
Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 43 | Page

System call anomaly detection

Marin Aranitasi*, Denis Veliu** Valma Prifti***, Anisa Gjini****
 * (Department Basics of In formatics, Polytechnic University of Tirana, Albania)

 ** (Department of Finance, Metropolitan University of Tirana)

***(Department of Production Management, Polytechnic University of Tirana)

****(Department Basics of Informatics, Polytechnic University of Tirana, Albania)

ABSTRACT
Traditional detection techniques use the signature of the tested application and compare it with already stored

signatures of previously captured viruses to detect malicious applications. This method is widely used in static

devices and now is being used even in mobile devices, mainly the ones that use the Android OS. The malware

detection avoidance techniques have improved radically making the traditional techniques obsolete. To solve

these problems, this paper proposes a new method, that will increase the detection of malicious applications on

Android OS devices. This will happen by monitoring the system calls of the mobile device and detecting any

anomaly in their usage. We present the mathemat ical foundation of our new method, which will be used to learn

the normality of the usage of the system calls and their parametrizat ion. Finally, we present future challenges and

steps.

Keywords – Malware, System call log, Applicat ion, Classificat ion

--- ----------

Date of Submission: 08-01-2024 Date of acceptance: 20-01-2024

--- ----------

I. INTRODUCTION
In recent years the popularity of mobile

devices has increased exponentially. Android is the

“king”. He has over 2.8 billion active users.

According to Stat counter [1] Android has the

71.62% of the market share compared to 27.61% of

IOS.

Fig.1 Mobile OS Market Share April 2022

This huge use of Android devices has

attracted the attention of malware writers. Kaspersky

had prevented 14,465,672 malware, adware, and

riskware attacks on 2021 [2]. From those, 24604

packages were mobile banking Trojans.

Fig. 2 Number of attacks targeting users of Kaspersky

mobile solution 2020-2021

In the mobile world, there are different

types of threats. Table 1 outlines some of the most

important that are detected by Checkpoint [3] and

Kaspersky [4].

RESEARCH ARTICLE OPEN ACCESS

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 44 | Page

TABLE I

Mobile OS threats

 Source Kaspersky Checkpoint

Threat

Data leakage Malicious Apps and

websites

Unsecured WIFI Mobile Ransomware

Network spoofing Phishing

Phishing Attacks Man in the middle

Spyware Advanced Jailbreaking

and rooting techniques

Broken Cryptography Device OS exploits

In the mobile world, the variety of cyber-

attacks is huge. One of them includes the “Agent

Smith” campaign according to Checkpoint [3,5,6].

The apps from this campaign, have been

downloaded to 25 million Android devices and were

distributed through third-party app stores by a

Chinese group. About 300,000 devices were infected

in the U.S. The malware was able to copy popular

apps on the phone, including WhatsApp and the web

browser Opera, inject its malicious code, and replace

the original app with the infected version, using a

vulnerability in the way Google apps are updated.

The infected apps would work just fine, which hid

the malware from users. U.S. Department of

Homeland Security (DHS) and the Federal Bureau

of Investigation (FBI) in a joint report [7][8] detailed

the dangers of two Trojan malware packages. It‟s

believed to be the work of Hidden Cobra, also

known as the Lazarus Group – threat actors who are

connected to the North Korean government. Both

malware strains – called Haardrain and Badcall– can

install a remote access tool (RAT) payload on

Androids. Windows systems are then drawn in as

proxy servers, which disguise command and control

communicat ions .

As a way to mitigate these concerns, this paper

does not add any technological layer in the mobile

OS, nor it does not write any new security policy,

but it presents a new method for detecting system

usage anomalies. This method after observing the

usage of the mobile device of d ifferent subjects,

which here we will assume are normal users, forms a

pattern of normality. Every action or event that is

outside this pattern triggers a warning flag. The main

technical element that we use to form the normal

behavior, are the system calls of the mobile kernel.

The paper is organized as follows. Sect ion

II describes the Related work in this field, in section

III, we present our solution, The section is divided

into 3 subsections: the malware used, the system

calls (that is our main element of monitoring), and

the mathematical foundation of our solution. The last

section are the conclusions of this paper.

II . RELATED WORK

The scientific world has made a lot of effort

to find solutions for the increasing of Android

devices [9].

