
Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 166 | Page

Detecting Design Smells Using Machine Learning: A Case

Study

Ebtehal Alnaihom, Huda Alzureedi, Mrwan BenIdris
Computer Science Department, Faculty of Information Technology, University of Benghazi, LIBYA

itstd.4304@uob.edu.ly, itstd.4160@uob.edu.ly, mobenidris@uob.edu.ly

ABSTRACT

Continuous development in software results in complexity and this confuses the design and programming stages,

which makes the maintenance of the software difficult and thus affects the quality of software. Bad smells refer

to weak solutions that can lead to issues with software maintainability. These smells are common problems that

arise in implementation, design, and architecture, and can be identified by using a set of metrics and their

threshold values. This paper conducted multiple case studies on 9 Apache projects in order to (1) determine the

most effective tool for detecting bad smells, (2) learn how to detect bad smells using the most effective tools, and

(3) identify the detection strategies used by those tools. Additionally, machine learning techniques were used to

identify Design Smells. The aim was to demonstrate that ML techniques can be used to identify design smells,

with the created dataset being made available once our work is accepted and published.

Keywords – design smell, machine learning, detection, refactoring.

Date of Submission: 06-09-2023 Date of acceptance: 18-09-2023

I. INTRODUCTION

Code smells are indicators of quality issues

that can have a negative impact on many aspects of

software quality. Fowler [1] was the first to use the

metaphor of "code smells" to refer to signs of a weak

solution that can lead to issues with code

maintainability. Too many code smells in a system

can make it difficult to maintain and develop further.

Code smells are also known as bad smells, code

anomalies, design flaws, and anti-patternsm [2] .

Bad smells can be used to detect Technical

Debt (TD), and it is the most commonly used

indicator for TD, as reported by Alves et al. [3] and

Ben Idris et al. [4]. TD was first introduced by Ward

Cunningham, who famously said, “Shipping first-

time code is like going into debt. A little debt speeds

development so long as it is paid back promptly with

a rewrite” [5]. Seventeen types of TD have been

mentioned by [4], many of them, but not all, can be

identified by using bad smells and each type of smell

can be recognized by using a set of metrics and their

threshold values. After detecting the bad smells,

refactoring can be performed to reduce technical
debt. However, many software developers opt for

adding new features or fixing existing bugs rather

than refactoring, as refactoring does not offer any

immediate rewards. God Class (GC) and Data Class

(DC) are two types of design smells. These two

design smells have been characterized as follows:

Data Class consists of fields with getters and setters

and nothing else, is often manipulated too much by

other classes. God Class is a class that does too

much work on its own, delegating only minor tasks

to other classes and using data from other classes

[6]. We focus our attention on those two types of

design smells because they are very common.
Normally, tools are used to detect bad

smells during maintenance phase. However, the

problem appears if different tools are used to detect

GC and DC due to the fact that different tools use

different thresholds, which affect the accuracy of the

detector results. The question is how we should

detect the GC and DC with high accuracy. For that

reason, we will use machine learning techniques to

detect GC and DC. Different machine learning

models will be applied to achieve the best possible

classification accuracy. The objective of this

research paper was as follows: Carry out empirical

studies on open-source projects, use machine

learning techniques to detect design smells, and

provide datasets on design smells. The main

contributions of this paper are the following:

 We conducted a case study to explore the use of

bad smell tools, analyze open source projects, and

extract metrics values for the purpose of detecting

GC and DC.

 We applied machine learning techniques to

identify GC and DC in open-source projects.

RESEARCH ARTICLE OPEN ACCESS

mailto:itstd.4304@uob.edu.ly
mailto:itstd.4160@uob.edu.ly
mailto:mobenidris@uob.edu.ly

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 167 | Page

 We compiled a dataset that will be made available

to other researchers upon the publication of our

findings.

The rest of this paper is organized as

follows. Section 2 highlights the related works. Our

methodology is discussed in Section 3. Section 4

presents a case study will be conducted and machine

learning will be applied to detect design smells. The

results, and discussion are provided in Section 5.

Section 6 presents the threats that may be affecting

the findings and Section 7concludes our work.

II. RELATED WORKS

Khoma et al. [7] used a Bayesian approach

to detect code and design smells. The goal of the

paper was to develop a method for automatically

detecting code and design smells in software

systems. The developed approach was able to detect

code and design smells with an accuracy of up to

97%. Later, Khoma et al. [8] proposed a new

approach to detecting anti-patterns, called BDTEX.

BDTEX is a GQM-based Bayesian approach that

uses a probabilistic model to detect anti-patterns in

software systems. The goal of this research paper is

to develop an effective and efficient method for

detecting anti-patterns in software systems. The

authors evaluated the performance of BDTEX on

two real-world software systems and found that it

was able to detect anti-patterns with high accuracy

and low false positive rates.

Maneerat and P. Muenchaisri [9] used

Machine Learning Techniques to predict bad smells

from software design models. The results showed

that the proposed approach was able to detect bad

smells with an accuracy of up to 90%. With an

accuracy of up to 97%. Maiga et al. [10] used a

Support Vector Machine (SVM) to detect anti-

patterns in software systems. Their goal was to

develop a method for automatically detecting anti-

patterns in software systems using SVM. They

showed that SVM was more accurate than other

methods such as decision trees and neural networks.

Kaur et al. [2] used SVM approach to detect code

smells. The goal of the paper was to develop an

automated system for detecting code smells in

software systems. The authors found that their SVM-

based approach was able to accurately detect code

smells with an accuracy of up to 97%. Additionally,

they found that their approach was able to detect

code smells more quickly than other existing

methods.

