
Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 32 | Page

Some Aspects of Implementation of Soft Transient Free

Switching in Embedded Systems

Ambalal V. Patel
Flight Control Laws (CLAW) Directorate,

 Aeronautical Development Agency

(Ministry of Defence, Govt. of India),

P.B. 1718, Vimanapura Post, Bangalore – 560017, India

ABSTRACT

The soft faders or Transient Free SWitches (TFSW) are used for gradual transition between signals (instead of

instantaneous transition) over a finite time on occurrence of the specific event or setting of a defined discrete.

Thus, it helps in eliminating transients in the final outputs and in turn maintaining the safety and performance of

the overall system. Implementation of the fader itself involves other levels of considerations like rate of

computation, maintaining the memory requirements and overall execution time of the processor to cater for real

time computations of the embedded systems of safety critical nature like fly-by-wire flight control system.

Various types of proposed TFSWs are available in the literature. This article presents some implementation

aspects of the TFSW which include some guidelines for optimizing the implementation in order to deal with

execution time and memory requirements. The implementation of the TFSWs with the help of MATLAB *.m

file in function forms are provided along with this article. The details are provided here based on the experience

gained over a period of time while working on safety critical embedded systems.

Keywords - Fader, Transient Free Switch, data acquisition, algorithms, embedded systems, requirements

Date of Submission: 26-08-2023 Date of acceptance: 07-09-2023

--- ----------

I. INTRODUCTION
Various types of soft elements are used in

the embedded systems, especially softwares therein.

The ‘soft elements’ here broadly referred to several

of the dynamic elements like filters, faders or

Transient Free Switches (TFSW), rate limiters etc.

are used in the soft form (as part of the

computational algorithms within the software)

within the embedded systems for various

applications [6-7]. The soft faders or transient free

switches are used for gradual transition between

signals (instead of instantaneous transition) over a

finite time on occurrence of the specific event or

setting of a defined discrete. Thus, it helps in

eliminating the unwanted effects, especially

transients in the final outputs or commands and in

turn maintaining the safety and performance of the

system. Implementation of the fader itself involves

other levels of considerations like rate of

computation, maintaining the memory requirements

and overall execution time of the processor to cater

for real time computations of the embedded systems

of safety critical nature like fly-by-wire flight

control system. There are examples where the

implementation of the faders has affected the

software functioning and the updates required [6].

Significant efforts have been spent on development

of various ‘soft elements’ of embedded systems

including their testing and verification [1-5]. Various

types of proposed TFSWs and their comparative

analysis are detailed in [7].

This article presents some implementation

aspects of the TFSW which include some guidelines

for optimizing the implementation in order to deal

with execution time and memory requirements. The

implementation of the TFSWs with the help of

MATLAB *.m script file in function forms are

provided along with this article. The details are

provided here based on the experience gained over a

period of time while working on safety critical

embedded systems.

The article is organized as given below.

After introduction, Section 2 presents brief review of

TFSWs including their types. Section 3 presents

implementation aspects of TFSW which include

optimization of number of independent TFSWs in

order to deal with execution time. The section also

deals with some aspects of combined event

dependent TFSW. These guidelines have been

arrived at based on the experiences gained over a

RESEARCH ARTICLE OPEN ACCESS

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 33 | Page

period of time while working on the design and

development of the safety critical fly-by-wire flight

control system. Section 4 deals implementation of

the TFSWs in MATLAB *.m function files and

relevant results demonstrating their functionality.

Section 5 concludes the paper.

II. TRANSIENT FREE SWITCH (TFSW)

OR SOFT FADER AND THEIR TYPES
The soft faders or transient free switches are

used for gradual transition between signals (instead

of instantaneous transition) over a finite time on

occurrence of the specific event or setting of defined

discrete. Thus, it helps in eliminating the unwanted

effects, especially transients in the final outputs or

commands and in turn maintaining the safety and

performance. Implementation of the fader itself

involves other levels of considerations like rate of

computation, maintaining the memory requirements

and overall execution time of the processor to cater

for real time computations of the embedded systems

of safety critical nature like fly-by-wire flight

control system. Various types of TFSWs as listed

below have been proposed in Ref. [7], including the

feature of termination of operation at either Less

than or Equal to Fader Time (LEFT):

1) Direct Fixed Error Reducing Fader (DFERFD):

A direct fixed error (between required and

selected output at the instant of Event toggle)

per frame (or sampling instant) is reduced from

the required signal to reach the desired output

smoothly over a specified fader-time.