Chen Da et al. [10] developed a new

detection method of the malware that is based on

system calls frequency. They use the characteristics

of random forest algorithms and data that are gained

previously to set up an optimal train ing model. Their

method detected more than 93% of malwares.

Bathia et al. [11] proposed an approach that

uses dynamic analysis on Android applications.

They built a system that collects the system call

traces during their execution. This data is then

analyzed to classify the different behaviors of

Android applications.

Vikas et al. [12] proposed a behavior-based

approach to detect malicious nature of applications

in Android. They used events and behavioral

activities of an application to generate signature,

which then is matched with signature database for

detection.

Yan et al. [13] has made a survey on

dynamic mobile malware detection approaches. The

authors have summarized a large number of criteria

and performance evaluation measures of mobile

malware detection. In the end, they figured out the

open issues in this research field.

Hou et al. [14] has presented a dynamic

analysis method named Component Traversal, that

automatically executes each routine of the Android

apps. Based on the extracted system calls , they built

the weighted graphs, and then these graphs are used

by a deep learning framework to detect the Android

malwares.

Vidal [15] has as a main goal to prevent the

installation of malicious software on the victim's

system. So he monitored only the system calls

during the boot process of the recently installed

https://phys.org/tags/popular+apps/
https://phys.org/tags/popular+apps/

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 45 | Page

applications. This reduces the information that will

be used in the analysis. They used three processing

layers: monitoring, analysis , and decision-making.

III. SOLUTION

A. Malware

According to Cisco [16] malware is

intrusive software that is designed to damage and

destroy computers and computer systems. Malware

is a contraction for “malicious software.” Examples

of common malware include viruses, worms, Trojan

viruses, spyware, adware, and ransomware.

Fig. 3. Types of Malware [17]

In this article, we will focus more on

mobile malware, although the solutions presented

here can be exported to other computer

environments.

Android malware has evolved over the

years. The first Android trojans were detected in

2010 and were called DroidSMS, a Fraud SMS app

that sent fraud SMS to a premium rate number, and

FakePlayer, a Trojan that attempts to send a message

without the user‟s approval to a present number.

Also Fig. 4 presents a timeline of the Android

evolution from 2010 to 2018 [18].

Fig. 4 Android Malware Evolution

Today the number and the variety of

malwares, as mentioned earlier, is huge. Their

classification is not as simple. After reviewing

different research, we decided to use [19] as a base

for selecting the malware family to observe and

study. The authors have tried to classify the

malwares and group them by characteristics into

families. Those are presented in fig 5.

Fig.5 Malware families

This picture shows the top 8 malware

families. All have more than 2000 samples.. Some

families to mention are:

Banload is a family of Tro jans responsible

for stealing banking credentials. Buzus is also an

informat ion-stealing family and bifrose is a

combination of backdoor and trojan allowing remote

access to the attacker which is also used for

informat ion stealing in most cases.

Currently exist two methods for malware

detection. First is static analysis. In this approach,

the study of the malware is done without executing

the code. Here the functionalities of the application

are checked by disassembling and analysing the

code. Some of the techniques used include de-

compilation, pattern matching, and decryption [20].

The second technique is dynamic analysis.

This method observes the behavior of the applicat ion

while it is being executed. In this case, we have to be

careful to run the app in a sandbox environment, in

order not to infect any device [21]. The downside of

the techniques is resource consumption.

Nevertheless, this is the technique that is widely

used among researchers, and this is the technique

that we are going to use in this paper. So we will

observe the behavior of the mobile device, by

monitoring the usage of the system call for each user

application.

After studying the malware evolution and

specifically the malware families and their

characteristics we choose the following set of

malware to be installed and monitored.

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 46 | Page

TABLE II

Malwares

Type Name

Ransomware Charger

Jisut

Simplocker

Adware dowgin

feiwo

kemoge

Charger was found embedded in an app called

Energy Rescue. The infected app steals contacts and

SMS messages from the user‟s device and asks for

admin

permissions.

Fig. 6 Charger malicious code

The ransom demand for 0.2 Bitcoins.

Charger checks the local settings of the device and

does not run its malicious logic if the device is in

Ukraine, Russia, or Belarus.

The adware malware that we choose has the

same basic characteristic, the one that tries to display

ad banners during the execution of another program.

For each of the malwares, we have selected different

samples. These were collected by different

antiviruses and antimalware on different devices.

This will help us in having different infections of the

phone to analyze and test our theory.

