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ABSTRACT:  
The shape of a filled jute bag when laid flatduring stacking in storehouse is simplified into three different 

geometric shapes in order to calculate the development of stresses in different portions of the bag under uniform 

pressure. The purpose of such calculation is know the zone where stress development is maximum that may 

cause failure of the bag. The predicted zone that develops maximum stress matches the actual failure of jute 

bags reported by earlier research scientists.. 
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I. Introduction 
Jute bags are used to pack various kinds of 

material, like food grains, sand, sugar, etc. The 

filled bags are stacked vertically up to a height of 

30 to 40 feet in the storehouse. Hence the bag at the 

lower portion of the stack are under severe 

pressure. A paper [1] has been published by the 

present authors where the necessity for calculating 

the stresses in the different portions of the bag have 

been discussed; an idealized structure of the bag 

has been considered where the bag is divided into 

three sections, central part is right circular cylinder 

with stitched flat top, bottom is hemispherical or 

hemi oblate spheroid and two right circular cones at 

the bottom corners. But the elliptic cross-section of 

the central cylindrical part closely resembles the 

geometry of a filled jute bag when the bag is laid 

flat or in case of stacking in a storehouse. Parsons 

[2] also considered the central part as an elliptic 

cylinder. In this case the spheroid at the bottom 

would be a hemi-prolate one, which is obtained by 

rotating an ellipse about its major diameter [Figure 

1]. The cones at the corners will become oblique 

cones. The bag material is assumed to be 

continuous, homogeneous, isotropic, linear elastic 

membrane. 

 

In this geometry only the hemi-prolate 

spheroid is a surface of revolution, the other two 

segments, the elliptic cylinder and oblique cone, 

are not surfaces of revolution. The analysis of 

stresses in membrane shells that are not surfaces of 

revolution is more complex than that in case of 

membrane shell of revolution. The complexity 

further increases in case of oblique cone since it is 

not a symmetrical structure. The development of 

stresses in the elliptic cylinder and hemi-prolate 

spheroid are discussed below. The stress 

development in oblique cone is not considered 

because it has been found [1] in the theoretical 

analyses that maximum stress always develops in 

the circumferential direction of the cylindrical 

segment and development of stress in the cone is 

minimum, which also corroborates the observation 

of Banerjee and others [3] - [5]. 
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The cylindrical segment is therefore 

appears to be the most important segment from 

stress development point of view in the bag. The 

position of a point on the surface of the elliptic 

cylinder is given by the coordinates x and s, where 

x is the distance from one end of the cylinder and s 

is the length of the arc in the circumferential 

direction measured from a definite generator shown 

in Figure 3. For elliptic cylinder, which is not a 

surface of revolution, the stresses in the 

corresponding directions are called longitudinal 

stress xN  and circumferential stress sN . 

 

 
 

a, b are the semi-major and semi-minor diameters and e is the eccentricity of the ellipse; 
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e  ;  is the angle between the normal to the ellipse and the minor axis. 

The circumferential stress is [6] 
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Ns is a function of φ in case of elliptic cylinder. 
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Morley [7] presented a simplified formula for finding longitudinal stress, Nx, which is as follows: 

                                   xN = 
 
 ellipse  theofperimeter 

section elliptic  theof area
p

             

 (2) 

The circumferential stress, sN , reaches the maximum value at the points B and D, shown in Figure 2,  

where = 0 
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It reaches the minimum value at the points A and C, shown in Figure 2, where  = π/2 
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The minimum value of sN at the points A and C is advantageous since the seams lie at these points and seam 

strength is lower than the fabric strength [30] and chances of failure are reduced with elliptic cross-section of the 

filled bag. The ratio of these two stresses is 
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As the eccentricity increases the value of this ratio decreases which means the minimum value of sN also 

decreases.   

The perimeter of the ellipse is given by 

                                               

 
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 dea  = 2W 

The size of a 50 kg B. Twill jute bag  

Parsons [2] had given an equation that is used to determine the value of e from the ratio (R) of flat width (W) 

and flat length (L) of the bag. For 50 kg capacity B.Twill bags for packing food grain (IS:12650; 2003) is L = 94 

cm, W = 57 cm,R = 57 / 94 =0.606 for which e = 0.35 and the value of the elliptic integral is 1.5238 [8]. 

Therefore, 

a = 
5238.14

572




 = 18.7 cm 

b = 17.49 cm 
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Assuming an internal pressure p = 1 kg/cm2 
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Stresses are also calculated with internal pressures 0.5 and 2.0 kg/cm2. These three stresses are calculated for 

other two dimensions L/W are 33 cm / 20 cm and 165 cm / 100 cm, keeping the same value of R = 0.606,with 

internal pressures 0.5, 1.0, 2.0 kg/cm2 [9]. The values are shown in Table 1. 