Fontana et al. [11] proposed an approach

based on machine learning technique to detect code

smells. The results showed that the proposed

approach was able to detect code smells with an

accuracy of up to 80%. In 2016, Fontana et al. [12]

used a dataset of Java projects to compare the

performance of different machine learning

techniques for code smell detection. The goal of this

paper was to evaluate the effectiveness of different

machine learning techniques for detecting code

smells in software projects. The results showed that

SVMs and Random Forests (RFs) were the most

effective machine learning techniques for detecting

code smells in software projects. In 2017, Fontana et

al. [13] classified code smell severity using Machine

Learning Techniques. The results showed that the

proposed approach was able to classify code smell

severity with an accuracy of up to 90%.

In 2018, Di Nucci et al [14] replicated

Fontana’s work to compare the performance of

different machine learning techniques for code smell

detection. Their aims were to evaluate the

effectiveness of different machine learning

techniques for detecting code smells in software

projects and to compare their performance with

existing approaches such as static analysis tools and

rule-based systems. Their results showed that SVMs

were the most effective machine learning technique

for detecting all four types of code smells in

software projects, outperforming existing

approaches such as static analysis tools and rule-

based systems. Based on relational association rule

mining, Czibula et al. [15] detected software design

defects. The results showed that the proposed

approach was able to detect software design flaws

with an accuracy of up to 95%.
 Finally, in 2020, Ben Idris et al. [16] used

machine learning-based approach to prioritize

software components' risk. The goal of the paper

was to develop a method for prioritizing software

components' risk. The results showed that the

proposed approach was able to accurately prioritize

software components' risk with extraordinary

performance. We have distinguished our study from

the previous literature by noting the following four

points:

 Unlike [2] [8] [10] [13] [14], we created our own

dataset based on Apache projects, which we then

analyzed.

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 168 | Page

 We focused on detecting Design smell

specifically God Class and Data Class smells,

while [9] concentrated on other types of design

smells and [11] focused on code smells, and [7]

[8] [10] did not detect Data Class. While [13]

classified the severity of the God and Data Class.

 Our study employed the PMD tool for extracting

the internal structure and rules used to detect GC

and DC smells, whereas literary [17] used a

different tool related to code smell detection.

 We compared our study to previous literature by

using three metrics to detect GC class and four

metrics to detect Data Class while [12] utilized

one and three metrics to detect the God Class and

Data Class smells respectively. Additionally, we

employed more than 30 machine learning models,

which are detailed in Section 3, whereas the prior

studies used only one or no more than 30 models.

This comparison provides a clear understanding

of how our research differs from what has been

done before. By presenting this information in an

organized way, we aim to show the originality of

our work.

III. METHODOLOGY

The purpose of this work is to build a

machine learning model that can detect design

smells in open-source projects. To do this, we must

create our own dataset. We will use a design smell

tool to analyze various open-source projects in a

case study. This case study will help us building our

own dataset by answering these three research

questions:

 RQ1: What are the most effective tool used by

researchers to identify bad smells?

 RQ2: Which type of bad smells can be detected

by the most effective tools in RQ1?

 RQ3: What are the detection strategies used by

the most effective tools in RQ1?

RQ1 helps us find the best tool that can be

used to generate our dataset, while RQ2 assists us in

focusing on the type of smells that are deemed more

hazardous based on the effective tools. Finally, RQ3

aids us in discovering the most reliable methods

used by researchers to detect design smells.

3.1 Select a Detection Tool

In order to answer RQ1, we conducted a

search on Google Scholar for papers related to the

design smell detection tool. We discovered 10

papers, and after reading them, it was concluded that

JDeodorant, PMD, iPlasma, InFusion and DÉCOR

were the most effective tools according to the

researchers.

JDeodorant is a software tool that operates

within the Eclipse environment and aims to improve

software design. It accomplishes this by detecting

common design issues, referred to as "code smells",

and offering recommended solutions through

appropriate refactoring techniques. The tool uses

unique and innovative methods to identify these

code smells and suggest the right course of action.

PMD analyzes Java source code to identify potential

issues, including potential bugs like dead code,

empty control structures, unused variables, and

duplicated code. It also detects code smells and

allows for customization of metric threshold values.

iPlasma is a comprehensive platform for evaluating

the quality of object-oriented systems, covering all

phases of analysis, from model extraction to high-

level metric-based analysis and duplication

detection. It can detect various code smells known as

"disharmonies," including identity disharmonies,

collaboration disharmonies, and classification

disharmonies. Further information on these

disharmonies can be found. InFusion is a

comprehensive solution for assessing and improving

the quality of systems at both the architectural and

code levels. It covers all phases of the analysis

process and is capable of detecting over 20 design

weaknesses and coding inefficiencies, including

code duplication, breaches in encapsulation,

excessive coupling, and suboptimal class hierarchy

design. InFusion is a product of the expansion of

iPlasma, featuring additional functionalities.

DÉCOR is a method for specifying and

automatically detecting code and design weaknesses,

commonly referred to as anti-patterns. This approach

specifically defines six code smells and creates

detection algorithms using templates. The precision

and recall of these algorithms were then evaluated.

The term DECOR refers to the component created

for detecting these weaknesses [18].

WE found that PMD, iPlasma, and

JDeodorant are the most prevalent tools in this area.

As reported in [18] and [19], a comparison of these

tools was conducted. JDeodorant was dismissed

from the comparison due to its utilization of a

custom specification language. The comparison was

narrowed down to PMD and iPlasma. However,

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 169 | Page

iPlasma was eventually excluded from the

comparison because the threshold values that use it.

It was concluded that PMD was the preferred tool

for smells detection, given its superior performance

in terms of threshold value utilization

3.2 Select Type of Design Smells

The answer of RQ1 helps us address RQ2.

