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ABSTRACT 
The paper discusses the use of fuzzy models for the analysis of stability and adaptability of large-scale systems. 

We understand large-scale systems as multiply connected systems. These include economic, social, ecological, 

linguistic and other systems, the behavior (functioning) of which is associated with decision-making. The 

stability of the state and disturbance in such systems depends not only on external factors, but also on the 

decisions made by the system itself. It is difficult to obtain adequate formal models for these systems. The paper 

gives a generalization of two approaches based on the presentation of the initial data in the form of fuzzy 

gradations proposed by the author: the matrix method and method of expansion in series. The method based on 

fuzzy matrices is used to analyze the propagation of disturbances in the system. It allows us to perform a 

qualitative analysis of changes in the stability and adaptability of the system depending on the level of 

disturbances. The method based on the representation of the function of the system's behavior in the form of a 

series is used to determine the area of stability of the system depending on the influence of external factors. 

These approaches allow us to understand how small changes in the system lead to abrupt changes and 

instability. Calculations are performed for various cases of external factors and control parameters. 

Keywords and phrases: fuzzy arithmetic, large-scale systems, stability of systems, matrix method, series 

expansion method.   
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I. Introduction 
The concept of stability has a different 

meaning. It can relate to both the structure and the 

functioning of the system. Lagrange first formulated 

the concept of stability in relation to the motion of 

planetary masses (the famous three-body problem). 

Lagrange stability means that the motion of a 

system of bodies is enclosed within certain limits, 

and that a system will pass an infinite number of 

times arbitrarily close to its initial position. In this 

case, there is complete stability. Poisson developed 

this concept. Poisson stability means that the system 

will always pass again an infinite number of times 

arbitrarily close to the initial position, but it cannot 

be argued that the system does not significantly 

move away from it. Poincare and Lyapunov further 

developed the concept of stability.  

The concept of stability is associated with 

the concept of adaptability, which is understood as 

the ability of a system to maintain behavior 

(functioning) under the action of external 

perturbations. The requirement of adaptability is 

stronger than stability, so the adaptive system is 

stable, but the opposite is not always true.  

In classical works, the main attention is 

given to the analysis of perturbations of the system 

in the initial state; in current works, the emphasis is 

shifted to the analysis of perturbations in the 

structure of the system [1 – 3, 5, 7, 9, 10, 12, 13]. 

The problem is to find out how the behavior of the 

system changes under external influences, and to 

what extent the influences can change so that the 

system remains in a stable state [8, 14, 30]. One of 

the problems of the modern theory of stability is the 

study of how the stability region changes depending 

on external parameters, the so-called control 

parameters. Another problem is of interest: if a 

behavior function of system is given, then what will 

look like a family containing functions close to it. 

These problems are solved in bifurcation theory and 

catastrophe theory, where the subject of study is the 

analysis of the behavior of families of trajectories 

that arise when considering many close systems. 

The results obtained in this field relate to the so-

called gradient dynamical systems [11, 16]. For 

most real systems of practical interest, the 

assumptions underlying the catastrophe theory are 

not satisfied. In the general case, the control 

parameters depend on time and state variables 
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fluctuate. However, in this case, the catastrophe 

theory is a useful tool for a qualitative study of 

stability.  

Methods of stability analysis of systems 

depend on the type of model used to describe them 

[8]. The most studied are systems that are described 

by differential equations [6, 15, 17 – 19, 28 – 31]. In 

the case of an internal description, algebraic 

methods are used [4]. For systems with an external 

description, topological methods can be used [22]. 

To analyze perturbations in systems, matrix methods 

are used [8, 22].  

The purpose of this paper is to study and 

test models based on the use of fuzzy arithmetic for 

analysis of behavior and assessing the stability of 

large-scale systems. The paper gives a 

generalization of two approaches based on the 

presentation of the initial data in the form of fuzzy 

gradations proposed by the author: the matrix 

method and method of expansion in series. 