2) Direct Variable Error Reducing Fader

(DVERFD): A direct variable error (between

required and selected output at the instant of

Event toggle) per frame (or sampling instant)

recomputed based on the number of remaining

frame counts (or remaining fader-time) is

reduced from the required signal to reach the

desired output smoothly over a specified fader-

time.

3) Scaled Error Reducing Fader (SERFD): A

normalized scale factor used for reducing the

past signal while increasing the required signal

to gradually bring into the selected output over

a specified fader-time.

The TFSW of such type of feature can be

identified by the nomenclature: TFSW_LEFT, where

TFSW could be ‘DFERFD’, ‘DVERFD’, ‘SERFD’.

Thus, they could be identified as ‘DFERFD_LEFT’,

‘DVERFD_LEFT’, ‘SERFD_LEFT’. The LEFT

feature is invoked under the following conditions

satisfied together:

1) Fader computation is progressing (event toggle

detected and thereafter computations

continued) but not completed (before fader

time completion which can be found out from

the frame counter), and

2) Change in the sign of the error between the past

and the present samples is detected. Here error

is referred to the difference between the

required signal at that instant and selected

output of the corresponding past instant.

III. IMPLEMENTATION ASPECTS OF

TFSW
With available hardware architecture of the

embedded system, the increase in software

functionality leads to the constraints on the

execution time, i.e., the specific computations of the

algorithms should be completed within the specified

time frame. In case of safety critical fly-by-wire

system for the high-performance combat aircraft,

these constraints play a critical role. The onboard

software has to play a crucial role of sending the

data on the multiple data recording devices while

doing the complex and voluminous computations in

real time involving several tasks [5]. This section

presents a few experiences gained over a period of

time and lessons learnt during the design,

development and evaluation of fly-by-wire flight

control system of high-performance fighter aircraft

[1-7]. These examples are based on the black box

testing (Hardware in loop testing and analysis):

3.1 Optimization of Number of Independent

TFSWs

In the developed on-board real time

software has got one independent TFSW for each

event at each location in the computational

algorithms where reconfiguration takes place. Thus,

if there are N number of events, and each event deals

with M number of signals at multiple places in the

entire application layer (algorithms), then it requires

implementation of MxN number of TFSWs. As an

example, for N=50 events with fading feature and

each event were used at 10 different locations in the

computational algorithms for reconfiguration. Then

there were total 50*10 = 500 faders had been

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 34 | Page

implemented. It was leading to exceed the execution

time. Subsequently, with optimization of some other

parts of algorithm implementation and design

changes, made to meet the execution time

requirements.

It appears that there could be a way to

optimize the number TFSWs in the entire set of

algorithms / part of the software. Ideally number of

TFSWs should be same as that of the number of

events / discretes by making the vector of elements

of all TFSWs. The number of TFSW should not be

increased depending upon the multi-location use.

The vector of the elements of TFSW could be a set

of inputs (source signals, destination signals),

outputs (selected and required signals), intermediate

signals (incremental delta etc.) for each event as

shown in set of Equations 1 to 3. For the ease of

legibility, the symbols used in the Equations have

been described therein. Thus, the correspondence

between the mathematical symbols used in the

Equation and those used in the MATLAB *.m file

could be easily established. It would help in

dynamically updating these vectors every frame and

then distribution of the elements at each location for

final faded output computations for each TFSW. The

past states of the intermediate parameters (which are

required to be stored during TFSW operation is ON)

of the TFSWs would reduce from N to 1 for each

event. Then it would probably eliminate parts of

repetitive computations of TFSWs, and thus it would

aid in reducing the memory requirement as well as

accelerating the execution time. However, efficacy

of such scheme needs to be assessed after actual

implementation in the full-fledged application layer

in end-to-end manner.

 It may be noted that the TFSWs

implemented in MATLAB (*.m) files provided

along with article has got the feature to deal with the

proposed concept of vector of inputs, outputs, and

intermediate elements for each specific event, a step

towards the ‘Optimization of Number of

Independent TFSWs’.