And based on that, we conducted a literature review

to gain a thorough understanding of the predominant

design smells. This will assist us in concentrating

our attention on the most critical design smell. Table

1 categorizes the bad smells detected by the tool

[18].

Table 1: Information about bad smells detection tools

Tool Type
Supp.

Lang.
Code smell

JD
eo

d
o

ran
t

E
clip

se

P
lu

g
-in

 Jav
a

Feature Envy, God Class, Long

Method, Type Checking, and

Duplicate code

In
fu

sio
n

S
tan

d
alo

n
e

 ap
p
licatio

n

C
, C

+
+

, Jav
a

Cyclic Dependencies, Brain

Method Data Class, Feature Envy,

God Class, Intensive Coupling,
Missing Template, Method,

Refused Parent, Bequest,

Significant, Duplication, and
Shotgun Surgery

iP
lasm

a

S
tan

d
alo

n
e

ap
p

licatio
n

C
+

+
, Jav

a

Brain Class, Brain Method, Data

Class, Dispersed Coupling, Feature

Envy, God Class, Intensive
Coupling, Shotgun Surgery,

Refused Parent, Bequest, Tradition

Breaker By custom rules, Long
Method, Long Parameter List,

Speculative, and Generality

P
M

D

E
clip

se P
lu

g
in

 o
r

S
tan

d
alo

n
e ap

p
.

Jav
a, Jav

aS
crip

t,

A
p

ex
 an

d

V
isu

alfo
rce

Data Class, God Class. Long
Method, and Long Parameter List

D
É

C
O

R

(B
lack

 B
o

x
)

S
tan

d
alo

n
e

ap
p

licatio
n

.

Jav
a

Large Class, Lazy Class, Long

Method, Long Parameter List,

Refused Parent, Bequest, and
Speculative Generality

After examining the researchers’

recommendations, we found that God Class and

Data Class are the most prominent design smells that

have a negative impact on open source software

[14]. A God Class is a software design anti-pattern

that occurs when a single class takes on too many

responsibilities. This type of class is often

characterized by having an excessive number of

methods, attributes, and dependencies. It can also be

identified by its lack of cohesion, as the methods and

attributes are unrelated to each other. A God Class

can lead to code that is difficult to maintain and

debug, as it is often difficult to understand the

purpose of the class and how its various components

interact with each other. On the other hand, Data

Class Smell is an anti-pattern in software design

where a class contains only data fields and no

methods or behaviour. This type of class can lead to

code that is difficult to maintain and debug, as it

does not provide any context for understanding how

the data fields are used or related to each other.

Additionally, Data Class Smell can lead to code

duplication if multiple classes contain similar data

fields but no behaviour [20].

3.3 Select Design Smells Detection Strategies

After answering RQ1, RQ2, and RQ3, we

decided to delve into the God and scent detection

strategies used by the selector. We ran the tool and

examined its results, as well as browsed through the

tool's documentation and help. The metrics proposed

by Lanza and Marinescu [20] for detection strategies

were applied, as indicated in Table 2. The rules for

identifying God Classes and Data Classes were

formulated as presented in Equations1 and 2,

respectively.

…. (1)

… (2)

Table 2: Metrics used for design smells detection

Short Name Long Name

ATFD Access To Foreign Data

WMC Weighted Methods Count

TCC Tight Class Cohesion

NOAM Number Of Accessor Methods

NOPA Number Of Public Attributes

WOC Weight Of Class

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 170 | Page

IV. CONDUCT A CASE STUDY

4.1 Collect the Software Systems

We decided to conduct a case study using

the PMD tool on open source software projects that

have been studied by researchers in literature. At the

beginning of our research, we intended to analyze

the projects of graduate students at our college.

However, when we started to look into them, we

noticed that some of these projects did not have

source code or were written in different languages

that makes hard to find tools analyzing some of that

programming languages. This led us to modify our

plan and focus on the most popular open source

software projects that had been examined by Deeb et

al. [21] and Lenarduzzi et al. [22], even though their

objectives were different from ours. We randomly

selected one release from each Apache project

studied by [21] and [22], as shown in Table 3.

Apache Projects [23] are a group of open source

software projects managed by the Apache Software

Foundation. These projects span a wide range of

topics, from web servers and databases to big data

and machine learning. The Apache Projects are

developed in an open and collaborative environment,

with contributions from individuals and

organizations around the world. The projects are

released under the Apache License, which allows for

free use, modification, and redistribution of the

software.

Table 3: Projects and releases used in this case study

Apache

project
Release Description Link

A
u

ro
ra

0
.1

2
.0

a
serv

ice
sch

ed
u
ler

th
at

ru
n

s
o
n

to

p

o
f

A
p
ach

e
M

eso
s,

en
ab

lin
g

y
o
u

to

ru

n

lo
n
g
-ru

n
n

in
g

serv

ices,

cro
n

jo

b
s,

an
d

ad

-h
o
c

jo
b
s

th
at

tak
e

ad
v
an

tag
e

o
f

A
p

ach
e

M
eso

s'
scalab

ility
,

fau
lt-to

leran
ce,

an
d

reso
u

rce iso
latio

n
.