It is customary to understand large-scale 

systems as multiply connected systems. These 

include economic, social, environmental, linguistic, 

etc. systems, the behavior (functioning) of which is 

associated with decision-making. Stability in state 

and perturbation in such systems depends not only 

on external systems, but also on decisions made by 

the system itself. For these systems, it is difficult to 

obtain adequate formal models. Therefore, 

qualitative methods for analysis of behavior, 

stability and other system properties are important. 

In many tasks related to the analysis of 

interconnections and mutual influences of 

parameters in the large-scale systems, such as 

decision-making, control and evaluation, the 

specific numerical content of the quantities does not 

matter, at least at the stage of solution search, but 

only the order relation between them. Therefore, it 

becomes necessary to operate on quantities without 

being tied to a numerical context. The author 

suggests an approach based on the use of fuzzy 

gradations, in which the numbers are replaced by 

quantities. In [21 – 27], the advantages of this 

approach in solving various problems were shown. 

It is closest to the theory of interval estimation and 

models of the linguistic description of the subject 

domain. The main advantage of this approach is that 

it allows us to perform arithmetic operations directly 

without using the membership function and its 

application does not require the procedure of 

rationing weights. The advantage of this approach is 

also the quick analysis of many alternatives in 

multi-parameter tasks using all the useful 

information.  

 

 

II. Arithmetic operations on fuzzy 

gradations 
The rules of fuzzy arithmetic and the 

evaluation of the reliability of the results are 

considered in the previous works of the author, so 

we give them here in abbreviated form to make the 

results of calculations clear. To describe the object 

area we use the fuzzy gradations in the range 

VL…VH. The range comprising gradations VL, L, 

M, H, VH, where VL – very low value, L – low, M 

– middle, H – high, VH – very high value, we call 

the basic scale and with the adding of the 

intermediate gradations (see below) – extended 

scale. Introduce also two limit gradations out of 

range: VVL (lowest value) and VVH (highest 

value). Depending on condition of the task, we can 

interpret the gradation VVL as zero, lower bound, 

exact lower bound, etc. and the gradation VVH as 

unit, infinity, upper bound, exact upper bound, etc. 

On the set of fuzzy gradations, a relation of a non-

strict order (preference relation) is established, 

which has the properties of reflexivity, 

antisymmetry and transitivity. Fuzzy gradations 

form an ordinal scale VVL < VL < …< VH < VVH, 

in which an admissible transformation is arbitrary 

monotone function that does not change the order of 

gradations. In particular, all gradations can be 

simultaneously multiplied or divided, as well as 

increased or decreased by the same number, so that 

the values do not go beyond the range 0 ... 1. This is 

another advantage of using fuzzy gradations to 

represent the initial data.  

There is the one-to-one correspondence 

between each fuzzy gradation of the scale and the 

corresponding numerical interval. It is assumed that 

the value of the gradation is concentrated in the 

center of the interval, so modal values of fuzzy 

gradations VL, L, M, H, VH correspond with the 

values 0.1; 0.3; 0.5; 0.7; 0.9 respectively. Modal 

values of intermediate gradations VL-L (between 

very low and low values), L-M (between low and 

middle values), M-H (between middle and high 

values), H-VH (between high and very high values) 

correspond to values  0.2; 0.4; 0.6; 0.8 respectively. 

The value VVL means that the result is outside the 

left boundary of the range (this value corresponds to 

0); the value VVH means that the result is outside 

the right boundary of the range (this value 

corresponds to 1).  

The initial quantitative and qualitative 

information about objects and criteria, obtained 

using measurements and expert methods, is 

transformed into fuzzy gradations as follows. Each 

named variable is assigned a standardized 

(normalized) variable, varying in the interval [0, 1]. 

Then a fuzzy gradation is assigned to the 

standardized variable. In this case, the value 0 



Vadim Nikolayevich Romanov. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 13, Issue 4, April 2023, pp. 178-186 

 

 
www.ijera.com                                     DOI: 10.9790/9622-1304178186                              180 | Page 

               

 

corresponds to the gradation VVL (the lowest 

value), the value 1 corresponds to the gradation 

VVH (the highest value), etc. (see above). The 

transition from physical to standardized variable is 

determined by the ratio x = (z – zmin)/(zmax – zmin) ± 

0.1, where the plus sign corresponds to the value of 

zmin, and the minus sign to the value of zmax. Here x 

is a standardized variable from the interval (0, 1); z 

is a "physical" variable, determined by measurement 

or expert method, which takes values in the interval 

[zmin, zmax]. Values of z can be represented by named 

numbers or dimensionless estimates. 

