counter [1] Android has the 

71.62% of the market share compared to 27.61% of 

IOS. 

 

 
Fig.1 Mobile OS Market Share April 2022 

This huge use of Android devices has 

attracted the attention of malware writers. Kaspersky 

had prevented 14,465,672 malware, adware, and 

riskware attacks on 2021 [2]. From those, 24604 

packages were mobile banking Trojans.  

 

Fig. 2 Number of attacks targeting users of Kaspersky 

mobile solution 2020-2021 

In the mobile world, there are different 

types of threats. Table 1 outlines some of the most 

important that are detected by Checkpoint [3] and 

Kaspersky [4]. 
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TABLE I 

Mobile OS threats 

   Source Kaspersky  Checkpoint 

 

 

Threat 

Data leakage Malicious Apps and 

websites 

Unsecured WIFI Mobile Ransomware 

Network spoofing Phishing 

Phishing Attacks Man in the middle 

Spyware Advanced Jailbreaking 

and rooting techniques 

Broken Cryptography Device OS exploits  

 

In the mobile world, the variety of cyber-

attacks is huge. One of them includes the “Agent 

Smith” campaign according to Checkpoint [3,5,6]. 

The apps from this campaign, have been 

downloaded to 25 million Android devices  and were 

distributed through third-party app stores by a 

Chinese group. About 300,000 devices were infected 

in the U.S. The malware was able to copy popular 

apps on the phone, including WhatsApp and the web 

browser Opera, inject its malicious code, and replace 

the original app with the infected version, using a 

vulnerability in the way Google apps are updated. 

The infected apps would work just fine, which hid  

the malware from users. U.S. Department of 

Homeland Security (DHS) and the Federal Bureau 

of Investigation (FBI) in  a joint report [7][8] detailed  

the dangers of two Trojan malware packages. It‟s 

believed to be the work of Hidden Cobra, also 

known as the Lazarus Group – threat actors who are 

connected to the North Korean government. Both 

malware strains – called Haardrain and Badcall– can 

install a remote access tool (RAT) payload on 

Androids. Windows systems are then drawn in as 

proxy servers, which disguise command and control 

communicat ions . 

As a way to mitigate these concerns, this paper 

does not add any technological layer in the mobile 

OS, nor it does not write any new security policy,  

but it presents a new method for detecting system 

usage anomalies. This method after observing the 

usage of the mobile device of d ifferent subjects, 

which here we will assume are normal users, forms a 

pattern of normality. Every action or event that is 

outside this pattern triggers a warning flag. The main  

technical element that we use to form the normal 

behavior, are the system calls of the mobile kernel.  

The paper is organized as follows. Sect ion 

II describes the Related work in this field, in section 

III, we present our solution, The section is divided 

into 3 subsections:  the malware used, the system 

calls (that is our main element of monitoring), and 

the mathematical foundation of our solution. The last 

section are the conclusions of this paper. 

II . RELATED WORK 

The scientific world has made a lot of effort  

to find solutions for the increasing of Android 

devices [9].  

Chen Da et al. [10] developed a new 

detection method of the malware that is based on 

system calls frequency. They use the characteristics 

of random forest algorithms and data that are gained 

previously to set up an optimal train ing model. Their 

method detected more than 93% of malwares.  

Bathia et al. [11] proposed an approach that 

uses dynamic analysis on Android applications. 

They built a system that collects the system call 

traces during their execution. This data is then 

analyzed to classify the different behaviors of 

Android applications.  

Vikas et al. [12] proposed a behavior-based 

approach to detect malicious nature of applications 

in Android. They used events and behavioral 

activities of an application to generate signature, 

which then is matched with signature database for 

detection. 

Yan et al. [13] has made a survey on 

dynamic mobile malware detection approaches. The 

authors have summarized a large number of criteria 

and performance evaluation measures of mobile 

malware detection. In the end, they figured out the 

open issues in this research field. 

Hou et al. [14] has presented a dynamic 

analysis method named Component Traversal, that 

automatically executes each routine of the Android 

apps. Based on the extracted system calls , they built 

the weighted graphs, and then these graphs are used 

by a deep learning framework to detect the Android 

malwares.  

Vidal [15] has as a main goal to prevent the 

installation of malicious software on the victim's 

system. So he monitored only the system calls 

during the boot process of the recently installed 

https://phys.org/tags/popular+apps/
https://phys.org/tags/popular+apps/
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applications. This reduces the information that will 

be used in the analysis. They used three processing 

layers: monitoring, analysis , and decision-making.  

III. SOLUTION 

A. Malware 

According to Cisco [16] malware is 

intrusive software that is designed to damage and 

destroy computers and computer systems. Malware 

is a contraction for “malicious software.” Examples 

of common malware include viruses, worms, Trojan  

viruses, spyware, adware, and ransomware.  