B. System calls

According to IBM [22] a system call is the

programmatic way in which a computer program

requests a service from the kernel of the operating

system it is executed on. A system call is a way for

programs to interact with the operating system.

Fig. 7 System calls [23]

When a user program needs someth ing,

the operating system generates a system call.

System call p rovides the services of the operating

system to the user programs using the Application

Program Interface (API). A ll programs needing

resources must use system calls. Th is includes

malicious programs, as their target is to use our

resources for bad intentions. And that is why we

choose to use the system calls as our main element

for malware detection.[22]

There are 5 different categories of system calls [9]:

1. Process control. This type of calls deal

with processes. Some of the services that

are provided using these calls are:

a. Create a p rocess

b. Abort forcefully/normally a

running process

c. Allocate memory to a process.

2. File management. These calls are used

for file manipulation. The most

important services are:

a. Creat ing a file

b. Reading a file

c. Writing into a file

3. Device management. These calls are

responsible for device manipulation.

Some of the services are:

a. reading/writing from/into

device buffers

b. Obtain or modify a specific

device attribute

c. Detach a device from the

processor during a system call

4. Information management system call

exists for transferring information

between the user program and the

operating system. Some of the services

are:

a. Obtain system time/date

b. Configure system data

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 47 | Page

c. Set the characteristics of an

operating system process

5. Communicat ion. These calls are used for

interprocess communicat ion. The

services are :

a. Create/terminate data

connection

b. Send messages

c. Connect to a remote device via

network

As I mentioned earlier we have studied the

characteristics of different malware families. There

we saw that on the malware data set that we chose,

tries to steal info or to change file parameters in

order to get privileges. So, we decided that in this

paper we are going to monitor 2 categories of system

calls

1. Communicat ion

2. File management

In the file management category, we have

chosen to monitor and after analyse open (), read (),

write (), close (). For communication category we

have chosen we accept (), socket (), connect ()

system calls.

TABLE III

System Calls

Types of system calls System calls

Communicat ion accept (),

socket (),

connect ()

File management open()

read()

write()

close()

C. Mathematical foundation of the solution

Using the system calls needs a set of

preconditions and assumptions . The first is that the

system calls that we will monitor will behave in a

normal environment. By normal we mean that they

will be not part to race conditions, but they will run

one at a time from beginning to the end. Also, the set

of calls that we choose is assumed to be exhaustive

for the purpose of the conclusions of this study.

Based on these assumptions a normality pattern can

be built by analyzing the past, in other words the

system call log. Th is log file will be ext racted using

„strace‟ Linux command that is integrated in a script,

for automat ion purposes.

Also, this model must take into

consideration normal changes to the system that

have a probability of being interpreted as abnormal

behavior. This includes operating system updates,

specific user software updates or just instant change

of habits un user application usage. So, the system

will be adaptive, and it will alert the user of any

abnormal activity outside the normal behavior

A call is by nature a discrete variable that

can happen in an interval of time with an estimated

probability. For this, if we have just a single call,

the probability distribution assigned can be a

Bernoullian that assigns a 1 if the call happens with

probability p and a 0 with probability 1-p i the call

doesn‟t happen. Thus, since we have more than one

possible call, we can treat them as a binomial

distribution. So, if X is the number o f the calls, and

the maximum number of expected call are n, the

binomial distribution will be:

X~ Bin(n, p) where X=0,1,2,3………n

where the probability is calculated as follow.

P(X=x)= nCx * p
x
(1-p)

n-x

If we defined in this way, we know that the

probability that a call happens in a certain moment is

almost zero. For that we have to consider the number

of the calls in an interval of time. In other words, if

we do the limit of the binomial distribution for p

goes to zero and n goes to infinity, we will obtain a

Poisson distribution.

for

where is the expected value or the mean, i.e. the

number of monitored calls in an interval o f time.

This mathematical model fits wells for the

independent events arrival model, can adequately fit

the normal session traffic pattern.

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 48 | Page

The Poisson cumulative distribution function for the

given values x and λ is

 .

In order to work for any distribution,

without adapting the lambda for the interval of

time (or space) , the better switch should be with the

Poisson process which is very similar.

and the cumulative

Also, from the mathematical point of view

 is a Lebesgue measure, so we can benefit for its

properties. The distance between two consecutive

calls of a Po isson process on the real line will be an

exponential random variable with parameter .