The summation and multiplication 

operations on fuzzy gradations are performed in the 

same way as in ordinary arithmetic. For instance, for 

summation we have VL + VL = (VL-L), (VL-

L) + VL = L, etc., (H-VH) + VL = VH, 

VH + VL = VVH. Similarly, summation is 

performed for other fuzzy gradations. For 

multiplication operation we have VL * VL = VVL, 

VL * (VL-L) = VVL, etc., VL * M = VL, etc., 

VL * VH = VL. Similarly, multiplication is 

performed for other fuzzy gradations. Calculations 

on fuzzy gradations are greatly simplified if all 

gradations are expressed in terms of the smallest 

gradation (VL), namely, (VL-L) = 2VL, L = 3VL, 

etc., VH = 9VL, VVH = 10VL. This representation 

makes it possible to extend calculations formally 

outside the range 0 ... 1. We use this technique in 

subsequent calculations.  

 

III. The use of fuzzy matrices for the 

analysis of system stability 
In this section, we study the possibility of 

using fuzzy matrices to represent and evaluate the 

interconnections (interactions, mutual influences) of 

system components. This approach is a 

generalization of the graph and matrix method for 

analyzing disturbances in systems [4, 8]. The 

problem is formulated as follows. There is a system 

on elements of which a fuzzy binary relation 

R X Y   is given; the sets X and Y can coincide 

or be different. It is required to evaluate the stability, 

adaptability and other properties of the system under 

the action of perturbations. We represent the relation 

in the form of a matrix S consisting of fuzzy 

gradations. Typically, the values of the matrix are 

interpreted as the degree of confidence in the 

fulfillment of the relationship. For this case, we 

interpret the matrix as a scheme of interconnections 

(interactions, mutual influences) between system 

components. Depending on the level of analysis, the 

elements of the matrix can be objects, their states, or 

state characteristics. Suppose that the values can 

vary in the interval [VL, VH], which determines the 

stability region of the system. The general form of 

the matrix S for coincident sets X and Y is given in 

table 1. 

 

Table 1 

Matrix of interconnections (mutual influence) of system components 

Components x1 x2 … xn 

x1 s11 s12 … s1n 

x2 s21 s22 … s2n 

… … … … … 

xn sn1 sn2  snn 

Note. Elements in matrix cells are represented by fuzzy gradations. 

 

The value of fuzzy gradation in the cell (i, k) of the 

table 3 shows the strength of the interconnection 

(influence) of the xi component on the xk component; 

the sign of gradation determines the direction of 

influence: the “+” sign means amplification, and the 

“–” sign means weakening. For example, if 

M12 s , then component x1 enhances component 

x2  to an average degree; if 
 H21s , then x2 

weakens x1 to a high degree, etc. The matrix of 

interconnections is symmetric; the mutual influence 

matrix can be asymmetric. Some of the components 

can be associated with system inputs or outputs.  

The matrix is analyzed at three levels VL ˅ L, M 

and H ˅ VH. A component of the system with a 

level of interconnection VL ˅ L has a low sensitivity 
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to external disturbances, a component with a level 

M has a middle sensitivity, and a component with a 

level H ˅ VH has a high sensitivity to external 

disturbances (hereinafter, ˅ is a the logical 

connective "or"). The adaptability of the system is 

due to the influence (limitation) of external systems; 

therefore, the adaptability for components with a 

level of interconnection VL ˅ L is higher than for 

components with a level M and, especially, with a 

level H ˅ VH. If the sets X and Y are different, then 

the elements of Y are considered as functions of the 

elements of X, namely, the matrix Y Y  is 

analyzed for the element x1, then for the element x2, 

etc. The analysis is performed at the three levels of 

gradations indicated above. Similarly, the elements 

of the set X are considered as functions of the 

elements of the set Y, namely, for each element of 

the set Y, the corresponding matrices X X  are 

analyzed. If the power of a set with a low level of 

interaction of elements increases, then horizontal 

isolation develops in the system, and it becomes 

more stable. If the power of a set with a high level 

of interaction increases, then vertical integrity 

develops in the system, and the system becomes less 

stable. If the power of a set with an average level of 

interaction increases, then the system is in a 

balanced state with respect to both processes and 

stability is retained. The ratio of the change in the 

power of a set with a given level of interaction to the 

power of the whole set shows the degree of change 

in a property (for example, stability, adaptability, 

isolation, integrity, etc.).  

