
NIKHIL. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 222-226

www.ijera.com DOI: 10.9790/9622-1311222226 222 | Page

USB Audio::An upgrade of general Multimedia speakers,

generally of Laptop/Computer.

NIKHIL

Electronics and Communication

National Institute of Technology

Jamshedpur, INDIA

Date of Submission: 10-11-2023 Date of acceptance: 26-11-2023

--- ----------

Abstract—USB Audio: a standard for digital audio

used in PCs, smart phones and tablets to interface

with audio peripherals such as speakers,

microphones, or mixing desks. In this article we set

out to show how USB Audio works, what to watch

out for, and how to use USB Audio for high-fidelity

multi-channel input and output.

Keywords—USB Protocol, Audio, Practical, CP2114

I. INTRODUCTION
USB is a protocol where the PC, the USB-

host, initiates a transfer, and the device (for example a

USB speaker) responds. Each transfer is addressed to

a specific device, and to a specific endpoint on the

device. IN-transfers send data to the PC. When the

host initiates an IN-transfer the device has to respond

with data for the host. OUT-transfers send data to the

device.

When the host performs an OUT-transfer it

sends a packet of data that the device must capture. In

the world of USB Audio, IN and OUT transfers may

be used to transport audio samples: an OUT-transfer to

send audio data from a PC to a speaker, whereas an IN-

transfer is used to send audio data from a microphone

to the PC.

There are four sorts of IN and OUT-transfers

in USB: Bulk, Isochronous, Interrupt, and Control

transfers.

A bulk transfer is used to reliably transfer

data between host and device. All USB transfers carry

a CRC (checksum) that indicates whether an error has

occurred. On a bulk transfer, the receiver of the data

has to verify the CRC. If the CRC is correct the transfer

is acknowledged, and the data is assumed to have been

transferred error-free. If the CRC is not correct, the

transfer is not acknowledged and will be retried.

If the device is not ready to accept data it can

send a negative-acknowledgment, NAK, which will

cause the host to retry the transfer. Bulk transfers are

not considered time criticial, and are scheduled around

the time critical transfers discussed below.

Isochronous transfers are used to transfer data in real-

time between host and device. When an isochronous

endpoint is set up by the host, the host allocates a

specific amount of bandwidth to the isochronous

endpoint, and it regularly performs an IN- or OUT-

transfer on that endpoint. For example, the host may

OUT 1 KByte of data every 125 us to the device. Since

a fixed and limited amount of bandwidth has been

allocated, there is no time to resend data if anything

goes wrong. The data has a CRC as normal, but if the

receiving side detects an error there is no resend

mechanism.

Interrupt transfers are used by the host to

regularly poll the device to find out whether something

worthwhile has happened. For example, a host may

poll an audio device to check whether the MUTE

button has been pressed. The name Interrupt transfer

is slightly confusing, since they do not interrupt

anything. However, regular polling of data gives the

same sort of functionality that an host-interrupt would

provide.

Control transfers are very much like bulk

transfers. Control transfers are acknowledged, can be

NAKed, and are delivered in a non-real-time fashion.

Control transfers are used for operations that are

outside normal data flow, such as querying the device

capabilities, or endpoint status. An explanation on how

device capabilities are described is outside the scope

of this article, and we just state that there are

predefined classes such as ‘USB Audio Class’ or

‘USB Mass Storage Class’ that enable cross platform

interoperability.

All transfers are made in USB frames. High

Speed USB frames span 125 us (Full Speed USB are 1

ms) and are marked by the host sending a Start-Of-

Frame (SOF) message. Isochronous and Interrupt

transfers are transmitted at most once a frame.

RESEARCH ARTICLE OPEN ACCESS

NIKHIL. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 222-226

www.ijera.com DOI: 10.9790/9622-1311222226 223 | Page

II. USB AUDIO
1. USB Audio uses isochronous, interrupt and

control transfers. All audio data is transferred over

isochronous transfers; interrupt transfers are used to

relay information regarding the availability of audio

clocks; control transfers are used used to set volume,

request sample rates, etc. These are shown in Figure

1.

Figure 1: Transfers between a host and a USB

device: Isochronous IN and OUT for audio-data,

Control for setting parameters, and Interrupt for

status monitoring.

The data requirements of a USB Audio

system depends on the number of channels , the

number of bits to represent each sample, and the

sample rate . Typical channel counts are 2 (stereo), 6

(5.1) or much higher for studio and DJ use. Typically

sample size is 24 bits, although 16 bits is available for

legacy audio, and 32 bits for high quality audio.

Typical sample rates are 44.1, 48, 96, and 192 kHz.

The latter is used for high quality audio.

Suppose that we design a stereo audio

speaker with a 96 kHz sample rate and 24-bit samples.

In order to simplify data marshalling on host and

device, 24-bit values are typically padded with a zero

byte, so the total data throughput is 96,000 x 2

channels x 4 bytes = 768,000 bytes per second. The

isochronous endpoints run at a rate of one transfer per

125 us; or 8,000 transfers per second. Dividing the

required byte rate over the frame rate gives us the

number of bytes for each isochronous transfer:

768,000/8,000 = 96 bytes per transfer.

