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ABSTRACT 

Continuous development in software results in complexity and this confuses the design and programming stages, 

which makes the maintenance of the software difficult and thus affects the quality of software. Bad smells refer 

to weak solutions that can lead to issues with software maintainability. These smells are common problems that 

arise in implementation, design, and architecture, and can be identified by using a set of metrics and their 

threshold values. This paper conducted multiple case studies on 9 Apache projects in order to (1) determine the 

most effective tool for detecting bad smells, (2) learn how to detect bad smells using the most effective tools, and 

(3) identify the detection strategies used by those tools. Additionally, machine learning techniques were used to 

identify Design Smells. The aim was to demonstrate that ML techniques can be used to identify design smells, 

with the created dataset being made available once our work is accepted and published. 
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I. INTRODUCTION 

Code smells are indicators of quality issues 

that can have a negative impact on many aspects of 

software quality. Fowler [1] was the first to use the 

metaphor of "code smells" to refer to signs of a weak 

solution that can lead to issues with code 

maintainability. Too many code smells in a system 

can make it difficult to maintain and develop further. 

Code smells are also known as bad smells, code 

anomalies, design flaws, and anti-patternsm [2] .   

Bad smells can be used to detect Technical 

Debt (TD), and it is the most commonly used 

indicator for TD, as reported by Alves et al. [3] and 

Ben Idris et al. [4]. TD was first introduced by Ward 

Cunningham, who famously said, “Shipping first-

time code is like going into debt. A little debt speeds 

development so long as it is paid back promptly with 

a rewrite” [5].  Seventeen types of TD have been 

mentioned by [4], many of them, but not all, can be 

identified by using bad smells and each type of smell 

can be recognized by using a set of metrics and their 

threshold values. After detecting the bad smells, 

refactoring can be performed to reduce technical 
debt. However, many software developers opt for 

adding new features or fixing existing bugs rather 

than refactoring, as refactoring does not offer any 

immediate rewards.  God Class (GC) and Data Class 

(DC) are two types of design smells. These two 

design smells have been characterized as follows: 

Data Class consists of fields with getters and setters 

and nothing else, is often manipulated too much by 

other classes. God Class is a class that does too 

much work on its own, delegating only minor tasks 

to other classes and using data from other classes 

[6]. We focus our attention on those two types of 

design smells because they are very common.  
Normally, tools are used to detect bad 

smells during maintenance phase. However, the 

problem appears if different tools are used to detect 

GC and DC due to the fact that different tools use 

different thresholds, which affect the accuracy of the 

detector results. The question is how we should 

detect the GC and DC with high accuracy.  For that 

reason, we will use machine learning techniques to 

detect GC and DC. Different machine learning 

models will be applied to achieve the best possible 

classification accuracy.  The objective of this 

research paper was as follows: Carry out empirical 

studies on open-source projects, use machine 

learning techniques to detect design smells, and 

provide datasets on design smells. The main 

contributions of this paper are the following: 

 We conducted a case study to explore the use of 

bad smell tools, analyze open source projects, and 

extract metrics values for the purpose of detecting 

GC and DC.  

 We applied machine learning techniques to 

identify GC and DC in open-source projects.  
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 We compiled a dataset that will be made available 

to other researchers upon the publication of our 

findings.  

The rest of this paper is organized as 

follows. Section 2 highlights the related works. Our 

methodology is discussed in Section 3. Section 4 

presents a case study will be conducted and machine 

learning will be applied to detect design smells. The 

results, and discussion are provided in Section 5. 

Section 6 presents the threats that may be affecting 

the findings and Section 7concludes our work. 

II. RELATED WORKS 

Khoma et al. [7] used a Bayesian approach 

to detect code and design smells. The goal of the 

paper was to develop a method for automatically 

detecting code and design smells in software 

systems. The developed approach was able to detect 

code and design smells with an accuracy of up to 

97%. Later, Khoma et al. [8] proposed a new 

approach to detecting anti-patterns, called BDTEX. 

