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ABSTRACT 
The method applied lies in the study of the symmetries or groups of Lie of the differential equations. We observe 

the form of the drag coefficient as a gradient of a logarithmic potential as the transcendental manifestation of the 

symmetries of the Kolmogorov-f equation. 

Said logarithmic potential is omni-present in the very diverse natural phenomena, an affirmation that is verified 

through the method of Pearson distributions. In particular, we highlight its presence in what we have called the 

Kolmogorov potential well. The drag coefficient also participates in the potentials, and in the "quanta" of the 

eigenvalues, of the stationary Schrödinger equation. The solution of the inverse problem for the drag coefficient 

allows to introduce the law of supply and demand in the Black-Scholes equation for derivatives. 

Keywords- Drag coefficient, Lie Symmetries Groups, Kolmogorov Equations, Schrödinger Equation, Fokker-

Planck Equation, Black-Scholes Equation. 
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I. INTRODUCTION 

This article is guided by the Principle of 

Duality, which we place somewhere in the middle, 

although far away, between today and about 3000 

years ago. Principle that can be observed in 

historical monuments and in the myths of the native 

peoples of present-day Mesoamerica, such as Tlaloc 

as God of the East, symbolizing the water that falls 

as rain and in red color, having as a counterpart the 

Goddess Coatlicue, in the West, like running water 

and with the color white as its chromatic. Principle, 

which we receive again from Europe in Hegel's 

Dialectic of the 19th century. Principle, which 

reappears in the Helmholtz Theorem when 

observing the field lines as open or closed, and 

which allows us to characterize the drag coefficient 

of "potential" type in the case of the Langevin field. 

Principle, which also leads us to random or 

deterministic variables. When considering the 

diffusion processes, we again find the duality in a 

complementary way between the contribution of the 

Probability Theory and that of the partial differential 

equations of parabolic type. 

We remember that the inverse problems 

have their main origin in the study of the 

Schrödinger equation, in dispersion problems. This 

equation depends on the interaction potential, and in 

principle, if the functional form of the potential is 

known, it’s possible to solve the problem of finding 

the eigenvalues and the corresponding 

eigenfunctions, which is known as the direct spectral 

problem (the quantization as an eigenvalues 

problem, [1]). If waves are made to impact on a 

neighborhood where this potential operates, 

scattered and reflected waves are produced; and if, 

in addition, the reflection coefficient is defined as 

the quotient between the amplitude of the reflected 

wave by the incident one, it is found that this is 

determined by the phase shifts; and from which one 

wants to find the functional form of the potential or 

the properties that lead to its determination. This is 

the inverse scattering problem. 

On the other hand, in the mathematical 

field, one wants to determine the potential of the 

spectral function, which has been known as the 

inverse Sturm-Liouville problem or inverse spectral 

problem. The inverse scattering problem in physics 

turns out to be related to the inverse Sturm-Liouville 

problem in mathematics. In both one and the other, 

the potential appears as a coefficient in the 

differential equation, so it becomes generic to call 

the inverse problem, obtaining the coefficients of the 

various differential equations. 

Kinetic processes are a natural 

consequence of the presence of imbalances in a 

medium and tend to restore equilibrium. In a 

diffusion process, the flow density is considered and 

we represent it by the vector field of components 

proportional and opposite to the transversal gradient, 

to which we can add the drag components, then we 

consider the conservation of the probability mass in 
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its differential form as Euler's equation. Thus arises 

the Kolmogorov-f (forward) equation for the 

probability density that combines two coefficients: 

drag (convection, advection, transfer or drift) and 

diffusion. These coefficients, in turn, are the 

memory coefficients relative to the same probability 

density and represent the average values of the 

displacements per unit of time and of the quadratic 

displacements per unit of time, the first linked to 

macroscopic phenomena and faster effects, and the 

second, to the microscopic and slower effects. 

Diffusion processes can be imagined as a mirror 

image of the Kolmogorov-f equation. In 2001 we 

published about the solution to the inverse problem 

of the aforementioned equation, [4], [2], [3]. 

On the other hand, many empirical 

phenomena can be modeled through homogeneous 

stochastic Markov processes, with the property of 

being unigenerational and governed by the evolution 

equation known as Chapman-Kolmogorov, which 

presents the notable property of the semigroup. 

Through this semigroup, a partial differential 

equation known in mathematical circles as 

Kolmogorov-f (or Fokker-Planck in physicists) can 

be formed. And it contains three main ingredients, 

which we call: the diffusive, the drag and the 

reactive. In this way it is observed that mathematical 

models frequently lead to the description through 

differential equations and in particular, of partial 

differential equations. 

The applied method is based on the study 

of the symmetries present in nature and reflected in 

its laws and therefore, in its differential equations. 

The method is known as Lie groups. We will make a 

summary exposition of this mentioned method that 

can be consulted, in extenso, in the references, [5], 

[6]. 

The symmetric structure together with a 

local differentiable structure, allow to describe in a 

general way and with the characteristic of 

universality, the various objects, and their evolution, 

as they participate in mathematical modeling. The 

most important characteristic is found in the 

correspondence between vector fields and 

symmetries, called uniparametric transformation 

groups, each group has a vector field associated as 

its infinitesimal generator; and although the 

elements of the group behave in a non-linear way, 

their generators do so in a linear way. Differential 

equations can be seen as surfaces in higher 

dimensional spaces and infinitesimal generators, and 

other objects, flow on them describing their 

evolution. A differential equation rises to these 

hyperspaces and produces a transformed equation, 

which leads to a system of differential equations that 

carry the components of the infinitesimal generator 

and the coefficients of the partial differential 

equation under study; by solving this system, we 

find the functional relationships for the coefficients 

and the relationships that classify them. 

In particular, when considering the 

coefficient of the displacements per unit of time, it 

is observed that it is a vector field, so its 

determination refers us to its divergence and its 

rotational, as expressed by the Helmholtz theorem, 

[7]. 

The study of symmetries for the 

Kolmogorov-f (or Fokker-Planck) produced, as one 

of the possible results for the drag coefficient, its 

logarithmic form, with two possible signs; or as a 

gradient of a logarithm; and we call this potential 

Kolmogorov. 

If the drag coefficient, in its vector field 

form, has an irrotational characteristic, so it’s a field 

derivable from a potential; and if it is also of the 

logarithmic type, then the drag coefficients are 

linked to the Pearson distributions and their 

determination from 4 parameters: mean, variance, 

asymmetry and kurtosis, with the additional 

advantage that they can be arise in field. 

According to Born's statistical 

interpretation, the probability density is represented 

as a product of two solutions of the Schrödinger 

equation, one is a solution of the equation and the 

other is a solution of the adjoint one, but these 

solutions depend on the potential of the same name. 

But through a Ricatti equation there is an important 

connection between the aforementioned potential 

for the Schrödinger equation and the drag 

coefficient, which in turn is linked to the 

Kolmogorov potential, so the latter will manifest its 

presence in the probability density. 

The density of the Beta distribution serves 

as a reference, which, as a Pearson distribution, 

depends on the Kolmogorov potential and for this 

type of drag coefficient, the probability density is 

represented as the exponential of a potential. Said 

Beta density can be factored into two functions with 

antagonistic tendencies linked to success or failure. 