h
ttp

s://au
ro

ra.ap
ach

e.o

rg
/

n
o

tice: T
h

is p
ro

ject

h
as retired

. F
o
r d

etails

p
lease refer to

h
ttp

s://attic.ap
ach

e.o
rg

/p
ro

jects/au
ro

ra.h
tm

l

B
eam

2
.7

.0

A
p

ach
e

B
eam

is

an

o
p
en

-

so
u
rce, u

n
ified

 p
ro

g
ra

m
m

in
g

m
o

d
el

fo
r

d
efin

in
g

an
d

ex
ecu

tin
g

b
atch

an

d

stream
in

g

d
ata

p
ro

cessin
g

p
ip

elin
es,

en
ab

lin
g

p
arallel

p
ro

cessin
g

o
f

larg
e

scale

d
ata

p
ro

cessin
g

acro
ss

a

v
ariety

o
f

ru
n

n
ers

in
clu

d
in

g

A
p

ach
e

F
lin

k
,

A
p
ach

e

S
p
ark

,
G

o
o

g
le

C
lo

u
d

D
ataflo

w
, an

d
 o

th
ers.

h
ttp

://b
eam

.ap
ach

e.o
rg

/

C
o
co

o
n

2
-1

-8

A
p

ach
e

C
o

co
o

n

is an
 o

p
en

-so
u

rce

w
eb

d
ev

elo
p
m

en
t

fram
ew

o
rk

th

at

p
ro

v
id

es
a

co
m

p
o
n

en
t-b

ased

m
o

d
el

fo
r

b
u
ild

in
g

a
n
d

d
ep

lo
y
in

g

d
y
n
am

ic,
X

M
L

-

b
ased

w

eb

ap
p

licatio
n
s.

h
ttp

://co
c
o
o
n

.ap
a

ch
e.o

rg
/

co
m

m
o
n
s-

co
llectio

n
s

3
.3

A
p
ach

e C
o
m

m
o
n
s

C
o
llectio

n
s

is
an

o
p
en

-so
u
rce

Jav
a

lib
rary

th

at

p
ro

v
id

es
a

set
o
f

co
llectio

n

classes

an
d

u
tilities

th
at

can

b
e

u
sed

to

en
h
an

ce
th

e
Jav

a

C
o
llectio

n
s

F
ram

ew
o

rk
.

h
ttp

://w
w

w
.ap

ach

e.o
rg

/licen
ses/L

IC

E
N

S
E

-2
.0

co
m

m
o
n
s-

co
n
fig

u
ratio

n

1
.3

A
p
ach

e

C
o
m

m
o
n
s

C
o
n
fig

u
ratio

n

is

an

o
p
en

-so
u
rce

Jav
a

lib
rary

fo

r

read
in

g

co
n

fig
u

ratio
n
 d

ata

fro
m

 a v
ariety

 o
f

so
u
rces, in

clu
d
in

g

p
ro

p
erty

files,

X
M

L
,

an
d

o
th

er

so
u
rces.

h
ttp

://w
w

w
.ap

ach

e.o
rg

/licen
ses/

H
T

T
P

 co
m

p
o
n
en

ts-clien
t

4
.5

.1
1

A
p
ach

e H
T

T
P

 C
o
m

p
o
n
en

ts C
lien

t is a

lib
rary

 in
 Jav

a th
at p

ro
v
id

es lo
w

-lev
el

clien
t-sid

e
H

T
T

P

serv

ices.
It

en
ab

les

d
ev

elo
p
ers

to

sen
d

H
T

T
P

/H
T

T
P

S

req
u
ests to

 a w
eb

 serv
er an

d
 p

ro
cess

th
e resp

o
n
ses. H

ttp
C

o
m

p
o
n
en

ts C
lien

t

is p
art o

f th
e A

p
ach

e H
ttp

C
o
m

p
o

n
en

ts

p
ro

ject
an

d

p
ro

v
id

es
a

flex
ib

le,

efficien
t,

an
d

easy
-to

-u
se

set
o

f

co
m

p
o
n
en

ts fo
r im

p
lem

en
tin

g
 H

T
T

P
-

b
ased

 clien
t ap

p
licatio

n
s.

h
ttp

://h
c.ap

ach
e.o

rg
/

h
ttp

co
m

p
o

n
en

ts

-co
re

4
.4

.1
2

A
p

ach
e

H
ttp

C
o

m
p

o
n

en
t

s is a co
llectio

n

o
f

Jav
a

co
m

p
o

n
en

ts th
at

p
ro

v
id

e
lo

w
-

lev
el

an
d

h

ig
h

-

lev
el

A
P

Is
fo

r

H
T

T
P

-b
ased

co
m

m
u

n
icatio

n
.

h
ttp

://h
c.ap

ach
e.

o
rg

/

X
M

L
 G

rap
h

ics

1
-6

A
p

ach
e X

M
L

 G
ra

p
h

ics is an
 o

p
en

-

so
u

rce p
ro

ject th
at p

ro
v

id
es a Jav

a

lib
rary

fo

r
ren

d
erin

g

an
d

g
en

eratin
g

g

rap
h

ics
in

a

p
o

rtab
le

an
d

 flex
ib

le m
an

n
er. It p

ro
v

id
es a

u
n

ified

A
P

I
fo

r
w

o
rk

in
g

w

ith

d
iffe

ren
t g

rap
h

ics fo
rm

ats, su
ch

 as

S
V

G
, P

D
F

, an
d

 A
W

T
. T

h
e lib

rary

is
d

esig
n

ed

to

b
e

ex
ten

sib
le

an
d

can
 b

e easily
 in

teg
rated

 in
to

 Jav
a

ap
p

licatio
n

s.

h
ttp

://x
m

l.ap
ach

e.o
rg

/b
atik

/

zo
o

k
eep

er

3
.4

.5

A
p

ach
e Z

o
o
K

eep
er is a d

istrib
u

ted

co
o

rd
in

atio
n
 serv

ice fo
r d

istrib
u

ted

sy
stem

s. It p
ro

v
id

es a sim
p
le A

P
I

fo
r

m
ain

tain
in

g

co
n
fig

u
ratio

n

in
fo

rm
atio

n
, n

am
in

g
, an

d
 p

ro
v
id

in
g

d
istrib

u
te

d
 sy

n
ch

ro
n
izatio

n
 acro

ss a

larg
e n

u
m

b
e
r o

f h
o

sts. Z
o
o

K
eep

er

is u
sed

 to
 co

o
rd

in
ate th

e activ
ities

o
f

a
larg

e
n

u
m

b
er

o
f

h
o
sts

in

a

d
y
n

am
ic, d

istrib
u

ted
 en

v
iro

n
m

en
t.