This implies that the calls have the memory less

property: the existence of one event existing (call) in

a finite interval does not affect the probability

(distribution) of other calls existing, but this property

has no natural equivalence when the Poisson process

is defined on a space with higher dimensions.

The problem is to fix a threshold for which

we a consistent number of calls to trigger the alarm

so, if T is the threshold:

or by using the complement probability, the number

of false alarms that we should ignore should be:

(1-

So, to find the soil T of the real calls, its

complement, false calls, we should do a goal

optimization (fmincon function using MATLAB for

instance). So, with and estimation of the other

parameters, specially , and fixing the level of

significance and by counting the number of calls, we

can distinguish if there is a potential attach if the

threshold is reached, or if it is a false alarm.

There are other publications for Poisson

Generalized linear models for counting the data and

provide the best fit for the response data, the number

of intrusions per organization [26].

Similar ideas have been implemented in the web of

things (WoT) are inclined to suffer from internal

attacks, which are from compromised nodes. [27]

IV. CONCLUSION

Mobile devices are widely used in today‟s

society. As a result of this usage, it has attracted a lot

of attention from malicious entities. A lot of effort is

done, by the scientific community and the experts, in

the prevention and detection of security issues

present in the Android mobile OS.

In this paper, we presented a new method to

detect malware. We assumed that mobile devices

would behave abnormally during the attack. To do

that we presented a way to observe and structure the

normal behavior of the device and call it normality.

Knowing the normal behavior of the OS, we detect

any strange or abnormal behavior and categorize it

as an anomaly for further study. The implications of

detecting anomalies are domain-specific .

In future work, we p lan to validate this method with

real-world data.

REFERENCES

[1] Statcounter https://gs.statcounter.com/os-

market-share/mobile-

tablet/worldwide/#monthly-201909-202204-bar
[2] Kaspersky Report https://securelist.com/it-

threat-evolution-q2-2021-mobile-
statistics/103636/

[3] Checkpoint https://www.checkpoint.com/cyber-
hub/threat-prevention/what-is-mobile-security/

[4] Kaspersky

https://www.kaspersky.com/resource-
center/threats/top-seven-mobile-security-threats-

smart-phones-tablets-and-mobile-internet-
devices-what-the-future-has-in-store .

[5] Cyber security hub
https://www.cshub.com/malware/articles/incide

nt-of-the-week-malware-infects-25m-android-
phones

https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201909-202204-bar
https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201909-202204-bar
https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201909-202204-bar
https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-mobile-security/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-mobile-security/
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store
https://www.cshub.com/malware/articles/incident-of-the-week-malware-infects-25m-android-phones
https://www.cshub.com/malware/articles/incident-of-the-week-malware-infects-25m-android-phones
https://www.cshub.com/malware/articles/incident-of-the-week-malware-infects-25m-android-phones

Marin Aranitasi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 1, January, 2024, pp 43-49

www.ijera.com DOI: 10.9790/9622-14014349 49 | Page

[6] Physio.org https://phys.org/news/2019-07-

malicious-apps-infect-million-android.html
[7] Cyber security hub

https://www.cshub.com/malware/news/incident-

of-the-week-rat-malware-strains-believed
[8] DHS and FBI report

https://www.cisa.gov/uscert/sites/default/files/pu
blications/MAR-10135536-F.pdf

[9] https://www.knowledgehut.com/blog/web-
development/system-calls-in-os

[10] Chen Da, Zhang Hongmei and Zhang Xiangli,

"Detection of Android malware security on
system calls," 2016 IEEE Advanced Information

Management, Communicates, Electronic and
Automation Control Conference (IMCEC),

2016, pp. 974-978, doi:
10.1109/IMCEC.2016.7867355.

[11] T. Bhatia and R. Kaushal, "Malware detection in

android based on dynamic analysis," 2017
International Conference on Cyber Security And

Protection Of Digital Services (Cyber Security),
2017, pp. 1-6, doi:

10.1109/CyberSecPODS.2017.8074847.
[12] Sihag, Vikas & Swami, Ashawani & Vardhan,

Manu & Singh, Pradeep. (2020). Signature
Based Malicious Behavior Detection in

Android. 10.1007/978-981-15-6648-6_20.