Consider the process of perturbation propagation in 

a system with one input and one output. Suppose 

that a perturbation β acts on the component xi of the 

system at time t0. Then the perturbation of the 

component xj at time t caused by the component xi 

can be represented in the form 

2

0( ) ( ) ( ... )k

j j ijx t x t I S S S        ,           (1)

  

where 0t t k  , 
0( )jx t

 
is the initial perturbation of the component xj, I   is the identity matrix, i  is the row 

number,
 

j  is the column number of the corresponding matrix S. For arbitrary j, the condition of system stability 

by state in the time interval 0t t k 
 
have the form 

VH)(  tx j .                                                                       (2) 

The condition for the stability of the system by perturbation for arbitrary i and j has the form
  

VH)( tS k

ij .
 
                                                                      (3) 

Now let the perturbation at the moment t0 affect all components of the system, and the perturbation βi 

corresponds to the component xi. Then the perturbation of the component xj caused by the component xi is 

determined by the expression 
2

( ) 0( ) ( ) ( ... )k

j i j i ijx t x t I S S S        ,       (4)                       

where 0t t k  , 
0 0( )j jx t   , indices i, j  independently run through the values 1, 2, ..., n. The conditions 

of system instability by state (by value) have the form 

VH)(max )(
,

 tx ij
ji

.                                     (5) 

The conditions of instability by perturbation are determined by the inequality 

VH)(max
,

tS k

ij
ji

.                                          (6) 

For definiteness, let x1 is the input and xn is the output of the system. Then the instability by the state (value) at 

the output due to disturbance (perturbation) at the input is determined by the relation 

VH)()1(  txn .                                           (7) 

The instability by perturbation is given by the relation 

VH)()1( tS k

n .                                             (8) 

 

Consider an example from the field of economics. 

There are several regions. It is required to analyze 

their stability. Let the set X consist of elements: 

productive forces, employment rate, free capital, 

free land. The set Y includes the following elements: 

rent, interest (income from investments), wages. 

Elements can take on different values in different 

regions. Let's make a matrix S. The ratios between 

the elements of the matrix depend on the level of 

development of society, regulatory mechanisms, 
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legislation, economic policy of the state and local 

authorities, centralization, protectionism, etc. These 

factors in this case are hidden parameters. The study 

of relationships between the elements of the 

influence matrices allows us to determine the hidden 

parameters that have the greatest impact on the 

behavior of the system [27]. For the convenience of 

analysis, by rearranging the rows and columns, we 

present the matrix in a block form. Assume that the 

initial matrix has the form of table 2. 

 

 

Table 2 

The matrix of interconnections (mutual influence) for example  

VL ˅ L 

(I) 

M 

(II) 

M 

(III) 

H ˅ VH 

(IV) 

Note. Here, as above, VL is a very low value, L is low, M is middle, H is high, and VH is a very high value. 

Signs of interconnections (mutual influence) of elements inside blocks can be both positive and negative. 

 

Calculations using relations (1), (4) show 

that if the fourth block has the value H, then the 

system is stable by perturbation for arbitrary input 

signal that varies in the permissible range [VL, VH], 

but unstable by state. If the value VH is used in the 

fourth block, then the system as a whole is unstable 

both by perturbation and by state. These conclusions 

are valid if there are both positive and negative 

connections between system components.  