3.2 Combined Event Dependent TFSW

A TFSW gets triggered due to setting of a

discrete which in short here could be referred to

‘fader-discrete’. This fader-discrete could be a

function of combinations of different events

connected with logical AND / OR operations and

they have got different fade time. This section

presents the aspects of such multiple or combined

events / discretes dependent TFSWs, where the

events are triggered sequentially or simultaneously.

3.2.1 Sequential Event Trigger Dependent

TFSW

 A situation wherein one event triggered

the TFSW operation and in-between duration (before

completing the fader operation), another event

triggers the same TFSW, in short during TFSW

operation ON, either multiple events or same events

keep toggling multiple times. The situation is finally

dealt through a toggle of a single fader-discrete.

Therefore, the TFSWs described in [7] takes care of

such situation. Figure 5 shows the results of such a

situation wherein the fader-discrete (Event) is

toggled from 1 to 0 in-between when the TFSW

operation was ON based on the initial transition

from 0 to 1. The results show that the TFSW took

care to select appropriate Fader Time and smoothly

transit the output to the required signal back.

3.2.2 Parallel or Simultaneous Event Trigger

Dependent TFSW

 A one TFSW could be triggered due to

setting of different events which have got different

fade time. If simultaneously such events are toggled

then selecting the correct fader time is very

important. It could be any of the followings and

depends on the design criticality, computational

time, and implementation complexities:

1) Maximum of the fader time of the events

that are toggled / set simultaneously: It

would be simple implementation by

keeping a single or few time constants

for fader.,

2) Fader time of the event which triggered

first during the combined effects. It

would be slightly complex than the prior

situation (use of maximum fader time).

By using the edge trigger or level trigger

concept, the status of final fader-discrete

along with the selected fader time can be

arrived at it.

Anyhow, selection of specific fader time

and resultant fader-discrete computation are an

external part of the TFSW, and therefore suitable

care to be taken for that part of the implementation,

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 35 | Page

separately. The situation is finally dealt through a

toggle of a single fader-discrete. Therefore, the

TFSWs described in [7] takes care of such situation.

IV. IMPLEMENTATION OF TFSW IN

MATLAB *.M FILES AND RESULTS
3.2 Implementation with MATLAB (*.m) files

Figures 1, 2, and 3 present the MATLAB

script files (*.m file) in function form for the

DFERFD, DVERFD, and SERFD faders,

respectively in unified form, i.e., they can used for

with and without LEFT feature by setting the input

discrete LEFT_DI to True and False, respectively.

Detailed description and dimensions of the inputs

and outputs signals for each fader / function are

given in the beginning of the MATALB function

files. User may prepare and provision for the set or

vector of inputs and outputs signals in the external

interface file (usually referred to driver file), and

then use these function-form files like a library

module. It may be noted that the TFSWs

implemented in MATLAB (*.m) files provided

along with article has got the feature to deal with the

proposed concept of vector of inputs, outputs, and

intermediate elements for each specific event, step

towards the ‘Optimization of Number of

Independent TFSWs’.

3.3 Results

Results of the TFSWs are shown in Figures

4 and 5. These Figures include plots of Event,

Required, Selected, Current Signals, and

Superimposed Outputs (Selected Signals) of TFSWs

separately for with and without LEFT for ease of

comparison and understanding. The results here

show the functionality of the TFSWs implemented

in MATLAB ‘*.m’ file. Figure 6 prominently

indicates the efficacy of the functionality of LEFT

feature, i.e., feature of termination of operation at

either Less than or Equal to Fader Time, if selected

signal is reached to the required signal before

completion of pre-fixed time of the TFSW.

V. CONCLUSION
Some implementation aspects of the

TFSWs including some guidelines for optimizing the

implementation in order to deal with execution time

and memory requirements are presented in this

article. The implementation of the TFSWs with the

help of MATLAB *.m script file in function forms

are provided along with this article which may be

used as library functions. The details are provided

here based on the experience gained over a period of

time while working on safety critical embedded

systems. These guidelines are expected to be

applicable for most of the embedded systems and

may get enriched further by the experiences and

lessons learnt from other systems.