But then also the density factors into a pair of 

exponentials of two potentials. Using the "rhombus 

geometry" we can associate one diagonal to the sum 

of two magnitudes and the other diagonal to the 

difference of the same magnitudes, with the 

characteristic of orthogonality representing 

independence, antagonism and non-correlation. 

From the Kolmogorov-f (or forward) 

equations and its adjoint Fokker-Planck, two 

alternative and parallel diffusion processes arise, one 

in an evolutionary sense, the other in an involutive 

sense. 

In summary, we approach a summary 

exposition of the symmetry theory, and in particular, 

under the constant diffusion hypothesis, to obtain a 
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drag coefficient described by a logarithm. Then we 

recall the elements of the Helmholtz theorem. Next, 

we recall the elements of stochastic modeling. We 

see the relationship between the Kolmogorov 

potential and the Pearson distributions. We expose 

the Kolmogorov potential well. Then the presence of 

the Kolmogorov potential in the Schrödinger 

potential is discussed. Finally, as another example 

we present our alternative proposal of the Black-

Scholes equation that contains the effects of the law 

of supply and demand of the subjectivist theory. 

 

II. ASPECTS OF SYMMETRY GROUP 

THEORY 

In a group there is an associative binary 

operation (semigroup), with a unit element (monoid) 

and all the elements are invertible.  

Groups can operate on sets, transferring 

their systematization to them, through group actions, 

where the unit acts as an identity operator and the 

product of two elements acts as a semigroup 

property. They can also operate on the same group, 

for example through translations and conjugations. 

In the groups, the topological properties of 

their elements can also be observed and thus the so-

called topological groups are obtained. When their 

topological structure is locally analogous to that of 

finite-dimensional Banach spaces, they are said to 

have the variety structure, in addition to their 

algebraic structure, and are called Lie groups, [5], 

[6]. 

The method that we have applied lies in the 

study of the symmetries of a differential equation or 

method of Lie groups. We will make a summary 

exposition of the method, which can be consulted in 

extenso in the references, [5], [6]. The groups reveal 

the symmetries of nature, expressed in their shapes 

or in their equations. 

The following theorem shows the 

conversion of the differential equation into the 

transformed equation, [6]: 

 

Theorem 1: On Invariance 

 

A local group of transformations 𝐺 is a 

symmetry group of the equation ∆, with 

∆(𝐽𝑛(𝑔)) = 0, and of maximum rank,  for all 

𝐽𝑛′(𝑔′) ∈ 𝑆∆, in which the equation is locally 

soluble, one has, 

 

𝐿𝐽𝑛𝐯∆
∆=0

= 𝐽𝑛𝐯(∆
∆=0

) = 0           (1) 

 

for every infinitesimal generator  of 𝐺 and where 

𝐿𝐽𝑛 denotes the Lie derivative in the direction of the 

vector field 𝐽𝑛. 

The differential equation is presented as the 

function ∆: 

 

∆= 𝑢𝑥𝑥 + 𝐴(𝑢)𝑢𝑥 + 𝑓(𝑢) − 𝐵(𝑢)𝑢𝑡        (2) 

 

the transformed equation arises from the application 

of the invariance criterion, (1), on this equation, and 

is calculated as the Lie derivative of the differential 

equation along the extended generator, (4). 

 

The generator is, 

 

𝐯 = 𝜕𝑥 + 𝜏𝜕𝑡 + ∅𝜕𝑢                 (3) 

 

and the extended generator is the vector field 

 

𝑗(2)𝐯 = 𝐯 + 𝜙𝑥𝜕𝑢𝑥
+ 𝜙𝑡𝜕𝑢𝑡

+𝜙𝑥𝑥𝜕𝑢𝑥𝑥
+     (4) 

 

𝜙𝑥𝑡𝜕𝑢𝑥𝑡
+ 𝜙𝑡𝑡𝜕𝑢𝑡𝑡

 

 

when this is applied to the ∆function it produces: 

 

 
 

then the following equation results: 

 

𝜙𝐴′𝑢𝑥 + 𝜙𝑓′ − 𝜙𝐵′𝑢𝑡 + 𝜙𝑥𝐴 − 𝐵𝜙𝑡 + 𝜙𝑥𝑥
∆=0

= 0 

 

which evaluated at ∆= 0 produces: 

 

𝜙 (𝑓′ −
𝐵′

𝐵
𝑓) + 𝜙𝐴 (

𝐴′

𝐴
−

𝐵′

𝐵
) 𝑢𝑥 − 𝜙

𝐵′

𝐵
𝑢𝑥𝑥 +    (6) 

 

𝐴𝜙𝑥 − 𝐵𝜙𝑡 + 𝜙𝑥𝑥 = 0 

 

this is the transformed equation and especially, it 

depends on the infinitesimals of the extended 

generator. 

 

2.1 Constant diffusion 

 

To study the behavior of the equations 

system under the premise of constant diffusion, [8], 

[9], we assume 𝐵 = 𝑐𝑡𝑒in the mentioned equations 

system, which will assume the form: 
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(7) 

 

 

Now from the fourth and first in (7), we get: 

 


𝑥𝑥

= 0                                   (8) 

 

so, the system for 𝐵 = 𝑐𝑡𝑒, is expressed by: 

 

 

(9) 

 

 

Now we differentiate with respect to 𝑥to the fifth 

in (9), then we do it with respect to 𝑢, and since 

∅𝑢𝑢 = 0, 
𝑢

= 0, and 𝜏𝑢 = 0, then, 

 
(𝐴′𝜙𝑥)𝑢 = 0                                (10) 

 

Or, 

 

𝐴′′𝜙𝑥 + 𝐴′𝜙𝑥𝑢 = 0                          (11) 

 

This equation admits multiple possibilities. 

According to the considered group it could be 𝜙𝑥 =
0, then 𝜙𝑥𝑢 = 0, and then 𝐴′′and 𝐴′can be arbitrary. 

On the other hand, if 𝐴′ = 0and 𝐴′′ = 0, that is, if 

𝐴 = constant, we could have arbitrary 𝜙𝑥and 𝜙𝑥𝑢, 

and in that case the group is arbitrary; like the 

Galilean, where the two derivatives of the 

infinitesimal are different from zero, or the first is 

non-zero and the second is null as in the linear 

differential equation, or both are null as in the 

translations group. And in mixed form, as a Galilean 

group with non-linear drag, where 𝐴´´ ≠ 0 and 

∅𝑥𝑢 ≠ 0, 

 
𝐴′

𝐴′′ = −
𝜙𝑥

𝜙𝑥𝑢

  ,                            (12) 

 

then since 𝜙𝑥𝑢does not depend on 𝑢, by the third 

equation in (9), we derive with respect to 𝑢 and it is 

obtained that if 𝐵 = 𝑐𝑡𝑒, 𝐴′′ ≠ 0 and ∅𝑥𝑢 ≠ 0, then 

the drag coefficient is a solution of the ordinary 

equation 

 

(
𝐴′

𝐴′′
)

𝑢
= −1                   (13) 

 

Integrating (13), with 𝐴′ ≠ 0, 𝑐𝑡𝑒 = 𝑎, two 

possibilities emerge 

 

 (14) 

 

 

We can consider another analogous system but 

with time denoted 𝑡̂ and the coefficient 𝐴̂. We carry 

out analogous calculations and the system for 𝐵 =

𝑐𝑡𝑒 results in the following alternative for 𝑡̂ and 𝐴̂, 

 

 

(15) 

 

 

 

(𝐴̂)
′

(𝐴̂)
′′ = −

𝜙𝑥

𝜙𝑥𝑢

 

 

if we now make 𝑡̂ = −𝑡 and 𝐴̂ = −𝐴, the result is 
(−𝐴)′

(−𝐴)′′ = −
𝜙𝑥

𝜙𝑥𝑢
 and the equation remains invariant: 

 
𝐴′

𝐴′′ = −
𝜙𝑥

𝜙𝑥𝑢
                      (16) 

 

From which results the "symmetry" commented 

by Kolmogorov about what Schrödinger proposed: 

"The following considerations, despite their 

simplicity, seem to me new and not without interest 

for certain physical applications, in particular for the 

analysis of the reversibility of the statistical laws of 

nature, which Mr. Schrödinger has carried out in the 

case of a specific example.", [1]. 