h
ttp

://x
m

l.ap
ach

e.o
rg

/b
atik

/

4.2 Analysis the Software Systems
Figure 1 presents the smells distribution

among God Class (GC) and Data Class (DC). The

data consists of a total of 651 smell instances, with

426 instances belonging to GC and 225 instances

belonging to DC.

https://aurora.apache.org/
https://aurora.apache.org/
https://attic.apache.org/projects/aurora.html
https://attic.apache.org/projects/aurora.html
http://beam.apache.org/
http://cocoon.apache.org/
http://cocoon.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://hc.apache.org/
http://hc.apache.org/
http://hc.apache.org/
http://xml.apache.org/batik/
http://xml.apache.org/batik/

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 171 | Page

Figure 1. The distribution of God Class and Data Class on

the selected Apache project

In the Aurora Release 0.12.0 project, there were

6 God Class (GC) smell and Data class (DC) smell

occurrences, making up 0.92% and 0.46% of the

total GC and DC smell respectively, which was the

lowest percentage of smells. The Beam Release

2.7.0 project had 46 GC and 23 DC smell, with

percentages of 7% and 3.5%. The Cocoon Release 2-

1-8 project had the highest number of GC and DC

smells with 155 GC and 83 DC smells, accounting

for 23% and 12%. The Commons-Collections

Release 3.3 project had 30 GC and 2 DC smell, with

rates of 4% and 0.3%. Lastly, the Commons-

Configuration Release 1.3 project had 11 GC and 7

DC smell, with rates of 1.6% and 1%. The

Httpcomponents-Client Release 4.5.11 project had

35 GC smells and 12 DC smells, with a rate of 5.3%

for GC and 1.8% for DC. The Httpcomponents-Core

Release 4.4.12 project had 40 GC smells and 20 DC

smells, with a rate of 7.1% for GC and 3% for DC.

The XML Graphics Release 1-6 project had 86 GC

smells and 69 DC smells, with a rate of 13% for GC

and 10.5% for DC. Lastly, the Zookeeper Release

3.4.5 project had 17 GC smells and 6 DC smells,

with a rate of 2.6% for GC and 0.92% for DC

respectively.

4.3 Apply Machine Learning

Weka 3.8.6 will be used to develop our

machine learning models. Weka is a powerful open

source machine learning tool developed by the

University of Waikato in New Zealand. It is widely

used for data mining, predictive analytics, and other

machine learning tasks. WEKA provides a graphical

user interface (GUI) that allows users to interact

with the software and perform various tasks such as

data pre-processing, classification, clustering,

regression, association rule mining, and

visualization. WEKA also supports a wide range of

algorithms for each task. WEKA is written in Java

and can be run on any platform that supports Java. It

can be used to analyze large datasets from various

sources such as CSV files, databases, or even Excel

spreadsheets. WEKA also provides an API which

allows users to develop their own algorithms or

integrate existing ones into their applications.

Additionally, WEKA includes a variety of tools for

evaluating the performance of different machine-

learning algorithms on datasets. These tools include

cross-validation techniques and statistical tests for

comparing different models [24] [25].

The main focus of this research paper was

to apply supervised machine learning techniques for

design smell detection. We used three internal

structure metrics to identify God Classes and we

used four internal structure metrics to identify Data

Classes. In addition, nine Apache open-source

system projects were chosen from the Apache

website. Equation 1 and 2 were used to detect GC

and DC respectively, while Table 3 provides

information about the nine projects.

 Figure 2. Rules to detect God Class

As we mention above, we used three

internal structure metrics to identify God Classes

(Figure 2). If Access To Foreign Data (ATFD)

metric is greater than FEW, it implies that the

classes heavily access data of other simpler classes,

either directly or by using accessor methods. The

higher the ATFD value, the more likely it is that the

class is a God Class. If Weighted Methods Count

(WMC) metric is equal to or higher than VERY

HIGH, it indicates that the classes are large and

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 172 | Page

complex. Lastly, if Tight Class Cohesion (TCC)

metric is less than one-third, it suggests that the class

has a lot of non-communicative behaviour (low

cohesion between the methods belonging to that

class). This means that the Class carries out multiple

distinct tasks with separate sets of attributes, which

has a detrimental effect on its cohesion. The lower

the TCC value, the more likely it is that the class is a

God Class.

As shown in Figure 3, a specific strategy is

used to identify Data Classes based on four metrics

which are Weight Of Class, (WOC), Number of

Accessor Methods (NOAM), Number of Public

Attributes (NOPA), and Weighted Method Count

(WMC). The class is a Data Class if (1) WOC is

less than one-third that means it suggests that

interface of the class reveals data rather than offering

services AND (2) the class reveals many attributes

and is not complex. To find if (2) the class reveals

many attributes and is not complex by checking if:

1. It has more than a few public data members

(NOAP + NOAM > FEW) AND its complexity

is not HIGH. This would indicate that the class

is relatively small, has minimal functionality,

and only provides some data and accessors to

that data.

2. It has many public data (NOAP + NOAM >

MANY) AND class complexity is not VERY

HIGH. That means this class provides MANY

public data but the complexity of the class

(WMC) to be considerably not VERY HIGH.