In the case of the hemi-prolate spheroid the semi-major and the semi-minor diameters are equal to that of the 

elliptic cylinder since it is joined at the end of the elliptic cylinder (Figure 2)  

The principal radii of curvature of the hemi-prolate spheroid are  
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So from equations (3) and (4) 
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At pole, φ = 0,  
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At equator, φ = π/2,  
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The longitudinal and circumferential stresses at pole and equator of the hemi-prolate spheroid are calculated for 

the bag dimensions given in Table 3.1 with internal pressures 0.5, 1.0 and 2 kg/cm2 and the results are given in 

Table 1.(a), (b), (c): 
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Table 1 Stresses in Different Segments of Bag with Elliptic Cross-section under Different Internal 

Pressures 

 

(a) Bag size: 33 cm / 20 cm 

Pressure: 0.5 kg/cm2 

Stress (kg/cm) Elliptic cylinder Hemi-prolate spheroid 

Eqn. (2) Maximum 

Eqn. (3) 

Minimum 

Eqn. (4) 

Pole 

Eqn. (10) 

Equator 

Eqn. (11) 

Longitudinal 1.58 - (*) - 1.43 1.53 

Circumferential  3.50 2.87 1.43 1.72 

Pressure: 1.0 kg/cm2 

Longitudinal 3.16 - - 2.87 3.07 

Circumferential  7.01 5.75 2.87 3.44 

Pressure: 2.0 kg/cm2 

Longitudinal 6.32 - - 5.74 6.14 

Circumferential  14.02 11.5 5.74 6.88 

 

(b) Bag size: 94 cm / 57 cm 

Pressure: 0.5 kg/cm2 

Stress (kg/cm) Elliptic cylinder Hemi-prolate spheroid 

Eqn. (2) Maximum 

Eqn. (3) 

Minimum 

Eqn. (4) 

Pole 

Eqn. (10) 

Equator 

Eqn. (11) 

Longitudinal 4.51 - - 4.09 4.37 

Circumferential  9.99 8.18 4.09 4.91 

Pressure: 1.0 kg/cm2 

Longitudinal 9.01 - - 8.19 8.74 

Circumferential  19.99 16.36 8.19 9.82 

Pressure: 2.0 kg/cm2 

Longitudinal 18.02 - - 16.38 17.48 

Circumferential  39.98 32.72 16.38 19.64 

 

(c) Bag size: 165 cm / 100 cm 

Pressure: 0.5 kg/cm2 

Stress (kg/cm) Elliptic cylinder Hemi-prolate spheroid 

Eqn. (2) Maximum 

Eqn. (3) 

Minimum 

Eqn. (4) 

Pole 

Eqn. (10) 

Equator 

Eqn. (11) 

Longitudinal 7.91 - - 7.18 7.67 

Circumferential  17.52 14.37 7.18 3.44 

Pressure: 1.0 kg/cm2 

Longitudinal 15.82 - - 14.37 15.35 

Circumferential  35.05 28.74 14.37 17.19 

Pressure: 2.0 kg/cm2 

Longitudinal 31.64 - - 28.74 30.70 

Circumferential  70.10 57.48 28.74 34.38 

 

[*Maximum and minimum values of longitudinal stress are not applicable since it is constant across the 

perimeter of the elliptic cross-section] 

 

The Table 3.4 shows that the longitudinal and 

circumferential stresses increase in both the 

segments with the increase in the size of the bag 

and the internal pressure. For a given bag size and 

pressure stress in the circumferential direction of 

the elliptic cylinder is higher than the other 

stresses. The circumferential stress in the elliptic 

cylinder is maximum at the end of the minor 

diameter of the elliptic cylinder, points B and D in 

Figure 3.21. The circumferential stresses at the end 

of major diameter where the stitched portion of the 

bag lies, points A and C in Figure 3.21, is 82 % of 

the maximum circumferential stress for R = 0.606. 

Since the stitched portion of the bag is weaker than 



Asis Mukhopadhyay, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 83-88 

   

 
www.ijera.com                                        DOI: 10.9790/9622-13118388                                 88 | Page 
               

 

 

 

 

the corresponding fabric, so the elliptic cross-

section is expected to give better performance of 

the bag in the stack. Equation (3.45) shows that the 

ratio of the minimum and maximum 

circumferential stresses decreases with the increase 

in eccentricity of the elliptic cross-section. The 

eccentricity increases with the increase in R [22], 

i.e., with smaller width and larger length of the bag. 

The eccentricity decreases as the degree of filling is 

increased and the cross-section of the bag 

approaches towards more circular one. Parsons [22] 

mentioned that to reduce chances of rupture bags 

should not be filled too tightly. Van der Feen et al 

[25] also observed that the maximum permissible 

load that could be borne by a filled sack decreased 

as the degree of filling was increased. The practical 

observations are in agreement with the theoretical 

analysis. The A. Morley, Strength of Materials, 

Longmans, Green and Co. Eleventh edition, 1954, 

Page 347. 

 

II. Conclusions 
With the increase in the dimensions of the 

bag the stresses the three segments increase. 

Stronger bag material is needed to manufacture 

bags of larger dimensions since there is an increase 

in stresses with the increase in the dimensions of 

the bag. For elliptic cross-section of the cylinder, 

the circumferential stress is lower at the ends of the 

major axis than that at the end of the minor axis. 

The ratio of these two increases with the increase in 

eccentricity (e). The eccentricity of the cross-

section depends on the degree of filling and the 

width/length ratio of the bag. If the bag is partially 

filled it will give a flatter structure, means higher 

eccentricity, when the bag is laid down on its side 

(long dimension) during stacking which 

corroborates the findings of Persons [2]. Since the 

sewn portions also lie at the end of the major axis 

so the stress on it will be lessened as the degree of 

filling is diminished.  
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