 

The drag coefficient could also be in the form of 

a logarithmic gradient. Because if 𝐴(𝑢) =
𝑐

𝑢
, then 

𝐴′ = −
𝑐

𝑢2, but 𝑐cannot be null because it would 

cancel out the drag coefficient, then we can consider 

𝑎(𝑢) =
𝐴(𝑢)

𝑐
and prove that 𝑎satisfies equation: 

 

 

 

The equation (𝐴′𝜙𝑥)𝑢 = 0produces the 

representation of𝜙𝑥, as 𝜙𝑥 =
1

2
𝑢𝜙𝑥𝑢; thus, the cited 

equation produces(𝐴′𝑢𝜙𝑥𝑢)𝑢 = 0, then𝐴′ = −𝑢𝐴′′, 

then (
𝐴′

𝐴′′)
𝑢

= −1. 

In the space of symmetries 𝑐is a parameter with 

a value marked in one of the real multi-axes 

(𝜙𝑥𝜕𝑢𝑥
) and cannot vary with 𝑥, however in the 

physical space of movement we can think of the 

parameter as𝑐(𝑥) = 𝑢𝑥. Therefore, the form 𝐴(𝑢) =
𝑢𝑥

𝑢
is admitted, thus 𝐴(𝑢) =

𝑢𝑥

𝑢
=

𝜕

𝜕𝑥
𝑙𝑛𝑢 . In a later 

section we will consider the particular and diverse 

case where 𝐴(𝑢)is a quotient of two polynomials: 

the numerator, of order 1 over another of order 2, 

being their coefficients real, (meanwhile, the case 

𝑢 = 𝑐𝑡𝑒 will be included within the Beta density). 
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2.2 About the Helmholtz theorem 

On the other hand, if we fix the attention in 

the coefficient of the displacements per unit of time, 

in general it is a vector field and this refers us to its 

determination from its divergence and its rotational, 

as affirmed by the Helmholtz theorem. 

Within a certain region it’s necessary to 

know the divergence of the field as a scalar potential 

𝜑 and the rotational of the field as a vector potential, 

in addition to the value of the field in its normal 

component at the boundary of the region𝐹𝑛𝜕, [7], 

[10]. The field is broken down into two parts: one, 

with zero divergence, image of the solenoidal 

projector, (part free of divergence, solenoidal, with 

vector potential and analogous to a magnetic field) 

and the second, with zero rotational (irrotational or 

with scalar potential(𝜑), analogous to an electric 

field). 

 

𝔽 = 𝑃𝔽⨁grad𝜑                         (17) 

 

If the drag field is in the image of the 

Solenoid Projector, as a solenoidal field it is 

divergence free, which means the condition gauge 

𝑑𝑖𝑣 𝑏 = 0. With the analogy of a solenoidal field 

with a magnetic field, it is observed that if time sign 

changes, it is equivalent to changing the sign of the 

moving charge, that is, changing the direction of the 

stream, which in turn reverses the direction of the 

magnetic field. So, the symmetry is to change the 

time sign and simultaneously change the sign of the 

solenoidal field. Schrödinger noted the importance 

of this symmetry, as outlined by Kolmogorov in 

accordance with the already mentioned citation from 

Nagasawa, [1]. 

 

III. STOCHASTIC MODELING 

A certain object phenomenon can receive 

the influence of a multiplicity of other so many 

phenomena, which under the principle of duality we 

group into deterministic and random, although the 

latter are frequently much more abundant. The 

subsequent classification into main and secondary, 

allows us to place them in the existence of at least 

two antagonists, one deterministic, the other 

random. In a graph we illustrate the evolution of the 

trajectory of the phenomenon under consideration 𝑋, 

the change is symbolized by 𝑋𝑡+∆𝑡 − 𝑋𝑡, which 

results from the superposition of a deterministic 

change 𝑏∆𝑡, and a random change 𝜎(𝑡, 𝑋𝑡)(𝑊𝑡+∆𝑡 −
𝑊𝑡). As examples of phenomena with a 

deterministic predominance we can mention: 

The relative loss of the velocity of a particle due 

to friction in a movement within a fluid at rest, with 

the proportionality linked to the viscosity of the fluid 
𝑑𝑣

𝑣
= −𝛾𝑑𝑡, while the second change depends on a 

Langevin force, process random with a very narrow 

standard deviation, [2]. 

The model of the growth of the number of 

rabbits, known as Fibonacci numbers, where the 

relative rate of growth, analogous to a rate of return, 

is close to the "golden number": 
∆𝐹

𝐹
=

𝐹𝑛+1−𝐹𝑛

𝐹𝑛
≈

𝜑, 𝜑 = 0.618 =
√5−1

2
, [11]. 

The Pythagorean theorem seen as doubling 

squares, just as it originated. In descending scales, if 

the length of the initial side is 𝑙0, the diagonal 1 is 

(1/√2)𝑙0, diagonal 2 is (1/√2)
2

𝑙0, diagonal 𝑛is 

(1/√2)
𝑛

𝑙0. The relative decrease rate is −(1 −

1/√2), of the order of 30%. If now the circles in 

which the successive squares are inscribed have 

diameters (1/√2)
2

𝑙0, the relative decreasing rate of 

the diameters is also −(1 − 1/√2). If these circles 

represent the size of the vortices in a fluid or 

"Descartes eddies", the decrease will continue until 

reaching the Kolmogorov length, which depends on 

the viscosity and is proportional to the ¾ power of 

the kinematic viscosity of the fluid (meanwhile, the 

constant of proportionality is (1/𝜀)
1

4, with 𝜀 being 

the rate of energy transfer).  

On the other hand, when the random 

contributions are important, the so-called Itô 

diffusions emerge, where the random changes are 

modeled by the Brownian movements, [12]. The 

differential form of the stochastic differential 

equation is: 

 

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝑊𝑡         (18) 

 

There are two coefficients: drag(𝑏)and diffusion 

proportional to 𝜎, the standard deviation. An 

important property is its unigenerational or 

Markovian character. A second one leads to the 

construction of a second-order partial differential 

operator, called the process generator, formed of its 

two coefficients, and it results 𝐿+𝑓(𝑥) =

+𝑏(𝑥)
𝜕

𝜕𝑥
𝑓 + 𝐷(𝑥)

𝜕2

𝜕𝑥2 𝑓, or more generally, 

 

𝐿+𝑓(𝑥) = 𝐛 ∙ 𝛁𝑓 + 𝐷𝑖𝑗 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗 𝑓         (19) 

 

In particular, assuming 𝑏 = 0and 𝐷𝑖𝑗 = 𝛿𝑖𝑗, the 

solution remains  (𝑥, 𝑦 ∈ ℝ𝑛), 

 

𝑢(𝑡, 𝑥, 𝑦) =
1

√(2𝜋𝑡)𝑛
𝑒−

‖𝑥−𝑦‖2

2∙𝑡             (20) 

 

which has the form of a Gaussian or "normal" 

distribution, characteristic of a Brownian motion. 
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Kinetic processes are the natural consequence of 

the presence of imbalances in a medium, and tend to 

restore equilibrium. The density of the flow plays an 

essential role and if the flow is also disturbed by a 

drag or drift, we must discount this drag. In 

particular, consider a probability distribution. 