We just look at the class less that very high

complexity because it does not conceptually fit

the Data Class term [20].

Figure 3. Rules to detect Data Class

A 10-fold cross-validation techniques was

used to estimate the performance of each predictive.

According to Kohavi [26] it has less bias because it

divides the data into 10 segments (folds), where and

the first segment was tested while the other nine

were used as training data. This process was

repeated for all segments. We measured the accuracy

and performance of each machine learning models to

evaluate them. By looking at the Accuracy, Receiver

Operating Characteristics Curve (ROC), F-measure,

and Matthews Correlation Coefficient (MCC) values

we can determine whether the ML model is a good

model. However, before that, we will give a short

explanation of each measurement.

Accuracy is a measure of how accurately a

machine learning model can predict the correct

outcome. It is calculated by dividing the number of

correct predictions by the total number of

predictions. A higher accuracy indicates that the

model is better at predicting the correct outcome. To

interpret the results, a higher accuracy indicates that

the model is more accurate in its predictions.

Receiver Operating Characteristic (ROC) is

a measure of how well a machine learning model

can distinguish between two classes. It is calculated

by plotting the true positive rate against the false

positive rate for different thresholds. A higher ROC

indicates that the model is better at distinguishing

between two classes. To interpret the results, a

higher ROC indicates that the model has better

discrimination power between two classes.

F-measure is a measure of how well a

machine learning model can classify data points into

different classes. It combines precision and recall

into one metric and is calculated by taking the

harmonic mean of precision and recall scores. A

higher F-measure indicates that the model has better

classification performance. To interpret the results, a

higher F-measure indicates that the model has better

classification performance across different classes.

Matthews Correlation Coefficient (MCC) is

a measure of how well a machine learning model

can classify data points into different classes while

taking into account true positives, false positives,

true negatives, and false negatives. It ranges from -1

to 1 where 1 indicates perfect prediction and -1

indicates perfect misclassification. To interpret the

results, a higher MCC score indicates that the model

has better classification performance across different

classes while taking into account all four types of

outcomes (true positives, false positives, true

negatives, and false negatives) [27].

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 173 | Page

V. RESULTS

This paper utilized thirty different machine

learning algorithms to create models that can

identify two types of design smells, specifically God

and Data Class. The machine learning inputs were

obtained from the internal metrics extracted from the

source code of Apache projects. The ML algorithm

accuracies for the God Class ranged from 99% to

92%, while for the Data Class they ranged from 99%

to 86%. However, it is important to note that our

observations may be biased due to the imbalance in

our dataset, which can affect our machine learning

models. To address this, we decided to evaluate our

models using MCC and F-measure, as they are better

suited for imbalanced datasets. MCC considers all

values in the Confusion Matrix, providing a more

accurate evaluation of the dataset.

Figure 4. God Class: The MCC and F-measure values for

balanced and imbalanced dataset

Figure 4 illustrates the performance of

different machine learning models in detecting God

Class using F-measure and MCC. When working

with an imbalanced dataset, Trees LMT, Trees

Random Forest, and Meta Logit Boost showed the

highest MCC values, while Bayes Navie Bayes,

Bayes Navie Bayes Multinomial, and Functions

SMO had the lowest MCC values. After balancing

the dataset, Trees LMT, Meta Logit Boost, Rules

PART, Rules JRip, and Trees J48 exhibited the

highest MCC values, while Bayes Navie Bayes

Multinomial had the lowest. In terms of F-measure

when working with an imbalanced dataset, Rules

PART, Meta Bagging, Meta Randomizable Filtered

Classifier, Meta Classification Via Regression,

Rules Decision Table, Meta Filtered Classifier, and

Meta Attribute Selected Classifier demonstrated the

highest values. Conversely, Bayes Navie Bayes

Multinomial had the lowest F-measure value. After

balancing the dataset, Trees J48, Meta Bagging,

Lazy IBk, Meta Filtered Classifier, and Meta

Attribute Selected Classifier showed the highest F-

measure values while Functions SMO had the

lowest.

Figure 5 displays the results of various

machine learning models in detecting Data Class,

measured by F-measure and MCC. When using an

imbalanced dataset, Trees LMT, Trees J48, and

Rules PART exhibit the highest MCC values, while

Functions SGD, Meta Multi Class Classifier

Updateable, and Functions SMO show the lowest

MCC values. However, after balancing the dataset,

Meta Random Committee, Trees Random Forest,

and Trees Random Tree demonstrate the highest

MCC values, while Meta Multi Class Classifier,

Functions Voted Perceptron, and Bayes Navie Bayes

Multinomial exhibit the lowest MCC values. In

terms of F-measure with an imbalanced dataset,

Trees LMT, Trees J48, and Meta Random

Committee have the highest values. Conversely,

Functions SGD, Meta Multi Class Classifier

Updateable, and Functions SMO have the lowest F-

measure values. After balancing the dataset, Meta

Random Committee, Trees Random Forest, and

Trees Random Tree display the highest F-measure

values. On the other hand,Trees Hoeffding Tree ,

Functions Voted Perceptron ,and Bayes Navie Bayes

Multinomial have the lowest F-measure values.

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 174 | Page

Figure 5. Data Class: The MCC and F-measure values for

balanced and imbalanced dataset

Figure 6, 7, 8 and 9 compare our ML

models with the related work based on their type of

algorithms that have been used to detect bad smells

in the related work. The comparison was based on

three evaluation metrics: Accuracy, F-Measure, and

ROC Area. Figure 6 compares the results of the

imbalanced GC dataset with [11] and [12]. In terms

of accuracy, study [11] achieved a score of 0.973 for

Random Forest and Rule JRip, while study [12]

achieved 0.9755 for Bayes Naive Bayes. Our

Random Forest and Rule JRip models achieved an

accuracy of 0.99. For F-Measure, study [11] scored

0.974 for Random Forest and Rule JRip, while study

[12] achieved 0.9927 for Random Forest. Our

Random Forest and Rule JRip models had a value of

0.99 as well. In terms of ROC measures, Study [11]

and [12] achieved the highest scores of 0.989 and

0.981 for Random and Bayes Naive Bayes

respectively. Our work saw ROC equal one for the

Random Forest model.