 
Fig. 3.  Types of Malware [17] 

 

In this article, we will focus more on 

mobile malware, although the solutions presented 

here can be exported to other computer 

environments.  

Android malware has evolved over the 

years. The first Android trojans were detected in 

2010 and were called DroidSMS, a Fraud SMS app 

that sent fraud SMS to a premium rate number, and 

FakePlayer, a Trojan that attempts to send a message 

without the user‟s approval to a present number. 

Also Fig. 4 presents a timeline of the Android 

evolution from 2010 to 2018 [18]. 

 

 
Fig. 4 Android Malware Evolution 

 

Today the number and the variety of 

malwares, as mentioned earlier, is huge. Their 

classification is not as simple. After reviewing 

different research, we decided to use [19] as a base 

for selecting the malware family to observe and 

study. The authors have tried to classify the 

malwares and group them by characteristics into 

families. Those are presented in fig 5. 

 

 
Fig.5 Malware families 

 

This picture shows the top 8 malware 

families. All have more than 2000 samples.. Some 

families to mention are: 

Banload is a family of Tro jans responsible 

for stealing banking credentials. Buzus is also an 

informat ion-stealing family and bifrose is a 

combination of backdoor and trojan allowing remote 

access to the attacker which is also used for 

informat ion stealing in most cases.  

Currently exist two methods for malware 

detection. First is static analysis. In this approach, 

the study of the malware is done without executing 

the code. Here the functionalities of the application 

are checked by disassembling and analysing the 

code. Some of the techniques used include de-

compilation, pattern matching, and decryption [20].  

The second technique is dynamic analysis. 

This method observes the behavior of the applicat ion 

while it is being executed. In this case, we have to be 

careful to run the app in a sandbox environment, in  

order not to infect any device [21]. The downside of 

the techniques is resource consumption. 

Nevertheless, this is the technique that is widely  

used among researchers, and this is the technique 

that we are going to use in this paper. So we will 

observe the behavior of the mobile device, by 

monitoring the usage of the system call for each user 

application.  

After studying the malware evolution and 

specifically the malware families and their 

characteristics we choose the following set of 

malware to be installed and monitored. 
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TABLE II 

Malwares  

Type Name 

Ransomware  Charger 

Jisut 

Simplocker 

Adware dowgin 

feiwo 

kemoge 

 

Charger was found embedded in an app called 

Energy Rescue. The infected app steals contacts and 

SMS messages from the user‟s device and asks for 

admin 

permissions.

 
Fig. 6 Charger malicious code 

 

The ransom demand for 0.2 Bitcoins. 

Charger checks the local settings of the device and 

does not run its malicious logic if the device is in  

Ukraine, Russia, or Belarus. 

The adware malware that we choose has the 

same basic characteristic, the one that tries to display 

ad banners during the execution of another program.  

For each of the malwares, we have selected different 

samples. These were collected by different 

antiviruses and antimalware on different devices. 

This will help us in having different infections of the 

phone to analyze and test our theory. 

B. System calls 

According to IBM [22] a system call is the 

programmatic way  in which a computer program 

requests a service from the kernel of the operating  

system it is executed on. A system call is a way for 

programs to interact  with the operating system.  

 
Fig. 7 System calls [23] 

 

When a user program needs someth ing, 

the operating system generates a system call. 

System call p rovides the services of the operating  

system to the user programs using the Application  

Program Interface (API). A ll programs needing  

resources must use system calls. Th is includes 

malicious programs, as their target is to use our 

resources for bad intentions. And that is why we 

choose to use the system calls as our main element  

for malware detection.[22] 

There are 5 different categories of system calls [9]: 

1. Process control. This type of calls deal 

with processes. Some of the services that 

are provided using these calls are: 

a. Create a p rocess  

b. Abort forcefully/normally a 

running process 

c. Allocate memory to a process. 

2. File management. These calls are used 

for file manipulation. The most 

important services are: 

a. Creat ing a file  

b. Reading a file  

c. Writing into a file  

3. Device management. These calls are 

responsible for device manipulation. 

Some of the services are: 

a.  reading/writing from/into 

device buffers 

b.  Obtain or modify a specific 

device attribute 

c. Detach a device from the 

processor during a system call 

4. Information management system call 

exists for transferring information  

between the user program and the 

operating system. Some of the services 

are: 

a. Obtain system time/date 

b. Configure system data 
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c. Set the characteristics of an 

operating system process 

5. Communicat ion. These calls are used for 

interprocess communicat ion. The 

services are : 

a. Create/terminate data 

connection 

b. Send messages 

c. Connect to a remote device via 

network 

 

As I mentioned earlier we have studied the 

characteristics of different malware families. There 

we saw that on the malware data set that we chose, 

tries to steal info or to change file parameters in 

order to get privileges. So, we decided that in this 

paper we are going to monitor 2 categories of system 

calls 

1. Communicat ion 

2. File management 

 

In the file management category, we have 

chosen to monitor and after analyse open (), read (), 

write (), close (). For communication category we 

have chosen we accept (), socket (), connect () 

system calls. 