BDTEX is a GQM-based Bayesian approach that 

uses a probabilistic model to detect anti-patterns in 

software systems. The goal of this research paper is 

to develop an effective and efficient method for 

detecting anti-patterns in software systems. The 

authors evaluated the performance of BDTEX on 

two real-world software systems and found that it 

was able to detect anti-patterns with high accuracy 

and low false positive rates.  

Maneerat and P. Muenchaisri [9]  used 

Machine Learning Techniques to predict bad smells 

from software design models. The results showed 

that the proposed approach was able to detect bad 

smells with an accuracy of up to 90%. With an 

accuracy of up to 97%. Maiga et al. [10] used a 

Support Vector Machine (SVM) to detect anti-

patterns in software systems. Their goal was to 

develop a method for automatically detecting anti-

patterns in software systems using SVM. They 

showed that SVM was more accurate than other 

methods such as decision trees and neural networks. 

Kaur et al. [2] used SVM approach to detect code 

smells. The goal of the paper was to develop an 

automated system for detecting code smells in 

software systems. The authors found that their SVM-

based approach was able to accurately detect code 

smells with an accuracy of up to 97%. Additionally, 

they found that their approach was able to detect 

code smells more quickly than other existing 

methods.  

Fontana et al. [11] proposed an approach 

based on machine learning technique to detect code 

smells. The results showed that the proposed 

approach was able to detect code smells with an 

accuracy of up to 80%. In 2016, Fontana et al. [12] 

used a dataset of Java projects to compare the 

performance of different machine learning 

techniques for code smell detection. The goal of this 

paper was to evaluate the effectiveness of different 

machine learning techniques for detecting code 

smells in software projects. The results showed that 

SVMs and Random Forests (RFs) were the most 

effective machine learning techniques for detecting 

code smells in software projects. In 2017, Fontana et 

al. [13] classified code smell severity using Machine 

Learning Techniques. The results showed that the 

proposed approach was able to classify code smell 

severity with an accuracy of up to 90%.  

In 2018, Di Nucci et al  [14] replicated 

Fontana’s work to compare the performance of 

different machine learning techniques for code smell 

detection. Their aims were to evaluate the 

effectiveness of different machine learning 

techniques for detecting code smells in software 

projects and to compare their performance with 

existing approaches such as static analysis tools and 

rule-based systems. Their results showed that SVMs 

were the most effective machine learning technique 

for detecting all four types of code smells in 

software projects, outperforming existing 

approaches such as static analysis tools and rule-

based systems. Based on relational association rule 

mining, Czibula et al. [15] detected software design 

defects. The results showed that the proposed 

approach was able to detect software design flaws 

with an accuracy of up to 95%. 
 Finally, in 2020, Ben Idris et al. [16] used 

machine learning-based approach to prioritize 

software components' risk. The goal of the paper 

was to develop a method for prioritizing software 

components' risk. The results showed that the 

proposed approach was able to accurately prioritize 

software components' risk with extraordinary 

performance.  We have distinguished our study from 

the previous literature by noting the following four 

points: 

 Unlike [2] [8] [10] [13] [14], we created our own 

dataset based on Apache projects, which we then 

analyzed. 
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 We focused on detecting Design smell 

specifically God Class and Data Class smells, 

while [9] concentrated on other types of design 

smells and [11] focused on code smells, and [7] 

[8] [10] did not detect Data Class. While [13] 

classified the severity of the God and Data Class.  

 Our study employed the PMD tool for extracting 

the internal structure and rules used to detect GC 

and DC smells, whereas literary [17] used a 

different tool related to code smell detection. 

 We compared our study to previous literature by 

using three metrics to detect GC class and four 

metrics to detect Data Class while [12] utilized 

one and three metrics to detect the God Class and 

Data Class smells respectively. Additionally, we 

employed more than 30 machine learning models, 

which are detailed in Section 3, whereas the prior 

studies used only one or no more than 30 models. 