When using CD rates, such as 44,100 Hz, the

transfer rate works out as 44.1 transfers per second. In

USB Audio each transfer always carries a whole

number of samples; alternating transfers carry 48 and

40 bytes (6 and 5 stereo samples), so that the average

rate works out as 44.1 bytes per transfer.

A single isochronous transfer can carry 1024

bytes, and can carry at most 256 samples (at 24/32

bits). This means that a single isochronous endpoint

can transfer 42 channels at 48 kHz, or 10 channels at

192 kHz (assuming that High Speed USB is used – Full

Speed USB cannot carry more than a single stereo IN

and OUT pair at 48 kHz).

When transmitting digital audio, latency is

introduced. In the case of High Speed USB this latency

is 250 us. A packet of data is transferred once in every

125 us window, but given that it may be sent anytime

in this window a 250 us buffer is required. On top of

this 250 us delay, extra delay may be incurred in the

O/S driver, and in the CODEC. Note that Full Speed

USB has a much higher intrinsic latency of 2 ms, as

data is only sent once in every 1 ms window.

III. ADVANTAGE
[1] USB Audio Class 2.0 takes advantage of

High Speed USB 2.0, enabling low latency transfer of

audio between PC and a connected audio device. The

high throughput of High Speed USB 2.0 can be utilised

to deliver many audio channels, and with high audio

quality. The USB Audio Class standard caters for a

wide range of devices, from complex mixing desks

with many channels, multiple clock sources and

complex controls, to surround sound systems, PC

speakers and microphones.

IV. USB AUDIO SIMPLIFIED
[2] The rapid expansion of the universal serial

bus (USB) standard in consumer electronics products

has extended the use of USB connectivity to propagate

and control digital audio. USB provides ample

bandwidth to support high-quality audio; its ease of

use has been well accepted by consumers and has

made USB a popular audio interface. However,

extracting the audio data from a USB port is not a

simple task. USB itself is a complex protocol that

requires considerable domain expertise.

In addition, other audio-related challenges,

such as synchronization of data streams and

programming codec and digital-to-analog converter

(DAC) configurations, can challenge even the most

experienced embedded and audio designers. USB

bridge devices are now available that not only

eliminate USB software development complexity but

also provide a novel standard audio configuration

interface and methods to synchronize audio data

streams in a low-cost, highly-integrated single-chip

solution.

USB is a versatile interface that provides

many ways to propagate and control digital audio;

however, it is important for the industry to follow a

standardized mechanism for transporting audio over

USB to secure interoperability, which has been the

cornerstone for the adoption of USB. To respond to

this fundamental request, the USB organization has

developed the Audio Devices Class, which defines a

very robust standardized mechanism for transporting

audio over USB.

One of the major issues with streaming audio

over USB is the synchronization of data streams from

the host (source) to the device (sink); this has been

addressed by developing a robust synchronization

NIKHIL. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 222-226

www.ijera.com DOI: 10.9790/9622-1311222226 224 | Page

scheme on “isochronous transfers,” which has been

incorporated into the USB specification.

The Audio Device Class definition adheres to this

synchronization scheme to transport audio data

reliably over the bus. However, the implementation of

this synchronization mechanism is not a trivial task,

and legacy implementations have required high-end

embedded systems with complex data rate converters

or expensive phase-locked loops (PLLs) to support the

clock accuracy demanded by the system.

In a system with a sampling rate of 48 kHz,

the host sends a frame containing 48 analog output

samples every millisecond. The sink must buffer the

audio output data so it can be sent to the DAC one

sample at a time. Any clock mismatch between host

and device (however slight) will result in an overrun

or underrun condition. The USB specification defines

several methods for accommodating host/device clock

mismatch.

USB defines modes that govern the operation

of sources and sinks according to Table 1. (For audio-

out, the host is the source and the device is the sink.

For audio-in, the device is the source and the host is

the sink.)

Asynchronous Mode

For asynchronous operation, the sink

provides explicit feedback to the source. Based on this

feedback, the source adjusts the number of samples

that it sends to the sink. Figure 1 illustrates

asynchronous mode with an analog output device.

This feedback mechanism accommodates

source/sink clock mismatch without requiring the sink

device to implement PLL hardware to synchronize

with the host clock.

Figure 2 shows a buffered system for a 48

kHz sampling rate. Initially, the host starts streaming

data at 48 samples every USB start-of-frame (SOF)

operation, which occurs each millisecond. However, if

the device’s buffer begins to approach the full or

empty condition due to clock mismatch, the device can

request that the host send more (49) or fewer (47)

samples so that buffer overrun or underrun does not

occur.

This method is implemented in Silicon Labs’

CP2114 USB-to-I2 S digital audio bridge device. The

Audio Device Class is supported by the CP2114

device without any additional software development.