Acknowledgements
The author is grateful to the Aeronautical

Development Agency (ADA), Bangalore, India for

permitting to publish this work.

REFERENCES

[1] Ambalal V. Patel, Vijay V. Patel, Girish S.

Deodhare, and Shyam Chetty, “Clearance of

Flight-Control-System Software with

Hardware-in-Loop Test Platform”, AIAA

Journal of Aircraft, Vol. 51, No. 3, May-June

2014, DOI 10.2514/1.C032404.

[2] Ambalal V. Patel, Vijay V. Patel, Girish

Deodhare and Shyam Chetty, “Flight Control

System clearance using dynamic tests at

Hardware-In-Loop Test Platform”,

Proceedings of International Conference on

Avionics Systems (ICAS) 2008, held at RCI,

Hyderabad, during February 22-23, 2008.

[3] Guruganesh R., Shyam Chetty, Ambalal V.

Patel and Girish Deodhare, “Clearance of

LCA Flight Control Laws on Various Ground

Test Simulation Platforms”, Proceedings of

International Conference on Avionics

Systems (ICAS) 2008, held at RCI,

Hyderabad, during February 22-23, 2008.

[4] Ambalal V. Patel, Vijay V. Patel, Girish

Deodhare and Shyam Chetty, “Flight Control

System clearance using static tests at Iron

Bird”, Proceedings AIAA Guidance,

Navigation and Control (GNC) conference

and exhibit, paper No. 6203 in session No.

31-GNC-14, held at Keystone, Colorado,

USA during August 21-24, 2006.

[5] Ambalal V. Patel, “Functional Level Data

Acquisition Requirement Specification

Formulation for Embedded Systems:

Challenges, Experiences and Guidelines”,

International Journal of Engineering Research

and Application (IJERA), ISSN: 2248-9622,

Vol. 7, Issue 10, (Part -5) October 2017,

pp.75-84, DOI: 10.9790/9622-0710057584

[6] Yogananda Jeppu, “Flight Control Software:

Mistakes made and Lessons learnt”, IEEE

Software, PP 67-73, May/June 2013

[7] Ambalal V. Patel, “Various Types of Soft

Transient Free Switching in Embedded

Systems” International Journal of Engineering

Applications and Research, ISSN: 2248-9622,

Volume 13, Issue 08, August 2023, PP 01-17.

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 36 | Page

       

,1 ,1
1 1

,2 ,22 2

; ; ; ; Re

, ,

, ,1 1
1 1

sc sd sreq
i i iev

sc sdev i i

V SC SD S qi i isc sdev i j i ji i

ev sc sdn n i m i mnx nx i im x m xi i

E









     

      
      
      
      
      
      
      
      
                

M MM M

M M M M

 

 

,1

,2

,

,
1

,1
1 1

,2 2 2

 ; ;

,

n
, 1

1 i 1

sreq
i

sreqi j

sreqi mi m xi

sevt
i SC SD

sevt SC SDi

Sevt SCEV SDEVi sevt SC Si j i

SCsevt ni m mi im xi

  
  
   
  

  




 
 
 
 
 
 
 
 
 
  

   
   
   
   
   
   
   
   
      

M

M

M M M

MM

;

n
1

i 1

1, 2, , for Event number

1, 2, , for Fader Number of th Event

Number of Events or Discretes

 Vector of events:

 Ve

Di

SDn mi

i n

j m ii

n

EV evi

  
  
   
  












 

 
 
 
 
 
 
 
 
  

M

L

L

 

ctor of Fader Value or Fader Weight for all events:

0, 1 Fader value for th Event (alway between 0 and 1)

 An integer indicating the number of signals for th Fader

Curren,

i

ii

m ii

sci j



 



 t value of the signal of th Fader of th Event

Destination value of the signal of th Fader of th Event,

Vector of Current Values of the Signals () of all Faders for th Event,

Vector

j i

sd j ii j

SC sc ii i j

SDi





 of Destination Values of the Signals () of all Faders for th Event,

Re Vector of Required Values of the Signals () of all Faders for th Event.,

They are selected either from any of the

sd ii j

S q sreq ii i j

SC



, r in-between depending upon the

particular Event status

Vector of Values of the Signals () at the instant of th Event toggle for all Faders.,