This comparison provides a clear understanding 

of how our research differs from what has been 

done before. By presenting this information in an 

organized way, we aim to show the originality of 

our work. 

III. METHODOLOGY 

The purpose of this work is to build a 

machine learning model that can detect design 

smells in open-source projects. To do this, we must 

create our own dataset. We will use a design smell 

tool to analyze various open-source projects in a 

case study. This case study will help us building our 

own dataset by answering these three research 

questions: 

 RQ1: What are the most effective tool used by 

researchers to identify bad smells?   

 RQ2: Which type of bad smells can be detected 

by the most effective tools in RQ1?   

 RQ3: What are the detection strategies used by 

the most effective tools in RQ1?  

RQ1 helps us find the best tool that can be 

used to generate our dataset, while RQ2 assists us in 

focusing on the type of smells that are deemed more 

hazardous based on the effective tools. Finally, RQ3 

aids us in discovering the most reliable methods 

used by researchers to detect design smells.  

3.1 Select a Detection Tool 

In order to answer RQ1, we conducted a 

search on Google Scholar for papers related to the 

design smell detection tool. We discovered 10 

papers, and after reading them, it was concluded that 

JDeodorant, PMD, iPlasma, InFusion and DÉCOR 

were the most effective tools according to the 

researchers.   

JDeodorant is a software tool that operates 

within the Eclipse environment and aims to improve 

software design. It accomplishes this by detecting 

common design issues, referred to as "code smells", 

and offering recommended solutions through 

appropriate refactoring techniques. The tool uses 

unique and innovative methods to identify these 

code smells and suggest the right course of action. 

PMD analyzes Java source code to identify potential 

issues, including potential bugs like dead code, 

empty control structures, unused variables, and 

duplicated code. It also detects code smells and 

allows for customization of metric threshold values. 

iPlasma is a comprehensive platform for evaluating 

the quality of object-oriented systems, covering all 

phases of analysis, from model extraction to high-

level metric-based analysis and duplication 

detection. It can detect various code smells known as 

"disharmonies," including identity disharmonies, 

collaboration disharmonies, and classification 

disharmonies. Further information on these 

disharmonies can be found. InFusion is a 

comprehensive solution for assessing and improving 

the quality of systems at both the architectural and 

code levels. It covers all phases of the analysis 

process and is capable of detecting over 20 design 

weaknesses and coding inefficiencies, including 

code duplication, breaches in encapsulation, 

excessive coupling, and suboptimal class hierarchy 

design. InFusion is a product of the expansion of 

iPlasma, featuring additional functionalities. 

DÉCOR is a method for specifying and 

automatically detecting code and design weaknesses, 

commonly referred to as anti-patterns. This approach 

specifically defines six code smells and creates 

detection algorithms using templates. The precision 

and recall of these algorithms were then evaluated. 

The term DECOR refers to the component created 

for detecting these weaknesses [18]. 

WE found that PMD, iPlasma, and 

JDeodorant are the most prevalent tools in this area. 

As reported in [18] and [19], a comparison of these 

tools was conducted. JDeodorant was dismissed 

from the comparison due to its utilization of a 

custom specification language. The comparison was 

narrowed down to PMD and iPlasma. However, 
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iPlasma was eventually excluded from the 

comparison because the threshold values that use it. 

It was concluded that PMD was the preferred tool 

for smells detection, given its superior performance 

in terms of   threshold value utilization 

 

3.2 Select Type of Design Smells  

The answer of RQ1 helps us address RQ2. 

And based on that, we conducted a literature review 

to gain a thorough understanding of the predominant 

design smells. This will assist us in concentrating 

our attention on the most critical design smell. Table 

1 categorizes the bad smells detected by the tool 

[18].  