TABLE III 

System Calls 

Types of system calls  System calls 

Communicat ion accept (),  

socket (),  

connect () 

File management open() 

read() 

write() 

close() 

 

C. Mathematical foundation of the solution 

Using the system calls needs a set of 

preconditions and assumptions . The first is that the 

system calls that we will monitor will behave in a 

normal environment. By normal we mean that they 

will be not part to race conditions, but they will run 

one at a time from beginning to the end. Also, the set 

of calls that we choose is assumed to be exhaustive 

for the purpose of the conclusions of this study. 

Based on these assumptions a normality pattern can 

be built by analyzing the past, in other words the 

system call log. Th is log file will be ext racted using 

„strace‟ Linux command that is integrated in a script, 

for automat ion purposes.  

Also, this model must take into 

consideration normal changes to the system that 

have a probability of being interpreted as abnormal 

behavior. This includes operating system updates, 

specific user software updates or just instant change 

of habits un user application usage. So, the system 

will be adaptive, and it will alert the user of any 

abnormal activity outside the normal behavior 

A call is by nature a discrete variable that 

can happen in an interval of time with an estimated 

probability.  For this, if we have just a single call, 

the probability distribution assigned can be a 

Bernoullian that assigns a 1 if the call happens with 

probability p and a 0 with probability 1-p i the call 

doesn‟t happen. Thus, since we have more than one 

possible call, we can treat them as a binomial 

distribution. So, if X is the number o f the calls, and 

the maximum number of expected call are n, the 

binomial distribution will be: 

X~ Bin(n, p)   where X=0,1,2,3………n     

where the probability is calculated as follow.  

P(X=x)= nCx * p
x
(1-p)

n-x 

If we defined in this way, we know that the 

probability that a call happens in a certain moment is 

almost zero. For that we have to consider the number 

of the calls in an interval of time. In other words, if 

we do the limit of the binomial distribution for p  

goes to zero and n goes to infinity, we will obtain a 

Poisson distribution. 

for  

where  is the expected value or the mean, i.e. the 

number of monitored calls in an interval o f time. 

This mathematical model fits wells for the 

independent events arrival model, can adequately fit  

the normal session traffic pattern. 
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The Poisson cumulative distribution function for the 

given values x and λ is  

     . 

In order to work for any distribution, 

without adapting the lambda  for the interval of 

time (or space) , the better switch should be with the 

Poisson process which is very similar.  

 

and the cumulative 

 

Also, from the mathematical point of view 

 is a Lebesgue measure, so we can benefit for its 

properties. The distance between two consecutive 

calls of a Po isson process on the real line will be an 

exponential random variable with parameter . 

This implies that the calls have the memory less 

property: the existence of one event existing (call) in  

a finite interval does not affect the probability 

(distribution) of other calls existing, but this property 

has no natural equivalence when the Poisson process 

is defined on a space with higher dimensions. 

The problem is to fix a threshold for which  

we a consistent number of calls to trigger the alarm 

so, if T is the threshold: 

 

or by using the complement probability, the number 

of false alarms that we should ignore should be: 

(1-  

So, to find the soil T of the real calls, its 

complement, false calls, we should do a goal 

optimization (fmincon function using MATLAB for 

instance). So, with and estimation of the other 

parameters, specially , and fixing the level of 

significance and by counting the number of calls, we 

can distinguish if there is a potential attach if the 

threshold is reached, or if it is a false alarm. 

There are other publications for Poisson 

Generalized linear models for counting the data and 

provide the best fit for the response data, the number 

of intrusions per organization [26]. 

Similar ideas have been implemented in the web of 

things (WoT) are inclined to suffer from internal 

attacks, which are from compromised nodes. [27] 

IV. CONCLUSION 

Mobile devices are widely used in today‟s 

society. As a result of this usage, it has attracted a lot 

of attention from malicious entities. A lot of effort is 

done, by the scientific community and the experts, in  

the prevention and detection of security issues 

present in the Android mobile OS.  

In this paper, we presented a new method to 

detect malware. We assumed that mobile devices 

would behave abnormally during the attack. To do 

that we presented a way to observe and structure the 

normal behavior of the device and call it normality. 

Knowing the normal behavior of the OS, we detect 

any strange or abnormal behavior and categorize it  

as an anomaly for further study. The implications of 

detecting anomalies are domain-specific . 

In future work, we p lan to validate this method with 

real-world data. 
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