According to the principle of conservation of 

probability mass, the change in density is measured 

by the divergence of the flow. Thus, the evolution of 

a probability density is given by the anti-gradient or 

negative gradient of the probability density, then a 

diffusion equation arises. 

The density of the flow is represented by the 

vector field    𝐽 ⟼ 𝐽𝑖 = −
𝜕

𝜕𝑥𝑗 𝐷𝑖𝑗 , then we take into 

account the drag and add (𝐽 − 𝑏)𝑖 = −
𝜕

𝜕𝑥𝑗 𝐷𝑖𝑗 . So, 

the current probability remains: 𝐽𝑖 = 𝑏𝑖 −
𝜕

𝜕𝑥𝑗 𝐷𝑖𝑗 . 

Now, we consider the principle of mass conservation 

expressed as continuity equation: 
𝜕

𝜕𝑡
𝑢 +

𝜕

𝜕𝑥
𝐽𝑢 = 0; 

or with a source 𝑓: 
𝜕

𝜕𝑡
𝑢 +

𝜕

𝜕𝑥
𝐽𝑢 = 𝑓 . And finally, the 

Kolmogorov-f (or adjoint Fokker-Planck) equation 

arises, 

𝐽𝑢 = (𝑏 −
𝜕

𝜕𝑡
𝐷) 𝑢  and  

𝜕

𝜕𝑡
𝑢 = −

𝜕

𝜕𝑥
𝐽𝑢 + 𝑓 (21) 

 
where 𝑢is the probability density of the random 

variable and 𝐽 the probability current of the same 

variable, then 

 
𝜕

𝜕𝑡
𝑢 = 𝐿𝐾𝑢                      (22) 

 

Now, we consider another Kolmogorov-f 

equation, 

 

𝐽𝑢̂ = (𝑎̂ −
𝜕

𝜕𝑥
𝐷) 𝑢̂   and   

𝜕

𝜕𝑡
𝑢̂ = −

𝜕

𝜕𝑥
𝐽𝑢̂ + 𝑓   (23) 

 

where 𝑢̂ is the probability density of the random 

variable and 𝐽 the probability current of the same 

variable, then: 
𝜕

𝜕𝑡
𝑢̂ = 𝐿𝑢̂                     (24) 

 

where later we will take the case: 𝑡̂ = −𝑡 and 𝑎̂ =
−𝑏. 

Next, we look for a representation for an operator 

adjoint the Kolmogorov-f. For this we consider the 

stationary solution, which leads us to: 

 

(𝜕𝑥𝑏(𝑥, 𝑡) − 𝜕𝑥𝑥𝐷(𝑥, 𝑡))𝑢 = 0 , 

(25) 
𝑏(𝑥)

𝐷(𝑥)
(𝐷(𝑥)𝑢) − 𝜕𝑥(𝐷(𝑥)𝑢) = 0 , 

 

This (25) is a linear equation of the type: 
𝜕

𝜕𝑥
𝑦 +

𝑝(𝑥)𝑦 = 0, with 𝑦 ↔ 𝐷(𝑥)𝑢, and has a 

solution 𝐷(𝑥)𝑢 = 𝐶𝑒∫
𝑏

𝐷
𝑑𝑥̅

,𝑢 = 𝐶 (
1

𝐷
𝑒∫

𝑏

𝐷
𝑑𝑥̅) =

𝐶𝑒−. The probability stream is now 𝐽(𝑥, 𝑡) =

−𝐷𝑒− 𝜕

𝜕𝑥
𝑒+𝑢and the Kolmogorov operator 

is:𝐿𝐾 =
𝜕

𝜕𝑥
𝐷𝑒− 𝜕

𝜕𝑥
𝑒+. We define the operator 

𝐿𝐹𝑃 = 𝑒𝜙𝐿𝐾which turns out to be its adjoint in the 

direction 〈𝑢, (𝑒𝐿𝐾)𝑔〉 = 〈𝐿𝐾𝑢, 𝑔〉 under 

appropriate boundary conditions [2], [12] and by 

applying integration by parts. 

In summary, by integration by parts the 

derivative operator and the memory coefficient are 

transposed, the second derivative does it twice and 

the sign changes two times and remains the same as 

the original, while the first derivative does so only 

once and therefore its sign changes. In various 

dimensions the two operators: the Kolmogorov-f 

and the adjoint, Fokker-Planck, are 

 

𝐿𝐾(𝑥, 𝑡) = −𝜕𝑥𝑖𝑏𝑖(𝑥, 𝑡) + 𝜕𝑥𝑖𝑥𝑗𝐷𝑖𝑗(𝑥, 𝑡) 

(26) 

𝐿𝐹𝑃(𝑥, 𝑡) = +𝑏𝑖(𝑥, 𝑡)𝜕𝑥𝑖 + 𝐷𝑖𝑗(𝑥, 𝑡)𝜕𝑥𝑖𝑥𝑗  

 

The equations produce the fundamental 

solutions, with the initial condition of acute or 

determined value in 𝑦, 𝑠: 𝜙𝑖(𝑥, 𝑡𝑦, 𝑠)
𝑠=𝑡

= 𝜕(𝑥 −

𝑦) 

 

 

 

 

 

 

If from another part and under suitable 

conditions, we find the solution of the evolution 

equation that produces a probability density 

 
𝜕

𝜕𝑡
𝑢 = 𝐿𝐾𝑢                         (28) 

 

We can consider the semigroup generator, 

defined by its action on the measurable and bounded 

functions with domain in the phasic space and 

ranges in the real ones, which allows to find its 

average value or mathematical expectation, 

 

,  (29) 

 

 

which leads to defining the process memory 

coefficients as averages: 
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(30) 

 

 

and the generator of the semigroup is obtained: 

and the generator of the semigroup is obtained, 

 

𝐿𝐾 = 𝜕𝑥((−𝑏)𝑢) + 𝜕𝑥𝑥((+𝐷)𝑢) + 𝑓       (31) 

 

IV. DRAG AND POTENTIAL 

In the context of Helmholtz's theorem, we 

consider the case of the coefficient in its form as a 

drag vector field, with an irrotational characteristic 

and, consequently, as a field derivable from a 

potential, but in particular, being of logarithmic type, 

as it has turned out from the symmetries study. If, in 

addition, the drag is represented by a quotient of 

polynomials: the numerator, of order 1 over the other 

of order 2, being their coefficients real, then the drag 

coefficient is linked to the Pearson distributions. In 

general, since the second polynomial, the one of 

order 2, has 2 roots, a diversity of distributions of the 

characteristics of those roots will emerge. 