Table 1: Information about bad smells detection tools  
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After examining the researchers’ 

recommendations, we found that God Class and 

Data Class are the most prominent design smells that 

have a negative impact on open source software 

[14]. A God Class is a software design anti-pattern 

that occurs when a single class takes on too many 

responsibilities. This type of class is often 

characterized by having an excessive number of 

methods, attributes, and dependencies. It can also be 

identified by its lack of cohesion, as the methods and 

attributes are unrelated to each other. A God Class 

can lead to code that is difficult to maintain and 

debug, as it is often difficult to understand the 

purpose of the class and how its various components 

interact with each other. On the other hand, Data 

Class Smell is an anti-pattern in software design 

where a class contains only data fields and no 

methods or behaviour. This type of class can lead to 

code that is difficult to maintain and debug, as it 

does not provide any context for understanding how 

the data fields are used or related to each other. 

Additionally, Data Class Smell can lead to code 

duplication if multiple classes contain similar data 

fields but no behaviour [20]. 

 

3.3 Select Design Smells Detection Strategies 

After answering RQ1, RQ2, and RQ3, we 

decided to delve into the God and scent detection 

strategies used by the selector. We ran the tool and 

examined its results, as well as browsed through the 

tool's documentation and help. The metrics proposed 

by Lanza and Marinescu [20] for detection strategies 

were applied, as indicated in Table 2. The rules for 

identifying God Classes and Data Classes were 

formulated as presented in Equations1 and 2, 

respectively. 

 

…. (1) 

 

 

 
… (2) 

Table 2: Metrics used for design smells detection 

Short Name Long Name 

ATFD Access To Foreign Data 

WMC Weighted Methods Count 

TCC Tight Class Cohesion 

NOAM Number Of Accessor Methods 

NOPA Number Of Public Attributes 

WOC Weight Of Class 
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IV. CONDUCT A CASE STUDY 

4.1 Collect the Software Systems 

We decided to conduct a case study using 

the PMD tool on open source software projects that 

have been studied by researchers in literature. At the 

beginning of our research, we intended to analyze 

the projects of graduate students at our college. 

However, when we started to look into them, we 

noticed that some of these projects did not have 

source code or were written in different languages 

that makes hard to find tools analyzing some of that 

programming languages. This led us to modify our 

plan and focus on the most popular open source 

software projects that had been examined by Deeb et 

al. [21] and Lenarduzzi et al. [22], even though their 

objectives were different from ours. We randomly 

selected one release from each Apache project 

studied by [21] and [22], as shown in Table 3. 

Apache Projects [23] are a group of open source 

software projects managed by the Apache Software 

Foundation. These projects span a wide range of 

topics, from web servers and databases to big data 

and machine learning. The Apache Projects are 

developed in an open and collaborative environment, 

with contributions from individuals and 

organizations around the world. The projects are 

released under the Apache License, which allows for 

free use, modification, and redistribution of the 

software. 
 

Table 3: Projects and releases used in this case study 
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4.2 Analysis the Software Systems 
Figure 1 presents the smells distribution 

among God Class (GC) and Data Class (DC). The 

data consists of a total of 651 smell instances, with 

426 instances belonging to GC and 225 instances 

belonging to DC. 

https://aurora.apache.org/
https://aurora.apache.org/
https://attic.apache.org/projects/aurora.html
https://attic.apache.org/projects/aurora.html
http://beam.apache.org/
http://cocoon.apache.org/
http://cocoon.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://hc.apache.org/
http://hc.apache.org/
http://hc.apache.org/
http://xml.apache.org/batik/
http://xml.apache.org/batik/
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Figure 1. The distribution of God Class and Data Class on 

the selected Apache project 

 