Vector of Current Values of the Si

SD oi i

Sevt sevt ii i j

SCEV





 

gnals () of all Faders for all Events,

Vector of Destination Values of the Signals () of all Faders for all Events,

1, , ,

Output of the th Fader of th Event,

sci j

SDEV sdi j

y sc sdi j i j i i j i

y j ii j

 



    



Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 37 | Page

Set of Equations (1)

     

 

,1 ,1 ,1

,2 ,2 ,2

1

, , ,

, , ,
1 1 1

1

y sc sd
i i i

y sc sd
i i i

Y SC SDi i i i iy sc sdi j i j i j

y sc sdi m i m i mi i im x m x m xi i i
m xi

  

 
 
 

        

 
      
      
      
      
      
      
      
      
                  

M M M

M M M

 

 

 

 

 

 

1

1

1
1 1 1 11

12 2 2 2 2

1

n
n11

1
i 1

i 1

i i

Y SC SDi i i i i

SC SDY

Y SC SD

YEV SC
Y SC SDi i i i i

Yn SC SDm n n n ni mi



 

 

 

 

 
  

    
            
  

 

    

   

   

  

   

    


  
  
  
  
  
  
  
  
      

M M

M M

 1EV SDEV    

YEV is a column vector of size (Rows x Columns) = RYEV x CYEV =  n
1

i 1
mi 



Where
n

 and 1
i 1

R m CiYEV YEV 


Nf = Number of Faders

Thus, ideally the numbers of faders required to implemented should not be more than the number of Events

used. If some events are not used for any fading of the signals while reconfiguring the computations, then the

number of faders required would be less than the number of Events used. This, at the most Number of Faders

(Nf) = Number of Unique Events or Discretes used (n).

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 38 | Page

 

 

 

 

1,1

1,2

1,

1,
1

1
1 1 1 11

12 2 2 2 2

1

n
n11

1
i 1

i 1

y

y

y
j

y
m

SC SDY

Y SC SD

YEV
Y SC SDi i i i i

Yn SC SDm n n n ni mi

 

 

 

 
  

    
            
  

   

   

  

   

    











  
  
  
  
  
  
  
  
      

M

M

M M

M M

2,1

2,2

2,

2,
2

,1

,2

,

,

,1

,2

,

,

y

y

y
j

y
m

y
i

y
i

yi j

yi mi

y
n

y
n

yn j

yn mn

 
 
 
 
 
 
  
  
  
  
 
  
  
  
  
 
 
 
 
   


 
 
 
 
 
 
 
 
 
  


 
 
 
 
 
 
 
 
   


M

M

M

M

M

M

M

M

 

1,1 1,1

1,2 1,2

1
1 1

1, 1,

1, 1,
1 1

2,1

2,2

2
2,

2,
2

sc sd

sc sd

sc sd
j j

sc sd
m m

sc

sc

sc
j

sc
m

 



   





    
    
    
    
    
    
    
    
    
        

 
 
 
 
 

  
  
  
  
   

























M M

M M

M

M

 

 

2,1

2,2

1
2

2,

2,
2

,1 ,1

,2 ,2

1

, ,

, ,

,

sd

sd

sd
j

sd
m

sc sd
i i

sc sd
i i

i isc sdi j i j

sc sdi m i mi i

sc
n



 

  

   

  
  
  
  
  
  
  
  
  

    

    
    
    
    
    
    
    
    
    
        

M

M

M

M M

M M

M

 

1 ,1

,2 ,2

1

, ,

, ,

sd
n

sc sd
n n

n n
sc sdn j n j

sc sdn m n mn n

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
     
     
     
     
     
     
     
          

M M

M M

n
1

i 1
mi

  
  
   
  







Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 39 | Page

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 40 | Page

Figure 1: DFERFD_UNIFIED TFSW function *.m file (Direct Fixed Error Reducing Fader)

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 41 | Page

Figure 2: DVERFD_UNIFIED TFSW function *.m file (Direct Variable Error Reducing Fader)

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 42 | Page

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 43 | Page

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 44 | Page

Ambalal V. Patel. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 32-45

www.ijera.com DOI: 10.9790/9622-13093245 45 | Page