We now focus on the cases of two real and 

different roots, to later focus on the case of equal 

roots, which will provide an axis of symmetry and 

the mode or anti-mode context. The two 

polynomials contain 5 real coefficients, since the 

numerator must be of order 1, the coefficient of the 

power 1 must be different from zero, so we can set 

its value to 1 or what is equivalent, the remaining 4 

are determined relative to the coefficient of the 

power 1. Thus, we deal with a space of 4 real 

dimensions, [13]. 

On the other hand, knowledge of a density 

of probability distributions allows us to determine 

the different central moments, but reciprocally, 

knowledge of the different moments makes it 

possible, in general, to determine the distribution. In 

particular, the survey of 4 sample moments accesses 

to 4 real numbers, which we will put in 

correspondence with 4 real coefficients, so this is a 

point in the four-dimensional space that provides us 

a representation for dragging in the form of a vector 

field. 

Let the drag coefficient be: 
𝑏

𝐷
= −

𝑑

𝑑𝑥
ln𝜌(𝑥) =

−
𝑃

𝑄
 , with ln𝜌(𝑥) determining the Kolmogorov 

potential. For two different real roots, 𝑥1 ≤ 𝑥2, the 

quotient is decomposed into partial fractions, 

(
𝛼−1

𝑥+𝑥1
+

𝛽−1

−𝑥+𝑥2
) with 𝑥 + 𝑥1 > 0and 𝑥2 − 𝑥 > 0, the 

potential remains ln𝜌(𝑥) = ∫
𝑃

𝑄
𝑑𝑥̅ =

𝑥

𝑥0

∫
(𝛼−1)

+𝑥1
𝑑𝑥̅ + ∫

(𝛽−1)

𝑥2−𝑥̅
𝑑𝑥̅

𝑥

𝑥0

𝑥

𝑥0
, and integrand, ln𝜌(𝑥) =

ln𝐶(𝑥 + 𝑥1)𝛼−1(−𝑥 + 𝑥2)𝛽−1, so the probability 

density is 𝜌(𝑥) = 𝐶(𝑥 + 𝑥1)𝛼−1(−𝑥 + 𝑥2)𝛽−1, with 

change of variable 
𝑥+𝑥1

𝑥2+𝑥1
= 𝑝  y  

−𝑥+𝑥2

𝑥2+𝑥1
= 1 − 𝑝  , it 

results: 𝜌(𝑝(𝑥)) =
1

𝐵(𝛼,𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1, which 

corresponds to the Beta distribution, normalized 

with the Euler Beta function 𝐵(𝛼, 𝛽) and we 

remember that this distribution has already been 

cited since the time of Thomas Bayes (1763). At the 

end, the current distributions represented by: 

 

𝜌(𝑝(𝑥)) =
1

𝐵(𝛼,𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1        (32) 

 

From the coefficients of the polynomial 𝑄, both the 

classification vector 𝑉 = (𝑑, ), and its roots. But in 

addition, the powers of the so-called "success" and 

"failure" are calculated from the coefficients of the 

polynomial 𝑃and the roots of the polynomial 𝑄. 

Case I corresponds to a discriminant 𝑑 < 0, with 

 > 1, 

 

𝑑 = 𝑎𝑐 − 𝑏2 = 𝑎𝑐(1 − ) =
𝑏2

𝑎𝑐
 

 

𝑥1 = −
𝑏

𝑎
+

1

𝑎
√−𝑑𝑥2 = +

𝑏

𝑎
+

1

𝑎
√−𝑑 

(33) 

𝛼 − 1 =
−𝑎0 + 𝑎1(𝑥1)

𝑎(𝑥1 + 𝑥2)
=

−𝑎0 + 𝑎1(𝑥1)

2√−𝑑
 

 

𝛽 − 1 =
𝑎0 + 𝑎1(𝑥2)

𝑎(𝑥1 + 𝑥2)
=

𝑎0 + 𝑎1(𝑥2)

2√−𝑑
 

 

The mode position criterion is 𝑋𝑀 =
∝−1

∝+𝛽−2
=

𝑎

𝑎1

−𝑎0+𝑎1(𝑥1)

𝑎(𝑥1+𝑥2)
=

𝑎

𝑎1
(𝛼 − 1), if ∝> 1 and 𝛽 > 1, or if 

∝ +𝛽 > 2; it is a modal type distribution, or 

otherwise, an anti-modal one. The reference is the 

logistic mode and is located at:𝑥𝑀,𝐿 =
1

2
, being  ∝=

𝛽 = 2. 

With the 4 sample central moments 𝜇𝑖  , 𝑖 𝜖 {1,4}, 

the skewness and kurtosis parameters 𝛽1 =
𝜇3

2

𝜇2
3 , 𝛽2 =

𝜇4

𝜇2
2 are constructed, along with a convenient 

combination of the two:𝐵 = 10𝛽2 − 12𝛽1 − 18. 

The 3 coefficients of the quadratic polynomial 𝑄 and 

a linear coefficient 𝑃, with 𝑎1 = 1, 

 

𝑎 = −
1

𝐵
(2𝛽2 − 3𝛽1 − 6) 

𝑏 = −
1

2
𝑎0 

𝑐 = −
𝜇2

𝐵
(4𝛽2 − 3𝛽1)              (34) 

𝑎1 = 1 
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𝑎0 =
√𝜇2𝛽1

𝐵
(𝛽2 + 3) 

 

It is advisable to specify the units or physical 

dimensions used, the drag coefficient is [
𝑏1

𝐷
] ~

𝑐𝑚

𝑠
, 

then it must be 𝑒−𝑈𝐾(𝑝(𝑥)) =

𝜌𝐷(𝑝(𝑥))or,−𝑈𝐾(𝑝(𝑥)) = 𝐷ln𝜌. And below we 

cite some examples of construction of the 

Kolmogorov potential or drag, of vector field type. 

 

Example 1 Corn 

 

The first is vital because it has to do with 

the energy of humans, that is, their food. In 

particular we highlight the corn grown in the so-

called Mezquital Valley, Mexico. The density is 

platykurtic because it has kurtosis less than 3, 𝐾𝑢 <
3, the asymmetry is positive which shows thicker 

tails on the left than on the right. The discriminant is 

negative, with  < 0, so the density is type I or 

𝐵𝑒𝑡𝑎. The "logistics" serves as a reference, for 

which the shape exponents are equal to 2 and its 

mode is located at 1/2, in the middle of the interval 

[0,1]. In our case, the shape exponents are greater 

than 1, so the density is unimodal, bell-type, with the 

location of the mode to the left of 1/2, [14], [13]. 

 

Example 2 Conchos River 

 

Before being the vital water that runs 

through channels to arrive in time to irrigate crops, 

its accumulation in "dams" is required. For the 

annual data on runoff volumes at the “Boquilla 

dam” in Conchos River, the statistical analysis of the 

ungrouped data produces the first 4 moments and 

their subsequent parameters. It is obtained for the 

asymmetry parameter(𝛽1 =
𝜇3

2

𝜇2
3 = 1.1593), thus the 

distribution is asymmetric with thicker tails on the 

right. For kurtosis, (𝛽2 =
𝜇4

𝜇2
2 = 4.0259) this 

exceeds the reference kurtosis, the "normal" one, 

thus it is leptokurtic. The classification 

parameters(−8.2823 ×  105 , −0.49421) place the 

distribution as Beta density, then observing the 

shape parameters (−0.0002747, 2.7058), it turns 

out to be a decreasing density, with shifting to the 

left with respect to the central line of the "logistics", 

[15]. 