In the Aurora Release 0.12.0 project, there were 

6 God Class (GC) smell and Data class (DC) smell 

occurrences, making up 0.92% and 0.46% of the 

total GC and DC smell respectively, which was the 

lowest percentage of smells. The Beam Release 

2.7.0 project had 46 GC and 23 DC smell, with 

percentages of 7% and 3.5%. The Cocoon Release 2-

1-8 project had the highest number of GC and DC 

smells with 155 GC and 83 DC smells, accounting 

for 23% and 12%. The Commons-Collections 

Release 3.3 project had 30 GC and 2 DC smell, with 

rates of 4% and 0.3%. Lastly, the Commons-

Configuration Release 1.3 project had 11 GC and 7 

DC smell, with rates of 1.6% and 1%. The 

Httpcomponents-Client Release 4.5.11 project had 

35 GC smells and 12 DC smells, with a rate of 5.3% 

for GC and 1.8% for DC. The Httpcomponents-Core 

Release 4.4.12 project had 40 GC smells and 20 DC 

smells, with a rate of 7.1% for GC and 3% for DC. 

The XML Graphics Release 1-6 project had 86 GC 

smells and 69 DC smells, with a rate of 13% for GC 

and 10.5% for DC. Lastly, the Zookeeper Release 

3.4.5 project had 17 GC smells and 6 DC smells, 

with a rate of 2.6% for GC and 0.92% for DC 

respectively. 

 

4.3 Apply Machine Learning  

Weka 3.8.6 will be used to develop our 

machine learning models. Weka is a powerful open 

source machine learning tool developed by the 

University of Waikato in New Zealand. It is widely 

used for data mining, predictive analytics, and other 

machine learning tasks. WEKA provides a graphical 

user interface (GUI) that allows users to interact 

with the software and perform various tasks such as 

data pre-processing, classification, clustering, 

regression, association rule mining, and 

visualization. WEKA also supports a wide range of 

algorithms for each task. WEKA is written in Java 

and can be run on any platform that supports Java. It 

can be used to analyze large datasets from various 

sources such as CSV files, databases, or even Excel 

spreadsheets. WEKA also provides an API which 

allows users to develop their own algorithms or 

integrate existing ones into their applications. 

Additionally, WEKA includes a variety of tools for 

evaluating the performance of different machine-

learning algorithms on datasets. These tools include 

cross-validation techniques and statistical tests for 

comparing different models [24] [25]. 

The main focus of this research paper was 

to apply supervised machine learning techniques for 

design smell detection. We used three internal 

structure metrics to identify God Classes and we 

used four internal structure metrics to identify Data 

Classes. In addition, nine Apache open-source 

system projects were chosen from the Apache 

website. Equation 1 and 2 were used to detect GC 

and DC respectively, while Table 3 provides 

information about the nine projects. 

 

 

 

     Figure 2. Rules to detect God Class  

 

As we mention above, we used three 

internal structure metrics to identify God Classes 

(Figure 2). If Access To Foreign Data (ATFD) 

metric is greater than FEW, it implies that the 

classes heavily access data of other simpler classes, 

either directly or by using accessor methods. The 

higher the ATFD value, the more likely it is that the 

class is a God Class. If Weighted Methods Count 

(WMC) metric is equal to or higher than VERY 

HIGH, it indicates that the classes are large and 
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complex. Lastly, if Tight Class Cohesion (TCC) 

metric is less than one-third, it suggests that the class 

has a lot of non-communicative behaviour (low 

cohesion between the methods belonging to that 

class). This means that the Class carries out multiple 

distinct tasks with separate sets of attributes, which 

has a detrimental effect on its cohesion. The lower 

the TCC value, the more likely it is that the class is a 

God Class. 

As shown in Figure 3, a specific strategy is 

used to identify Data Classes based on four metrics 

which are Weight Of Class, (WOC), Number of 

Accessor Methods (NOAM), Number of Public 

Attributes (NOPA), and Weighted Method Count 

(WMC).  The class is a Data Class if (1) WOC is 

less than one-third that means it suggests that 

interface of the class reveals data rather than offering 

services AND (2) the class reveals many attributes 

and is not complex. To find if (2) the class reveals 

many attributes and is not complex by checking if: 

1. It has more than a few public data members 

(NOAP + NOAM > FEW) AND its complexity 

is not HIGH. This would indicate that the class 

is relatively small, has minimal functionality, 

and only provides some data and accessors to 

that data.  