Figure 6. Compare our results with related works – God

Class (imbalanced dataset)

We compared the results of our balanced

GC dataset to those shown in Figure 7. Paper [11]

had an accuracy of 0.973 for Random Forest and

Rule JRip, while paper [12] achieved the highest

accuracy (0.9755) for Bayes Naive Bayes. Our Rule

JRip model had the highest accuracy at 0.999. In

terms of F-Measure, paper [11] had the highest value

(0.974) for Random Forest and Rule JRip, while

paper [12] achieved a value of 0.9927 for Random

Forest. Our models Bayes Naive Bayes and Random

Forest both achieved 1 in this measurement. Lastly,

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 175 | Page

paper [11]'s ROC value was 0.989 for Random

Forest and 0.981 for Bayes Naive Bayes in paper

[12], while our Rule JRip model's ROC value was

equal to 0.998.

Figure 7. Compare our results with related works – God

Class (balanced dataset)

In Figure 8, the results of the imbalanced

DC dataset are shown. In terms of accuracy, study

[11] and [12] achieved the highest accuracy of 0.99

for Random Forest while our models Random Forest

and Rule JRip model achieved an accuracy of 0.999.

For F-Measure, study [11] achieved the highest

value of 1 for Random Forest while study [12]

achieved a value of 0.992 for Random Forest and

our model Random Forest achieved a value of 0.994.

Lastly, in terms of ROC measures, study [11]

achieved a highest value of 0.994 for Random Forest

and study [12] achieved a highest value of 0.999 for

Random Forest with our model achieving the highest

value at 1.

Figure 8. Compare our results with related works – Data

class (imbalanced dataset)

In Figures 9, the findings of the balanced

DC dataset are presented. The accuracy of study

[11] and [12] was highest for Random Forest at 0.99

and 0.999 respectively. For F-Measure, study [11]

achieved a highest value of one for Random Forest

while study [12] achieved a highest value of 0.992

for Random Forest; our Random Forest model had

the highest value at 0.999. Lastly, in ROC measures,

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 176 | Page

study [11] achieved a highest value of 0994 for

Random Forest while study [12] achieved a highest

value of 0.999; our Random Forest model had the

highest value at 0.995

Figure 9. Compare our results with related works – Data

class (balanced dataset)

VI. THREATS TO VALIDITY

Threats to construct validity concern the

relationship between theory and observation. In our

study, we used PMD to detect design smells, as it

was the best option for the smells we were looking

for. However, this could be biased by our

imbalanced dataset, so we tested our models using

both balanced and imbalanced datasets. To create a

ground truth for machine learning, we developed

criteria based on related work and PMD. We then

used three metrics to detect God Classes and four

metrics to detect Data Classes. PMD has a good

performance, thus allowing us to effectively extract

the metrics we used to detect design code smell.

The potential for our results to be impacted by

external factors is a concern when it comes to

internal validity. The rules used to detect God Class

and Data Class smells may not be seen as such by a

human expert or other tools. However, the rules we

used were based on a rule-based PMD tool which

has been proven to have good performance. To

ensure accuracy, we employed 10-fold cross-

validation which is known to have less bias in its

estimation.

Threats to conclusion validity is linked to our

ability to draw the right ones. One risk to the

accuracy of these conclusions is connected to the

datasets. The datasets were imbalanced, so F-

measure and MCC values were used to evaluate our

machine learning model. F-measure and MCC are

known for being used with asymmetric datasets. To

compare the results of the two models created from

balanced and imbalanced datasets, we balanced our

datasets and then compared the machine learning

results.

External validity refers to the generalization of

the results. We conducted a case study to analyze

nine Apache projects written in Java, and the

machine learning input was based on these projects.

However, due to the limited scope of the study, we

cannot extrapolate the results to other contexts.

VII. CONCLUSIONS AND FUTURE

WORK

In this study, we conducted a case study to

create a dataset which was then used to train our

machine-learning models to detect design smells.

The accuracy, Receiver Operating Characteristics

Curve (ROC), F-measure, and Matthews Correlation

Coefficient (MCC) values of the models were

reported in order to demonstrate their performance.

We conduct a case study using a balanced and

imbalanced dataset to show how machine learning

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 177 | Page

classifiers could be affected while detecting God and

Data Class smell. Ultimately, the level of prediction

was comparable with other related studies, making

many of our models suitable for prediction. Our

future work will center on the development of a

machine-learning model for the identification of

additional design smells in software systems. To this

end, we will be collecting a larger set of design

smells by analyzing at least one hundred Apache

projects (10 releases for each). Our objectives are to

detect more type of design smells and make the

extensive dataset available to the research

community as a valuable resource.

REFERENCES

[1]. M. Fowler, “Refactoring: Improving the Design of

Existing Code," 2000, DOI= http://www.

martinfowler. com/books. html/refactoring, 2003.

[2]. A. Kaur, S. Jain, and S. Goel, “A support vector

machine based approach for code smell detection,”

in 2017 International Conference on Machine

Learning and Data Science (MLDS), IEEE, 2017,

pp. 9–14.

[3]. N. S. Alves, T. S. Mendes, M. G. De Mendonça, R.