Obviously, if the initial perturbation of a 

system in a certain state is significant (gradations M, 

H or VH), then under the action of a perturbation, it 

is likely to be unstable by state, which follows from 

relations (1), (4), (5). If the initial perturbation is 

small (gradations VL or L), then the system will be 

more stable by state. We considered single 

perturbations. With multiple perturbations, the 

stability of the system can be violated even under 

the action of small perturbations, which depends on 

the frequency of perturbation and the relaxation time 

(inertia) of the system. The results obtained are 

applicable in the general case to systems with a 

different type of structure, for example, to systems 

consisting only of components with weak, middle, 

or hard connections (bonds). In this case, the 

adaptability of the system is more associated with 

stability by perturbation, and stability of the system 

with stability by state. The consideration above 

allows us to understand how small and minor 

changes in the system, accumulating, over time lead 

to unpredictable consequences and loss of stability. 

 

IV. The use of fuzzy series for the analysis of 

the behavior of the system 
We consider an approach to the analysis of 

behavior and determination of stability and other 

properties of a system under conditions of 

uncertainty using expansion in series. This approach 

allows us to understand how small changes in 

parameters (factors) lead to a sharp change in the 

behavior of the system and loss of stability. Suppose 

that the function y characterizing the behavior of the 

system can be represented with sufficient accuracy 

in the form of a series. If y satisfies a linear 

differential equation, then the analysis of the 

convergence of the series can be performed using 

the Poincare method of decomposition in a small 

parameter [20]. We will consider the case where the 

equation is unknown. The values of the function y 

and parameters (factors) are found from 

experimental data or using expert estimates. The 

dependence of y on factors is approximated by a 

series. The approximation error is determined, for 

example, by the least squares method based on the 

minimum residual variance. Hereinafter, we assume 

that the error in determining the factors and 

parameters is about one gradation. 

To determine the behavior of the system, consider a 

linear model taking into account interactions of 

different orders 

,

( ) ( , ) ...i i ij i j

i i j
i j

y a f x a f x x



     ,  (9) 

where y determines the deviation of the system from 

the initial (equilibrium) state, the value of which 

characterizes the instability of the system (a constant 

value 0y
 
is chosen for the zero level); ix  – sources 

of influence (factors) with acceptable thresholds 

(limits) 
ixL ; f –approximating functions, the form 

of which depends on a priori information about the 

system and is not predetermined; ia
 
– parameters 

that depend on the thresholds 
ixL and can change 

abruptly (stepwise) for some values of factors. The 

specific nature of such sharp changes is not 

considered. It is assumed that the thresholds 
ixL

 
are 

relative, and we are in the admissible range of 

values of factors, far from the absolute limits, when 
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the system is destroyed, and irreversible changes 

occur in it. Factors ix
 
can be internal and external. 

For example, for a manufacturing firm, internal 

factors include functional and economic factors. The 

functional factors include the quality and reliability 

of products, their competitiveness; economic factors 

include productivity, direct and indirect costs. 

External factors include the pace of industry 

development, market share compared to leading 

competitors, rent, bank interest (investment 

income), economic legislation, government policy in 

the economic sphere, etc. 

In (9), the first sum is linear with respect to factors. 

It represents the contribution of individual factors 

and consists of n terms. We denote this contribution 

as y1. The second sum is the contribution from first-

order interactions, or pair interactions of factors, and 

consists of 
2 ( 1) / 2nC n n   terms. Denote this 

contribution as y2. Subsequent sums give the 

contributions of the second, third, etc. orders from 

the interaction of three, four, etc. factors, 

respectively. The third sum consists of 
3

nC  terms of 

the form aijkxixjxk, where the indices i, j, k are 

pairwise different. Denote this contribution as y3. 

The fourth sum consists of 
4

nC  terms of the form 

aijklxixjxkxl, where the indices i, j, k, l are pairwise 

different. Denote this contribution as y4. Thus, in the 

general case, y = y1 + y2+ y3 + y4 + …. 