2. It has many public data (NOAP + NOAM > 

MANY) AND class complexity is not VERY 

HIGH. That means this class provides MANY 

public data but the complexity of the class 

(WMC) to be considerably not VERY HIGH. 

We just look at the class less that very high 

complexity because it does not conceptually fit 

the Data Class term [20]. 

 

 

 

 

 

 

 

 

 

Figure 3. Rules to detect Data Class  

 

A 10-fold cross-validation techniques was 

used to estimate the performance of each predictive. 

According to Kohavi [26] it has less bias because it 

divides the data into 10 segments (folds), where and 

the first segment was tested while the other nine 

were used as training data. This process was 

repeated for all segments. We measured the accuracy 

and performance of each machine learning models to 

evaluate them. By looking at the Accuracy, Receiver 

Operating Characteristics Curve (ROC), F-measure, 

and Matthews Correlation Coefficient (MCC) values 

we can determine whether the ML model is a good 

model. However, before that, we will give a short 

explanation of each measurement.  

Accuracy is a measure of how accurately a 

machine learning model can predict the correct 

outcome. It is calculated by dividing the number of 

correct predictions by the total number of 

predictions. A higher accuracy indicates that the 

model is better at predicting the correct outcome. To 

interpret the results, a higher accuracy indicates that 

the model is more accurate in its predictions.  

Receiver Operating Characteristic (ROC) is 

a measure of how well a machine learning model 

can distinguish between two classes. It is calculated 

by plotting the true positive rate against the false 

positive rate for different thresholds. A higher ROC 

indicates that the model is better at distinguishing 

between two classes. To interpret the results, a 

higher ROC indicates that the model has better 

discrimination power between two classes.  

F-measure is a measure of how well a 

machine learning model can classify data points into 

different classes. It combines precision and recall 

into one metric and is calculated by taking the 

harmonic mean of precision and recall scores. A 

higher F-measure indicates that the model has better 

classification performance. To interpret the results, a 

higher F-measure indicates that the model has better 

classification performance across different classes.   

Matthews Correlation Coefficient (MCC) is 

a measure of how well a machine learning model 

can classify data points into different classes while 

taking into account true positives, false positives, 

true negatives, and false negatives. It ranges from -1 

to 1 where 1 indicates perfect prediction and -1 

indicates perfect misclassification. To interpret the 

results, a higher MCC score indicates that the model 

has better classification performance across different 

classes while taking into account all four types of 

outcomes (true positives, false positives, true 

negatives, and false negatives) [27]. 
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V. RESULTS 

This paper utilized thirty different machine 

learning algorithms to create models that can 

identify two types of design smells, specifically God 

and Data Class. The machine learning inputs were 

obtained from the internal metrics extracted from the 

source code of Apache projects.  The ML algorithm 

accuracies for the God Class ranged from 99% to 

92%, while for the Data Class they ranged from 99% 

to 86%. However, it is important to note that our 

observations may be biased due to the imbalance in 

our dataset, which can affect our machine learning 

models. To address this, we decided to evaluate our 

models using MCC and F-measure, as they are better 

suited for imbalanced datasets. MCC considers all 

values in the Confusion Matrix, providing a more 

accurate evaluation of the dataset.   

 

 