Synchronous Mode

For synchronous operation, the source and

the sink use implicit feedback, and clocks are locked

to the USB SOF. The sink device must synchronize

with the USB SOF as shown in Figure 3.

A simple yet robust implementation of

synchronous mode can be accomplished by a closed-

loop control that can correct any mismatches from the

USB SOF and the internal oscillator of the sink device.

This implementation is shown in Figure 4.

The USB SOF that is sent by the host every

millisecond is used to calibrate the internal oscillator.

For this method to work properly, the internal

oscillator of the sink device must be adjustable through

a calibration register that can move the internal

oscillator frequency up or down in very small steps.

The CP2114 digital audio bridge device is able to

implement this functionality due to the dynamic trim

capability of its internal oscillator.

NIKHIL. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 222-226

www.ijera.com DOI: 10.9790/9622-1311222226 225 | Page

The CP2114 audio bridge enables the

developer to select between synchronous and

asynchronous modes depending on the host

capabilities available in the system design. All popular

platforms (Windows, Linux, Mac OS and iOS for the

Apple iPad) now support asynchronous mode.

Standard Codec/DAC Configuration Interface

Today’s leading codec and DAC suppliers

provide unique ways to configure the capabilities of

their devices. However, this variability in device

configuration increases the complexity of software

design for developers needing to support multiple

codec/DAC platforms across their product lines.

A solution to this design challenge is to offer a

standard codec/DAC configuration interface that can

group the most typical capabilities to configure a codec

or DAC. This interface would enable a smooth

transition among codecs and DACs, and would enable

quick evaluation of multiple codec/DAC options.

An example of this interface can be found in

the CP2114 audio bridge, which supports a wide range

of codecs/DACs using a standard configuration

interface. Page 30 of the CP2114 datasheet contains a

listing of the CP2114 standard audio configuration

programming interface.

The standard programming interface of the

CP2114 device enables the most common capabilities

found in codecs and DACs, such as DAC register

sizes, audio format, volume control and audio clock

ratio. In addition, the interface offers open fields for

custom programming and an abstraction layer

encapsulating the most typical configuration

capabilities in an easy-to-understand format. Once the

developer is familiar with this interface, switching

between codec and DAC devices becomes a simple

task.

The CP2114 digital audio bridge provides

access to this interface via USB to allocate all needed

values to configure codecs or DACs. The

configuration is applied once and resides in EPROM

memory. Dynamic changes are also allowed from the

host to dynamically access the codec/DAC and change

its configuration values.

V. PRACTICAL IMPLEMENTATION

The full practical demonstration can be found

here:

Link:1

Make USB only Speakers with No 3.5mm Jack | How

to fix Laptop Sound Card at Home

Link:2

Make USB only SPEAKER

Link:3

USB Audio:: An upgrade of general Multimedia

Speaker.

Materials required:

1. USB Sound Card

2. Multimedia speaker of Laptop/Computer

3. Soldering Iron/Solder/Flux

Note : Steps to be followed as per Video

demonstration.

http://www.silabs.com/support-documents/technicaldocs/cp2114.pdf
https://www.youtube.com/watch?v=fdhLM4fyd-M
https://www.youtube.com/watch?v=fdhLM4fyd-M
https://drive.google.com/file/d/1dwCXK_UISHVEdnZt9oS1rh-21hQzZ4Fz/view?usp=sharing
https://www.youtube.com/watch?v=ltRjkVHo9YU
https://www.youtube.com/watch?v=ltRjkVHo9YU

NIKHIL. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 222-226

www.ijera.com DOI: 10.9790/9622-1311222226 226 | Page

VI. CONCLUSION
The popularity of USB is extending its use to

applications for propagating and controlling audio.

However, streaming audio over USB is a complex and

time-consuming design task. Major design issues, such

as synchronization of audio data streams and

codec/DAC configurations, can challenge even the

most expert embedded and audio designers.

Digital audio bridges, such as the CP2114

device, minimize this complexity by providing a plug-

and-play solution that does not require software

development. Next-generation digital audio bridge

solutions implement novel methods of supporting a

wide range of codecs and DACs through a standard

configuration interface, support asynchronous and

synchronous modes of operation with minimal

external components, and eliminate the need for

external components, such as crystal oscillators and

EEPROM. The USB audio class specification is

available to the public from the USB Implementers

Forum (www.usb.org).

AUTHOR

The author name is NIKHIL. He is currently DV

Engineer in Qualcomm India Pvt. Ltd. For any query

send eMail to laptopcomputermistri@gmail.com .

Linkedin(Click here)

ACKNOWLEDGMENT
The author wants to acknowledge yourself for

glancing the paper and the author is thankful to People

of NIT Jamshedpur. Thankful to Qualcomm India Pvt.

Ltd. .

REFERENCES.

[1]. Pedro Pachuca manages Silicon Labs’ global

microcontroller (MCU) interface product

business

[2]. Henk Muller is the Principal Technologist at

XMOS Ltd.

http://www.usb.org/
mailto:laptopcomputermistri@gmail.com
https://www.linkedin.com/in/nikhil-nikhil-443944201