For a generality of analysis, factors and functions 

are described by fuzzy gradations in the interval 

[VL, VH] and take, as above, the values VL (very 

low), L (low), M (middle), H (high), VH (very 

high). Gradations that are intermediate between the 

basic ones are also known, namely VL-L (between 

very low and low values), etc. It is assumed that the 

functions ( )if x  are periodic in the interval [VL, 

VH], in the sense that after the factors reach the 

limits 
ixL , the functions change in the same 

interval, which, generally speaking, can differ from 

the previous one in numerical value. Since we do 

not specify the form of the function, these 

assumptions are not a limitation of generality, and 

we make them for the convenience of calculations. 

The system has stable behavior (the system is 

stable) if y < VH, and unstable behavior (the system 

is unstable) otherwise.  

Since xi and f(xi) have the same range of variation in 

a fuzzy scale, it is sufficient to investigate the 

change in the factors (variables) xi and parameters ai. 

First, we will consider a linear model without taking 

into account the interaction of factors. We start with 

the simple case of a one-factor model, which has the 

form 

1 1( )y a f x .            

     (10) 

If the value of factor 1x
 
is less than the threshold, 

i.e. 1 1x
x L , then we take fuzzy gradation L (low 

value) as the initial values for the factor and 

parameter. The upper value for the factor is VH, and 

the parameter has a constant value L1 a . When 

the factor reaches the threshold value, the parameter 

undergoes an abrupt change by one gradation and 

becomes equal M (middle value), and the factor 

again changes in the interval [VL, VH]. Hereinafter, 

we perform calculations for the boundary values of 

the factors x = VL and x = VH, since this is 

sufficient to obtain correct results.  

Hereinafter, we have excluded the value a = VL, 

since in this case the change in the behavior of the 

system y is equal to zero or does not exceed VL, 

which corresponds (is typical for) a closed system. 

In this case, the value of y may exceed VH, i.e. the 

system loses stability, only under the joint action of 

a large number of external factors n > 10, each of 

which takes the maximum permissible value VH. 

For the same reason, the value x = VL is excluded, 

since in this case the change in the behavior y is 

equal to zero or does not exceed VL. In this case, 

the value of y may exceed VH, i.e. the system loses 

stability, only under the joint action of a large 

number of external factors n > 20, each of which 

takes the maximum value VH, and besides a = M.  

For model (10), calculations using the rules of fuzzy 

arithmetic give 

1). 1
1

xx L ; a1 = L; x1 = L → y = a1x1 = VL;  

2). 1
1

xx L ; a1 = L; x1 = VH → y = a1x1 = L;  

3). 1
1

xx L ; a1 = M; x1 = L → y = a1x1 = VL-L;  

4). 1
1

xx L ; a1 = M; x1 = VH → y = a1x1 = M.  

Thus, there are four different combinations of factors, which correspond to four different values of y, or four 

variants of behavior. The system is stable, since y < VH.  



Vadim Nikolayevich Romanov. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 13, Issue 4, April 2023, pp. 178-186 

 

 
www.ijera.com                                     DOI: 10.9790/9622-1304178186                              184 | Page 

               

 

It is not difficult to obtain general relations for a linear model with n factors. If for all x, xx L
 
or xx L ,

 
then the number of different combinations of factors is equal to n + 1. If only for one x, xx L

 
or xx L , 

then the number of different combinations of factors is 2n. If n1 factors xi have values less than the threshold, i.e.
 

ii xx L , where i = 1, 2, etc., n1, and n2 factors xk have values not less than the threshold, i.e.
 kk xx L , where 

k = 1, 2, etc., n2, so that n1 + n2 = n, then the number of different combinations is (n1 + 1)(n2 + 1). The general 

ratio for the number of different combinations of factors has the form 

( 1) 2 3( 1) 4( 2) ... 2 ( 1)yN n n n n n n           .
                  

(11)  

In (11), the terms equidistant from the ends are the same. The first term in (11) gives the number of 

combinations when no x exceeds the threshold; the second term gives the number of combinations when only 

one x exceeds the threshold, etc.; the last term gives the number of combinations when all x are above the 

thresholds. In general, for some different combinations, the values of y may be the same. In particular, for a two-

factor model without taking into account interactions, i.e. for n = 2, we find that there are 10 combinations. The 

stability of the system is violated in one case with the following values of parameters and factors: 

1). 1
1

xx L , 2
2

xx L ; a1 = a2 = M; x1 = x2 = VH → a1x1 = a2x2 ≈ M, y = VVH.  