Figure 4. God Class: The MCC and F-measure values for 

balanced and imbalanced dataset 

Figure 4 illustrates the performance of 

different machine learning models in detecting God 

Class using F-measure and MCC. When working 

with an imbalanced dataset, Trees LMT, Trees 

Random Forest, and Meta Logit Boost showed the 

highest MCC values, while Bayes Navie Bayes, 

Bayes Navie Bayes Multinomial, and Functions 

SMO had the lowest MCC values.  After balancing 

the dataset, Trees LMT, Meta Logit Boost, Rules 

PART, Rules JRip, and Trees J48 exhibited the 

highest MCC values, while Bayes Navie Bayes 

Multinomial had the lowest. In terms of F-measure 

when working with an imbalanced dataset, Rules 

PART, Meta Bagging, Meta Randomizable Filtered 

Classifier, Meta Classification Via Regression, 

Rules Decision Table, Meta Filtered Classifier, and 

Meta Attribute Selected Classifier demonstrated the 

highest values. Conversely, Bayes Navie Bayes 

Multinomial had the lowest F-measure value. After 

balancing the dataset, Trees J48, Meta Bagging, 

Lazy IBk, Meta Filtered Classifier, and Meta 

Attribute Selected Classifier showed the highest F-

measure values while Functions SMO had the 

lowest. 

Figure 5 displays the results of various 

machine learning models in detecting Data Class, 

measured by F-measure and MCC. When using an 

imbalanced dataset, Trees LMT, Trees J48, and 

Rules PART exhibit the highest MCC values, while 

Functions SGD, Meta Multi Class Classifier 

Updateable, and Functions SMO show the lowest 

MCC values. However, after balancing the dataset, 

Meta Random Committee, Trees Random Forest, 

and Trees Random Tree demonstrate the highest 

MCC values, while Meta Multi Class Classifier, 

Functions Voted Perceptron, and Bayes Navie Bayes 

Multinomial exhibit the lowest MCC values.  In 

terms of F-measure with an imbalanced dataset, 

Trees LMT, Trees J48, and Meta Random 

Committee have the highest values. Conversely, 

Functions SGD, Meta Multi Class Classifier 

Updateable, and Functions SMO have the lowest F-

measure values. After balancing the dataset, Meta 

Random Committee, Trees Random Forest, and 

Trees Random Tree display the highest F-measure 

values. On the other hand,Trees Hoeffding Tree , 

Functions Voted Perceptron ,and Bayes Navie Bayes 

Multinomial have the lowest F-measure values. 
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Figure 5. Data Class: The MCC and F-measure values for 

balanced and imbalanced dataset 

 

Figure 6, 7, 8 and 9 compare our ML 

models with the related work based on their type of 

algorithms that have been used to detect bad smells 

in the related work. The comparison was based on 

three evaluation metrics: Accuracy, F-Measure, and 

ROC Area. Figure 6 compares the results of the 

imbalanced GC dataset with [11] and [12]. In terms 

of accuracy, study [11] achieved a score of 0.973 for 

Random Forest and Rule JRip, while study [12] 

achieved 0.9755 for Bayes Naive Bayes. Our 

Random Forest and Rule JRip models achieved an 

accuracy of 0.99. For F-Measure, study [11] scored 

0.974 for Random Forest and Rule JRip, while study 

[12] achieved 0.9927 for Random Forest. Our 

Random Forest and Rule JRip models had a value of 

0.99 as well. In terms of ROC measures, Study [11] 

and [12] achieved the highest scores of 0.989 and 

0.981 for Random and Bayes Naive Bayes 

respectively. Our work saw ROC equal one for the 

Random Forest model. 

 

 

Figure 6. Compare our results with related works – God 

Class (imbalanced dataset) 

We compared the results of our balanced 

GC dataset to those shown in Figure 7. Paper [11] 

had an accuracy of 0.973 for Random Forest and 

Rule JRip, while paper [12] achieved the highest 

accuracy (0.9755) for Bayes Naive Bayes. Our Rule 

JRip model had the highest accuracy at 0.999. In 

terms of F-Measure, paper [11] had the highest value 

(0.974) for Random Forest and Rule JRip, while 

paper [12] achieved a value of 0.9927 for Random 

Forest. Our models Bayes Naive Bayes and Random 

Forest both achieved 1 in this measurement. Lastly, 
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paper [11]'s ROC value was 0.989 for Random 

Forest and 0.981 for Bayes Naive Bayes in paper 

[12], while our Rule JRip model's ROC value was 

equal to 0.998. 