 

4.1 Kolmogorov Potential Well 

As a third example we consider the 

particular and important case of the Kolmogorov 

potential emerging from an anti-modal form of a 

Pearson Beta distribution. We move the vertical axis 

to overlap it with the symmetry axis, with the 

exponents of the shape parameters coinciding and 

with a value linked to the other memory coefficient 

that antagonizes the drag. 

We begin with an antimodal form of a Beta 

distribution: 
1

𝐵(𝑎,𝛽)
𝑦𝛼−1(1 − 𝑦)𝛽−1, with 𝛼 < 1, 𝛽 < 1 or ∝

+𝛽 < 2 and Pearson's Type II form ∝= 𝛽, with ∝

−1 = −𝐷, wich takes the form 
1

𝐵(𝛼,𝛽)
(𝑦(1 −

𝑦))
𝛼−1

. We reinterpret the probability of success as 

an angle, then see it as small enough to allow a series 

expansion (𝑦(1 − 𝑦))
𝐷

. We relocate the vertical 

axis 
1

2
+ 𝑘𝑥̅ = 𝑦 , (1 − 𝑦̅2)𝐷, we put 𝑘 =

𝜋

4√2𝑎
 and it 

remains(
1

2
)

2

(1 −
1

2
(

𝜋

2𝑎
𝑥̅)

2

). 

Or, the density is proportional to: (1 −
1

2
(

𝜋

2𝑎
𝑥)

2

+

⋯ )
𝐷

, which corresponds to an expansion of 

𝑐𝑜𝑠 (
𝜋

2

1

𝑎
𝑥). For 𝑥 = ±𝑎, 𝑐𝑜𝑠 (

𝜋

2𝑎
𝑥) 

𝑥=±𝑎
= 0, and 

𝑈𝐾(𝑥) → +∞, so the width of the well is 2𝑎 and its 

depth is unlimited. In the middle 𝑥 =

0, 𝑐𝑜𝑠 (
𝜋

2𝑎
𝑥) 

𝑥=0
= 1 and 𝑈𝐾(𝑥) → 0. Now the 

width 2𝑎 is dimensionalized by 𝑎~√
𝐷

𝛾
 , therefore, if 

𝛾 is too high with respect to 𝐷, the well approaches 

to a 𝛿 of Dirac type. Then, 
𝜋

2𝑎
𝑥 ~ 

𝜋

2
√

𝛾

𝐷
𝑥, and it turns 

out: 
1

𝐵(𝛼,𝛼)
(

1

2
)

−2𝐷

(1 −
1

2
(

𝜋

2
√

𝛾

𝐷
𝑥)

2

+ ⋯ )

−𝐷

. 

Definitely, the Kolmogorov potential becomes: 

𝑒−𝑈𝐾(𝑥) = (𝑐𝑜𝑠 (
𝜋

2
√

𝛾

𝐷
𝑥))

𝐷

, or equivalently, [ 2]: 

 

𝑈𝐾(𝑥) = −𝐷𝑙𝑛 (𝑐𝑜𝑠 (
𝜋

2
√

𝛾

𝐷
𝑥))         (35) 

 

V. SCHRÖDINGER POTENTIAL 

We highlight the important connection 

between the drag coefficient and the inverse problem 

for the potential in the Schrödinger equation. In a 

previous work, which can be consulted in [16], [4], 

[2], we saw that there is an interrelation between the 

drag coefficient (𝑏(𝑥))and a Schrödinger potential. 

Indeed, it is possible to follow the main path of 

knowing the Schrödinger potential 𝑉𝑠(𝑥), to then 

find the drag coefficient as a solution to a Ricatti 

equation, and complete the vital information of the 

two "memory coefficients". But reciprocally, the 

subsidiary path is to determine the drag coefficient 

in other ways and then find the potential 𝑉𝑠(𝑥). The 
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aforementioned connection is shown in the 

following relationship, where 𝑏(𝑥) = 𝑈𝐾, 

 

𝑉𝑆(𝑥) =
1

4𝐷
(𝑈𝐾(𝑥))2 −

1

2
(𝑈𝐾

′ (𝑥))       (36) 

 

Relationship that we illustrate with two 

simple and important examples. In the case of the 

Smoluchowski force [2], the drag is an irrotational 

field, therefore it is derivable from a potential. If 

drag is proportional to position: 𝑏(𝑥) = 𝛾𝑥, 

then𝑏′(𝑥) = 𝛾, so 𝑉𝑆(𝑥) =
𝛾2

4𝐷
𝑥2 −

1

2
𝛾 =

𝛾 (
1

4
(√

𝛾

𝐷
𝑥)

2

−
1

2
). Therefore, a drag proportional to 

the position produces a parabolic Schrödinger 

potential and, in addition, 𝑉𝑆(𝑥) −
1

2
𝛾 =

𝛾2

4𝐷
𝑥2 

results in the potential of a harmonic oscillator with 

a quadratic frequency proportional to 𝛾2. 

Conversely, if we assume the potential to be 

parabolic, we will find in the solution of the Ricatti 

equation the drag coefficient proportional to the 

position. As a precision about the physical units, it is 

observed that 𝑉𝑆(𝑥)~ 
𝐸𝑝(𝑥)

ℎ
, (potential energy over 

Planck's constant) and that [√
𝐷

𝛾
] has units of length. 

 

In the second example, we have the 

alternative route of the Kolmogorov potential (as an 

irrotational field, it is determined from a scalar 

potential) 
𝛾

𝐷
𝑥 = −

𝑑

𝑑𝑥
ln𝜇(𝑥), then 𝜇(𝑥) = 𝐶𝑒

−
1

2

𝑥2

𝐷/𝛾, 

a Pearson distribution of normal type (0, √
𝐷

𝛾
), or 

type XI, 𝜎2 =
𝐷

𝛾
 and 𝐶 = √

𝛾

2𝜋𝐷
. And it is observed 

that if   
𝐷

𝛾
≪ 1, 𝜎 → 0 and the distribution 

approaches a Dirac𝛿, which means that the variable 

loses its random character or "collapses" as they say 

in Physics. Note the quicker path in this second 

example that leads immediately to the probability 

density. 

The solutions of the Schrödinger equation 

of course generally depend on the potential of the 

same name (𝑉𝑆(𝑥)). The probability density is 

represented as a product of two solutions, one is a 

solution of the equation and the other is a solution of 

the adjoint, according to Born's statistical 

interpretation. But this potential (𝑉𝑆(𝑥)) is related to 

the drag coefficient (𝑏(𝑥) = 𝑈𝐾) and this, in turn, is 

related to the Kolmogorov potential, so this latter 

potential will be present in the probability density 

and its "quantum" consequences. 