[13] Yan, P.; Yan, Z. A survey on dynamic mobile
malware detection. Softw. Qual. J. 2017, 26,

891–919
[14] S. Hou, A. Saas, L. Chen and Y. Ye,

"Deep4MalDroid: A Deep Learning Framework
for Android Malware Detection Based on Linux

Kernel System Call Graphs," 2016

IEEE/WIC/ACM International Conference on
Web Intelligence Workshops (WIW), 2016, pp.

104-111, doi: 10.1109/WIW.2016.040.
[15] Vidal, J.M., Monge, M.A.S., Villalba, L.J.G.: A

novel pattern recognition system for detecting
Android malware by analyzing suspicious boot

sequences. Knowl. Based Syst 150, 198–217

(2018)
[16] Cisco Systems inc

https://www.cisco.com/c/en/us/products/security
/advanced-malware-protection/what-is-

malware.html
[17] TechTarget

https://www.techtarget.com/searchsecurity/defin
ition/malware

[18] Dhalaria, M., Gondotra, E.,: Android Malware

Detection Techniques: A Literature Review.
Recent patent on Engineering, Vol 15, issue 2,

2021
[19] N. Aman, Y. Saleem, F. H. Abbasi, and F.

Shahzad, “A hybrid approach for malware
family classification,” in Applications and

Techniques in Information Security. ATIS 2017.

Communications in Computer and Information
Science, vol. 719, pp. 169–180, Springer,

Singapore, 2017

[20] Y. Chang, S. Wang, 'The Concept of Attack

Scenarios and its
Applications in Android Malware Detection', IEEE

18th

 International Conference on High Performance
Computing and Communications 2016, pp.

1485-1492.
[21] T. Isohara, K. Takemori, A. Kubota, 'Kernel-

based Behaviour Analysis for Android Malware
Detection', Seventh International Conference on

Computational Intelligence and Security', 2011,

pp. 1011-1015.
[22] IBM

https://www.geeksforgeeks.org/introduction-of-
system-call/

[23] S. De Capitani, S. Foresti, and P. Samarati,
"Data Security Issues in Cloud Scenarios", In

Proceedings of the 11th International

Conference on Information Systems Security,
2015.

[24] M. Aranitasi, M. Neovius, ―Anomaly
Detection in Cloud Based Application using

System Calls‖ CLOUD COMPUTING, The
Eighth International Conference on Cloud

Computing, GRIDs, and Virtualization, 2017
[25] M. Aranitasi, B. Byholm and M. Neovius,

"Quantifying Uncertainty for Preemptive

Resource Provisioning in the Cloud," 2017 28th
International Workshop on Database and Expert

Systems Applications (DEXA), 2017, pp. 127-
131, doi: 10.1109/DEXA.2017.42.

[26] Nandi O. Leslie, Richard E. Harang, Lawrence
P. Knachel, and Alexander Kott. “Statistical

Models for the Number of Successful Cyber

Intrusions” U.S. Army Research Laboratory,
Adelphi Laboratory Center

[27] Weidong Fang, Wuxiong Zhang, Wei Chen, Li
Yi and Weiwei Gao. 2021. PDTM: Poisson

Distribution-based Trust Model for Web of
Things. In Companion Proceedings of the Web

Conference 2021 (WWW '21 Companion),

April 19-23, 2021, Ljubljana, Slovenia. ACM,
New York, NY, USA, 7 Pages.

https://doi.org/10.1145/3442442.3451144
[28] Checkpoint

https://blog.checkpoint.com/2017/01/24/charger
-malware/

https://phys.org/news/2019-07-malicious-apps-infect-million-android.html
https://phys.org/news/2019-07-malicious-apps-infect-million-android.html
https://www.cshub.com/malware/news/incident-of-the-week-rat-malware-strains-believed
https://www.cshub.com/malware/news/incident-of-the-week-rat-malware-strains-believed
https://www.cisa.gov/uscert/sites/default/files/publications/MAR-10135536-F.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/MAR-10135536-F.pdf
https://www.knowledgehut.com/blog/web-development/system-calls-in-os
https://www.knowledgehut.com/blog/web-development/system-calls-in-os
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.techtarget.com/searchsecurity/definition/malware
https://www.techtarget.com/searchsecurity/definition/malware
https://www.geeksforgeeks.org/introduction-of-system-call/
https://www.geeksforgeeks.org/introduction-of-system-call/
https://blog.checkpoint.com/2017/01/24/charger-malware/
https://blog.checkpoint.com/2017/01/24/charger-malware/