 

 

Figure 7. Compare our results with related works – God 

Class (balanced dataset) 

In Figure 8, the results of the imbalanced 

DC dataset are shown. In terms of accuracy, study 

[11] and [12] achieved the highest accuracy of 0.99 

for Random Forest while our models Random Forest 

and Rule JRip model achieved an accuracy of 0.999. 

For F-Measure, study [11] achieved the highest 

value of 1 for Random Forest while study [12] 

achieved a value of 0.992 for Random Forest and 

our model Random Forest achieved a value of 0.994. 

Lastly, in terms of ROC measures, study [11] 

achieved a highest value of 0.994 for Random Forest 

and study [12] achieved a highest value of 0.999 for 

Random Forest with our model achieving the highest 

value at 1. 

 

 

Figure 8. Compare our results with related works – Data 

class (imbalanced dataset) 

In Figures 9, the findings of the balanced 

DC dataset are presented. The accuracy of study  

[11] and [12] was highest for Random Forest at 0.99 

and 0.999 respectively. For F-Measure, study [11] 

achieved a highest value of one for Random Forest 

while study [12] achieved a highest value of 0.992 

for Random Forest; our Random Forest model had 

the highest value at 0.999. Lastly, in ROC measures, 
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study [11] achieved a highest value of 0994 for 

Random Forest while study [12] achieved a highest 

value of 0.999; our Random Forest model had the 

highest value at 0.995 

 

 

 

Figure 9. Compare our results with related works – Data 

class (balanced dataset) 

 

VI. THREATS TO VALIDITY 

Threats to construct validity concern the 

relationship between theory and observation. In our 

study, we used PMD to detect design smells, as it 

was the best option for the smells we were looking 

for. However, this could be biased by our 

imbalanced dataset, so we tested our models using 

both balanced and imbalanced datasets. To create a 

ground truth for machine learning, we developed 

criteria based on related work and PMD. We then 

used three metrics to detect God Classes and four 

metrics to detect Data Classes. PMD has a good 

performance, thus allowing us to effectively extract 

the metrics we used to detect design code smell. 

The potential for our results to be impacted by 

external factors is a concern when it comes to 

internal validity. The rules used to detect God Class 

and Data Class smells may not be seen as such by a 

human expert or other tools. However, the rules we 

used were based on a rule-based PMD tool which 

has been proven to have good performance. To 

ensure accuracy, we employed 10-fold cross-

validation which is known to have less bias in its 

estimation. 

Threats to conclusion validity is linked to our 

ability to draw the right ones. One risk to the 

accuracy of these conclusions is connected to the 

datasets. The datasets were imbalanced, so F-

measure and MCC values were used to evaluate our 

machine learning model. F-measure and MCC are 

known for being used with asymmetric datasets. To 

compare the results of the two models created from 

balanced and imbalanced datasets, we balanced our 

datasets and then compared the machine learning 

results. 

External validity refers to the generalization of 

the results. We conducted a case study to analyze 

nine Apache projects written in Java, and the 

machine learning input was based on these projects. 

However, due to the limited scope of the study, we 

cannot extrapolate the results to other contexts. 

 

VII. CONCLUSIONS AND FUTURE 

WORK 

In this study, we conducted a case study to 

create a dataset which was then used to train our 

machine-learning models to detect design smells. 

The accuracy, Receiver Operating Characteristics 

Curve (ROC), F-measure, and Matthews Correlation 

Coefficient (MCC) values of the models were 

reported in order to demonstrate their performance. 

We conduct a case study using a balanced and 

imbalanced dataset to show how machine learning 
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classifiers could be affected while detecting God and 

Data Class smell. Ultimately, the level of prediction 

was comparable with other related studies, making 

many of our models suitable for prediction. Our 

future work will center on the development of a 

machine-learning model for the identification of 

additional design smells in software systems. To this 

end, we will be collecting a larger set of design 

smells by analyzing at least one hundred Apache 

projects (10 releases for each). Our objectives are to 

detect more type of design smells and make the 

extensive dataset available to the research 

community as a valuable resource. 
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