Especially in the Beta distribution, as a 

Pearson distribution, it can be observed that the 

density of the distribution can be factored into two 

functions with antagonistic tendencies, the first 

linked to the success of the result and the second to 

its failure, neither of them in themselves is a density, 

they are functions of type 𝐶2. But then the density is 

also factored into a pair of exponentials of two 

potentials, 𝜇 = 𝑒𝑉1 ∙ 𝑒𝑉2 . If we resort to the 

"rhombus geometry" that is constructed in a plane 

using the complex representation that combines the 

semisum of a complex and its conjugate, with 

semidifference of the two. We can associate one 

diagonal to the sum of two magnitudes and the other 

diagonal to the difference of the same magnitudes 

and presents the characteristic of orthogonality as a 

manifestation of independence, antagonism and 

non-correlation. In turn, we associate the first 

potential with the sum and the second, with the 

difference: 𝜇 = 𝜙1𝜙2 = 𝑒𝑉1𝑒𝑉2 = 𝑒
1

2
(𝑅+𝑆)

𝑒
1

2
(𝑅−𝑆)

=

𝑒𝑅, with 𝜙1 = 𝑒
1

2
(𝑅+𝑆)

 and 𝜙2 = 𝑒
1

2
(𝑅−𝑆)

. Due to the 

Ricatti equation that relates the drag coefficient to 

the potential (𝑉𝑆(𝑥)), linearity is not possible, but 

the sum and difference of drag coefficients can be 

related to the sides in the aforementioned geometry 

of the rhombus. The drag coefficients will be−𝑏1 =

∇ln𝜙1, −𝑏1 = ∇
1

2
(𝑅 + 𝑆) and−𝑏2 = ∇ln𝜙2, 

−𝑏2 = ∇
1

2
(𝑅 − 𝑆). Or 𝑏1 + 𝑏2 = −∇𝑅 𝑎𝑛𝑑 𝑏1 −

𝑏2 = −∇𝑆. In the case of Born's interpretation, we 

make the real axis coincide with the first diagonal of 

the rhombus, while we align the second, the 

orthogonal, parallel to the imaginary axis, thus 𝜙1 

corresponds to the wave function and 𝜙2 to the 

adjoint that reduces to the complex conjugate of the 

wave function, (𝜙1, 𝜙2) ↔ (, ̅),  = 𝑒𝑅+𝑖𝑆, 

̅ = 𝑒𝑅−𝑖𝑆. The 𝜙𝑖 are determined from the drag 

coefficients 𝑏𝑖 as gradients of the Kolmogorov 

potentials 𝑏𝑖 = −∇ln𝜙𝑖. Furthermore, with the 

(addition, subtraction) of the drag coefficients the 

potentials (𝑅, 𝑆) are determined, with 𝑅 = ln𝜇, and 

𝑆 = ln(𝜙1/𝜙2), [1]. 

Now what is the meaning of the pair 𝜙1 and 

𝜙2? We have already highlighted its analogy with 

the wave functions of the Schrödinger equation and 

its complex conjugate.  

There are two diffusion processes "in 

parallel" or overlapping: one evolutionary and the 

second, involutive. And they produce the pair of 

lateral fundamental solutions:𝜙𝑖. Summarizing, we 

reiterate that the 𝜙𝑖are mutually determined with the 

drag coefficients 𝑏𝑖as gradients of the Kolmogorov 

potentials 𝑏𝑖 = −∇ln𝜙𝑖. But in addition, with the 

(addition, subtraction) of the drag coefficients the 

potentials (𝑅, 𝑆), are determined, being 𝑅 = ln𝜇, 

and 𝑆 = 𝑙𝑛(𝜙1/𝜙2). Therefore, the sum of the two 

drag coefficients determines the probability density. 

In the "rhombus geometry" and during a chosen time 



JR Mercado-Escalante, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 243-255 

 

 
www.ijera.com                                    DOI: 10.9790/9622-1309243255                               252 | Page 

               

 

interval, the evolution takes place above the main 

diagonal, opening the transverse diagonal, while the 

involution takes place below said diagonal, also 

opening the transverse diagonal but in the opposite 

direction to the first; or, the triangle lower than the 

main diagonal is the mirror image of the upper 

triangle. 

We remember that we represent the flow 

density by the vector field 𝐽 ⟼ 𝐽𝑖 = −
𝜕

𝜕𝑥𝑗 𝐷𝑖𝑗 ,after 

having disaggregated the drag: (𝐽 − 𝑏)𝑖 =

−
𝜕

𝜕𝑥𝑗 𝐷𝑖𝑗 . Its combination with the law of 

conservation of probability mass produces the 

Kolmogorov-f (forward) equation. Next, we look for 

the adjoint of this operator and the Fokker-Planck 

equation results. Finally, the two operators, the 

Kolmogorov operator and the Fokker-Planck 

operator in several dimensions, are formulated as: 

𝐿𝐾(𝑥, 𝑡) = −𝜕𝑥𝑖𝑏𝑖(𝑥, 𝑡) + 𝜕𝑥𝑖𝑥𝑗𝐷𝑖𝑗(𝑥, 𝑡) and 

𝐿𝐹𝑃(𝑦, 𝑠) = +𝑏𝑖(𝑦, 𝑠)𝜕𝑦𝑖 + 𝐷𝑖𝑗(𝑦, 𝑠)𝜕𝑦𝑖𝑦𝑗, which 

act on functions and produce the probability 

densities. However, when the initial condition 

indicates a determined value or with suppression of 

the random character of the variable, in 

𝑦, 𝑠: 𝜙𝑖(𝑥, 𝑡y, s)
𝑠=𝑡

= 𝛿(𝑥 − 𝑦), the equations 

produce the fundamental solutions and also for 𝑠 ≤
𝑡, with initial condition𝜙2(𝑥, 𝑡y, s)

𝑠=𝑡
= 𝛿(𝑥 − 𝑦), 

the representation of the evolution to the past or 

involution is obtained 𝐿𝐹𝑃 ↔ (−)
𝜕

𝜕𝑠
, 𝐿𝐾 ↔ (+)

𝜕

𝜕𝑡
 , 

 
𝜕

𝜕𝑡
𝜙1(𝑥, 𝑡|𝑦, 𝑠) = 𝐿𝐾(𝑥, 𝑡)𝜙1(𝑥, 𝑡|𝑦, 𝑠) 

(37) 

(−)
𝜕

𝜕𝑠
𝜙2(𝑥, 𝑡|𝑦, 𝑠) = 𝐿𝐹𝑃(𝑦, 𝑠)𝜙2(𝑥, 𝑡|𝑦, 𝑠) 

 

With the fundamental solutions in turn, we 

obtain the transition probability densities: by 

integration over characteristic functions, 

𝑢𝑖(𝑥, 𝑡  B, s) = ∫ 𝜙𝑖(𝑥, 𝑡  y, s)
𝐵

(𝑦)𝑑𝑦. The 

𝑢𝑖(𝑥, 𝑡  B, s) are transition probability densities that 

obey the Chapmann-Kolmogorov equation: 

𝑢1(𝑥, 𝑡  B, s) = ∫ 𝑢1(𝑥, 𝑡 𝑥𝜏 , 𝜏) ∙

𝑢1(𝑥𝜏, 𝜏  B, s)𝑑𝑥𝜏. Then the probability 

𝑢1(𝑥, 𝑡  B, s)arises from a forward diffusion process 

in the temporal sense, while 𝑢2(𝑥, 𝑡  B, s) arises 

from an involutive or backward diffusion process. 

From the Kolmogorov-f equations and its adjoint, 

Fokker-Planck, two alternative and parallel 

diffusion processes arise, one in an evolutionary 

sense, and the other, in an involutive sense, [2]. 