For other combinations, the system is stable. For the three-factor model without interaction, there are 20 

combinations. The system is unstable in six cases:  

1). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1  = M, a2 = a3 = L; x1 = x2 = x3 =VH → a1x1 = M, a2x2 = a3x3 = L, y = VVH;  

2). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1 = a2 = M, a3 = L; x1 = L, x2 = x3 =VH → a1x1 = VL-L, a2x2 = M, a3x3 = L, 

y = VVH;  

3). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1 = a2 = M, a3 = L; x1 = x2 = x3 =VH → a1x1 = a2x2 = M, a3x3 = L, y = VVH;  

4). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1 = a2 = M, a3 = L; x1 = x2 = VH, x3 = L → a1x1 = a2x2 = M, a3x3 = VL, 

y = VVH; 

5). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1 = a2 = a3 = M; x1 = L, x2 = x3 = VH,  → a1x1 = VL-L, a2x2 = a3x3 = M, 

y = VVH; 

6). 1
1

xx L , 2
2

xx L , 3
3

xx L ; a1 = a2 = a3 = M; x1 = x2 = x3 = VH,  → a1x1 = a2x2 = a3x3 = M, y = VVH; 

In the general case, for a linear model with n factors, we have the following results. If all ai = L and all xi = L, 

then for y we obtain with rounding y = y1 = nVL. The system will be unstable for n ≥ 10. If, for the same values 

of ai, all xi = VH, then we obtain with rounding y = y1 = nL. The system will be unstable for n ≥ 4. If all ai = M 

and all xi = L, then for y we obtain with rounding y = y1 = n(VL-L). The system is unstable for n ≥ 5. If, for the 

same values of ai, i.e. for ai = M, all xi = VH, then we obtain with rounding y = y1 = nM. The system will be 

unstable for n ≥ 2. 

Now we take into account the interaction of 

factors. Consider model (9), which takes into 

account only pair interactions. As above, we 

perform calculations for the boundary values xi = L, 

and xi = VH. We assume that when only one of the 

factors reaches the threshold, the interaction 

parameter aij increases by one gradation, and when 

two or more factors reach the threshold, we consider 

two cases: aij increases by one or two gradations. 

The number of possible combinations is determined 

by (11), in which all terms, starting from the third, 

should be multiplied by 2, since when two or more x 

exceed the corresponding threshold values, then, 
according to our assumption, aij can take two values 

M and H. In particular, for the two-factor model 

with pair interactions, the number of different 

combinations is 13. 

To perform the analysis, we will assume 

that the function describing pair interaction is equal 

to the product of functions of individual factors, i.e. 

( , )i jf x x  = ( )if x ∙ ( )jf x , and similarly for 

functions of a higher order. This condition means 

that the terms describing interactions of different 

orders decrease with an increase in the interaction 

order and the finite segment of series (9) 

approximates function y quite accurately, although 

the series as a whole may diverge.  

In the general case, for a model with n 

factors, which takes into account pair interactions, 

we have the following results. If all ai = L, aij = L 

and all xi = L, then the contribution y2 ≈ 0. The 

relative error in determining the contribution y2 is 

n/3, and already at n = 3 it is equal to 1. Therefore, 

we cannot reliably determine this contribution more 
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than for two factors. If, for the same values of ai = L 

and aij = L, all xi = VH, then the contribution 

y2 = n(n – 1)(VL-L)/2, and it is comparable with the 

contribution y1. The relative error in determining the 

contribution y2 in this case is n/9, and for n = 9 it is 

1. Therefore, we cannot reliably determine this 

contribution more than for eight factors. The sum of 

contributions y = y1 + y2 = nL + n(n – 1)(VL-L)/2. 

Therefore, the system is unstable for n ≥ 3. If all 

ai = M, aij = M and all xi = L, then the contribution 

y2 ≈ n(n – 1)VL/2 (with rounding), and it is 

comparable with the contribution y1. The sum of 

contributions y = y1 + y2 = n(VL-L) + n(n – 1)VL/2. 