O. Spínola, F. Shull, and C. Seaman,

“Identification and management of technical debt:

A systematic mapping study,” Inf. Softw. Technol.,

vol. 70, pp. 100–121, 2016.

[4]. M. BenIdris, H. Ammar, and D. Dzielski,

“Investigate, identify and estimate the technical

debt: a systematic mapping study,” Available

SSRN 3606172, 2020.

[5]. W. Cunningham, “The WyCash portfolio

management system,” ACM Sigplan Oops

Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[6]. V. Ferme, A. Marino, and F. A. Fontana, “Is it a

Real Code Smell to be Removed or not,” in

International Workshop on Refactoring & Testing

(RefTest), co-located event with XP 2013

Conference, sn, 2013.

[7]. F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H.

Sahraoui, “A bayesian approach for the detection

of code and design smells,” in 2009 Ninth

International Conference on Quality Software,

IEEE, 2009, pp. 305–314.

[8]. F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H.

Sahraoui, “BDTEX: A GQM-based Bayesian

approach for the detection of antipatterns,” J. Syst.

Softw., vol. 84, no. 4, pp. 559–572, 2011.

[9]. N. Maneerat and P. Muenchaisri, “Bad-smell

prediction from software design model using

machine learning techniques,” in 2011 Eighth

international joint conference on computer science

and software engineering (JCSSE), IEEE, 2011,

pp. 331–336.

[10]. A. Maiga , N. Ali, N. Bhattacharya, A. Sabané, Y.-

G. Guéhéneuc, G. Antoniol ,and E.Aïmeur ,

“Support vector machines for anti-pattern

detection,” in Proceedings of the 27th IEEE/ACM

International Conference on Automated Software

Engineering, 2012, pp. 278–281.

[11]. F. A. Fontana, M. Zanoni, A. Marino, and M. V.

Mäntylä, “Code smell detection: Towards a

machine learning-based approach,” in 2013 IEEE

international conference on software maintenance,

IEEE, 2013, pp. 396–399.

[12]. F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and

A. Marino, “Comparing and experimenting

machine learning techniques for code smell

detection,” Empir. Softw. Eng., vol. 21, pp. 1143–

1191, 2016.

[13]. F. A. Fontana and M. Zanoni, “Code smell severity

classification using machine learning techniques,”

Knowl.-Based Syst., vol. 128, pp. 43–58, 2017.

[14]. D. Di Nucci, F. Palomba, D. A. Tamburri, A.

Serebrenik, and A. De Lucia, “Detecting code

smells using machine learning techniques: are we

there yet?,” in 2018 ieee 25th international

conference on software analysis, evolution and

reengineering (saner), IEEE, 2018, pp. 612–621.

[15]. G. Czibula, Z. Marian, and I. G. Czibula,

“Detecting software design defects using relational

association rule mining,” Knowl. Inf. Syst., vol.

42, pp. 545–577, 2015.

[16]. M. BenIdris, H. Ammar, D. Dzielski, and W. H.

Benamer, “Prioritizing software components risk:

Towards a machine learning-based approach,” in

Proceedings of the 6th International Conference on

Engineering & MIS 2020, 2020, pp. 1–11.

[17]. F. Palomba, M. Zanoni, F. A. Fontana, A. De

Lucia, and R. Oliveto, “Smells like teen spirit:

Improving bug prediction performance using the

intensity of code smells,” in 2016 IEEE

International Conference on Software Maintenance

and Evolution (ICSME), IEEE, 2016, pp. 244–255.

[18]. F. A. Fontana, E. Mariani, A. Mornioli, R.

Sormani, and A. Tonello, “An experience report on

using code smells detection tools,” in 2011 IEEE

fourth international conference on software testing,

verification and validation workshops, IEEE, 2011,

pp. 450–457.

[19]. S. M. Al Khatib, K. Alkharabsheh, and S. Alawadi,

“Selection of human evaluators for design smell

detection using dragonfly optimization algorithm:

An empirical study,” Inf. Softw. Technol., vol.

155, p. 107120, 2023.

[20]. M. Lanza and R. Marinescu, Object-oriented

metrics in practice: using software metrics to

characterize, evaluate, and improve the design of

object-oriented systems. Springer Science &

Business Media, 2007.

[21]. S. Deeb, M. BenIdris, H. Ammar, and D. Dzielski,

“Refactoring cost estimation for architectural

technical debt,” Int. J. Softw. Eng. Knowl. Eng.,

vol. 31, no. 02, pp. 269–288, 2021.

[22]. V. Lenarduzzi, A. Martini, D. Taibi, and D. A.

Tamburri, “Towards surgically-precise technical

debt estimation: Early results and research

roadmap,” in Proceedings of the 3rd ACM

SIGSOFT International workshop on machine

learning techniques for software quality evaluation,

2019, pp. 37–42.

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

www.ijera.com DOI: 10.9790/9622-1309166178 178 | Page

[23]. “Apache Projects Directory.”

https://projects.apache.org/ (accessed Nov. 10,

2022).

[24]. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, and I. H. Witten, “The WEKA data

mining software: an update,” ACM SIGKDD

Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[25]. I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, and

M. Data, “Practical machine learning tools and

techniques,” in Data Mining, Elsevier Amsterdam,

The Netherlands, 2005, pp. 403–413.

[26]. R. Kohavi, “A study of cross-validation and

bootstrap for accuracy estimation and model

selection,” in Ijcai, Montreal, Canada, 1995, pp.

1137–1145.

[27]. Y. Liu, J. Cheng, C. Yan, X. Wu, and F. Chen,

“Research on the Matthews correlation coefficients

metrics of personalized recommendation algorithm

evaluation,” Int. J. Hybrid Inf. Technol., vol. 8, no.

1, pp. 163–172, 2015.