 

 

 

VI. ALTERNATIVE BLACK-

SCHOLES 

We remember some of the important 

elements in financial phenomena. It is about the 

evolution of the price of assets and their derivatives. 

The return rate of the price of an asset, or relative 

variation thereof, is the superposition of the 

deterministic price variation, driven by drift, with 

the random variation, proportional to the variation of 

the Brownian trajectory, with the standard deviation 

as proportionality coefficient. If the standard 

deviation is too small, few volatility, the 

deterministic type of change predominates driven by 

the drift parameter, or average value of the changes. 

According to the Itô Formula, the change in the 

value of the derivative has its deterministic 

component with drift decreased by half of the 

variance and its random component as a change in 

the trajectory of the Brownian movement, with the 

same standard deviation, [17], [18]. 

The variation in the trajectory of a stochastic 

differential equation is split into a deterministic 

component (𝑎1𝑑𝑡) and its random component 

(𝑎2𝑑𝑊), 

 

𝑑𝑋 = 𝑎1𝑑𝑡 + 𝑎2𝑑𝑊             (38) 

 

According to Itô, the rate of return (
𝑑𝑆

𝑆
) is 

divided into the deterministic component (𝜇𝑑𝑡) and 

the random component (𝜎𝑑𝑊), where 𝜇is the mean 

value, 𝜎is the standard deviation and 𝑊is a 

Brownian movement, 

 
𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊                (39) 

 

and for the variation in the value of the derivative 

(𝑉(𝑆, 𝑡)), (
𝑑𝑆

𝑆
= 𝑑𝑉), 

 

𝑑𝑉 = (𝜇 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊             (40) 

 

From which it results, under the conditions 

𝑉(0, 𝑡) = 0 and 𝑉(𝑆, 𝑡) ~ 𝑆when𝑆 → ∞, the 

evolution equation for the value of the derivative 

 
𝜕

𝜕𝑡
𝑉 +

1

2
𝜎2𝑆2 𝜕2

𝜕𝑆2 𝑉 + 𝑟𝑔(𝑆)
𝜕

𝜕𝑆
− 𝑟𝑉 = 0   (41) 

 

It is a parabolic partial differential equation in the 

variables (𝑆, 𝑡). But it is also a Kolmogorov-f, or 

adjoint Fokker-Planck, equation. So now we 

reinterpret this evolution as such an equation, with 

its 2 memory coefficients.  

We imagine the coefficient 𝑔(𝑆) as a Langevin 

field 𝑏 = 𝐷(1)(𝑆) = 1 −
(𝑎/2)2

𝑆2 , which is interpreted 
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as 𝑔(𝑆) =
(𝑎/2)2

𝑆
+ 𝑆, and that satisfies 𝑔(𝑆) ≈ 𝑆 if 

𝑆 → ∞. Therefore, this interpretation of the drag 

coefficient allows us to incorporate supply and 

demand variations, with their effects on the price of 

derivatives 

 

𝜕

𝜕𝑡
𝑉 +

1

2
𝜎2𝑆2

𝜕2

𝜕𝑆2
𝑉 + 𝑟𝑔̂(𝑆)

𝜕

𝜕𝑆
𝑉 − 𝑟𝑉 = 0 

 

𝑔̂(𝑆) =
𝑎2

𝑆
⋁ 𝑆                     (42) 

 
𝑎 = 𝑆𝑒 

 

The price - elasticity of demand (𝑎2/𝑆), is 

𝑒𝑃𝑑 = −
𝑑𝑄𝑑/𝑄𝑑

𝑑𝑆/𝑆
= 1, or of unitary character, where 

the relative change in demand equals the relative 

change in the price of the derivative, [19]. Similarly, 

the price - elasticity of supply (𝑆), is 𝑒𝑃𝑜 =

−
𝑑𝑄𝑜/𝑄𝑜

𝑑𝑆/𝑆
= 1, and also has a unitary character, 

which means that the relative change in supply is 

equal to the relative change in the price of the 

derivative.  

On the other hand, the two curves intersect at the 

equilibrium value 𝑆𝑒 = +𝑎. The supply and demand 

curves are illustrated in the graph 1, where the price 

(𝑆) is marked on the horizontal axis and the quantity 

supplied and/or demanded (𝑄𝑖) on the vertical axis, 

being: 𝑄1~𝑆 (dotted line); 𝑄2 ~ 𝑆−1/2(continuous 

line). 

 

6.1 Supply vs. Demand 

Quantities supplied and demanded are 

plotted against prices of the derivatives: 𝑄1 ~ 𝑆 

(dotted line); 𝑄2 ~ 𝑆−1/2(continuous line) (see 

Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Supply vs demand curves, 𝑄1 ~ 𝑆 (dotted 

line); 𝑄2 ~ 𝑆−1/2(continuous line). 

 

 

VII. CONCLUSIONS 

The study of the symmetries contained in the 

Kolmogorov-f equation produces a drag coefficient 

of logarithmic type or logarithmic gradient and in 

particular a Kolmogorov potential well. On the other 

hand, a Kolmogorov potential is present in the 

Schrödinger potential through a Ricatti equation that 

establishes the connection, so it manifests itself on 

the "quanta" that result from the stationary solution 

for the eigenvalues of the Schrödinger equation, as 

in the case of the aforementioned harmonic 

oscillator. 

The probability density arises from the joint 

action of two logarithmic Kolmogorov potentials, 

one emerges from the Kolmogorov operator and the 

other from its adjoint. We imagine them as two 

vectors in a plane and with a difference in the phase, 

so their sum is represented by the gradient of one 

potential and their difference by the gradient of the 

2nd potential. Or, the sum determining the potential 

along one of the diagonals of the rhombus and the 

difference, along the second diagonal, transversal to 

the first and determining the second potential. Or, 

the lower part of the rhombus as a mirror image of 

the upper part, being the main diagonal the place of 

the "collapse" of the random variable. 

From the above conclusions it can be inferred 

that the true differential equation for the evolution of 

a "quantum" system is the Kolmogorov-f equation 

and its Fokker-Planck adjoint, because they produce 

the probability density of the phenomenon and its 

consequences; meanwhile, Schrödinger’s equation 

provides marginal solutions, known by the lyrical 

expression of "wave functions", which rediscover 

their path and objective through Born's 

interpretation. We think that the term "diffusion 

functions" would have been more appropriate 

because they are more linked to diffusion processes 

than to a wave equation. 

The Kolmogorov potential of logarithmic 

type is present in innumerable phenomena of reality 

with an important random component and can be 

reconstructed through the Pearson distributions, 

which are obtained from the first 4 sample moments 

or by the 4 parameters: mean, variance, skewness 

and kurtosis. 

We observe the principle of Duality in the 

two possible solutions produced by the symmetry or 

Lie groups for the drag coefficient, reducing it to the 

simplest form of orientation opposition, or as a 

change of orientation in the Langevin field by 

change in the Kolmogorov potential, either as the 

existence of a pair of operators: the Kolmogorov 

operator and its Fokker-Planck adjoint, or as the pair 

of Kolmogorov evolutions: forward or backward, or 

as a pair of diffusion processes in parallel, one 

towards the future, and the second towards the past. 
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The inverse problem for the drag coefficient in 

the Black-Scholes evolution equation for derivative 

securities can be formulated containing the law of 

supply and demand. Meanwhile, the two coefficients 

of elasticity result with the particularity of being 

unitary. 
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