Therefore, the system is unstable for n > 3. If, for 

the same values of ai = M, aij = M, all xi = VH, then 

the contribution y2 = n(n – 1)(L-M)/2, and it is 

comparable with the contribution y1. The sum of 

contributions y = y1 + y2 = nM + n(n – 1)(L-M)/2. 

Therefore, the system is unstable for n ≥ 2. If 

ai = M, aij = H and all xi = L, then the contribution 

y2 ≈ n(n – 1)VL/2 (with rounding), and it is 

comparable with the contribution y1. The sum of 

contributions y = y1 + y2 = n(VL-L) + n(n –1)VL/2. 

Therefore, the system is unstable for n > 3. If, for 

the same values of ai = M, aij = H, all xi = VH, then 

the contribution y2 ≈ n(n – 1)(M-H)/2, and it is 

comparable with the contribution y1. The sum of 

contributions y = y1 + y2 = nM + n(n –1)(M-H)/2. 

Therefore, the system is unstable for n ≥ 2.  

In particular, for a two-factor model with pair 

interactions, that is, for n = 2, the system is unstable 

in three cases: 

1). 
1

1
xx L , 2

2
xx L ; 1 12 Ma a  , 2 La  , 1 2 VHx x  → 1 1 Ma x  , 2 2 La x  , 

12 1 2 L-Ma x x  , VVHy  ; 

2). 1
1

xx L , 2
2

xx L ;  1 2 12 Ma a a   , 1 2 VHx x  → 1 1 2 2a x a x  ≈ M, 12 1 2 L-Ma x x  , 

VVHy  ; 

3). 1
1

xx L , 2
2

xx L ; 1 2 Ma a  , 12 Ha  , 1 2 VHx x   → 1 1 2 2a x a x  ≈ M, 12 1 2 M-Ha x x  , 

VVHy  ; 

 

The contributions from higher-order 

interactions can be considered in a similar way. It is 

clear that when we take into account the interactions 

of the second, third, and higher orders, the stability 

threshold of the system can only decrease, since 

additional terms appear that contribute to the value 

of y. For a given n, with an increase in the order of 

interaction, the contributions to y from the 

interaction decrease, although not very strongly, 

and, at the same time, the error in determining the 

contributions increases. The value of the gradation, 

starting from which the contributions become 

significant, increases with an increase in the order of 

interaction, although not very strongly. In addition, 

the value of n at which the interaction contributes to 

y increases with the order of the interaction. In 

particular, the second-order interaction is “switched 

on” starting with n = 3; the third-order interaction is 

switched on starting with n = 4, and so on. 

Therefore, in most cases, it is sufficient to take into 

account the contribution from the first-order 

interaction, i.e. from pair interactions. 

 

V. Discussion of results 
The results above show that a system 

represented by a linear two-factor model can be 

unstable when both factors take their maximum 

values VH. With an increase in the number of 

factors, the number of their combinations leading to 

system instability increases. Taking into account the 

interaction shifts the instability boundary towards 

lower values of the factors, and the number of 

combinations for which the system is unstable 

increases in comparison with the corresponding 

linear model. If all ai = L, aij = L and all xi = L, then 

the stability boundary is determined by the linear 

term in (9). If the values of the factors exceed L, 

then the contributions from the interaction in (9) can 

be comparable with the contributions from 

individual factors.  

The obtained relations allow us to solve also the 

inverse problem, namely, to determine the 

permissible values of factors for which the change 

in stability of the system is within the given limits.  

 

VI. Conclusion 
Thus, the study shows the possibility of 

using the proposed approaches to assess the stability 

area of a system depending on the influence of many 

factors under uncertainty when factors and control 

parameters change, and it is difficult to give a 

formal description of the system. Application of 

classical approaches in this case is impossible or 

very difficult. The proposed approaches are useful 

for the systems of different types: social, economic, 

biological, environmental, etc., which affects only 

the interpretation of the elements. The 

representation of data as fuzzy gradations allows us 
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to make estimates without being tied to a numerical 

context. The first proposed method is useful for 

qualitative analysis; the second method provides 

quantitative estimates. 
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