
CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 1 | P a g e

Verification of SPI protocol Single Master Multiple Slaves using

Systemverilog and Universal Verification Methodology (UVM)

CHETAN N*, R KRISHNA**
* M. Tech, Department of ECE, Bangalore Institute of Technology, Karnataka, India

** Associate Professor, Department of ECE, Bangalore Institute of Technology, Karnataka, India

ABSTRACT
Integrated circuit designs are ever expanding which makes the verification process increasingly difficult and

progressively time consuming therefore there is a need for effective verification of such circuit designs. This

results in the need for effective testbench hierarchy, one with significant generic verification components that are

quite reusable and can be easily extendable across designs. UVM (Universal Verification Methodology)

hierarchy is one such architecture that can realize testbench architectures with coverage driven verification
environments with CRT (constrained Random Test). The present work duly focuses on the UVM based

verification of SPI Single Master and Multiple Slave protocol in accordance with the verification plan concocted

after a full-scale analysis of SPI protocol specifications. The UVM Testbench focuses on generating random

vectors that are driven to the SPI module or the DUT (Design Under Test) and makes comparison with the

captured response obtained using scoreboard, and this mechanism helps to verify the functionality of SPI.

Testbench also substantiates the effective functionality and characteristic features of SPI by applying suitable or

appropriate test cases and provides the cumulatively coverage report of the design at the end of the test.

Keywords – EDA-playground mentor questa simulator, Questsim, SPI Protocol, Systemverilog, UVM.

Date of Submission: 10-07-2021 Date of Acceptance: 26-07-2021

I. INTRODUCTION
 SPI gained a solid key role in embedded

systems which involved system on chip processors,

that included higher end 16-bit or 32-bit processors

such as the ones used in ARM, Power PC or MIC

with other microcontrollers which involves PIC,

AVR (Advanced Virtual RISC) and others etc. Chips
like these make use of SPI controllers that are

capable of running in either Master/ Slave mode or

sometimes even in both modes. In-system,

programmable AVR controllers are programmed by

making use of an SPI interface. Sometimes, Chips or

FPGA based designs make use of SPI protocol for

communication. That is why, SPI is a quite preferred

technology nowadays for communication with

peripheral components where data is transferred

readily and within given real time constraints. Many

serial interfaces are available when observed, right
from USB, Morse code telegraphy, Fire wire,

RS232, Ethernet [2] and many more. With each of

these interfaces offering advantages with some

limitations to many designs, depending on certain

criteria [1] which involves considerations such as

needed data rate, space availability, and noise. Serial

Peripheral Interface i.e., SPI is one such technology

that was invented to significantly replace parallel

interfaces so as to avoid routing parallel bus around
PCB [3] providing high-speed data transfer between

the devices. The first company to come up with such

mechanism for data transfer between two or more

devices which involved a master device was

Motorola [1]. SPI communication protocol was

developed by Motorola in the mid-1980’s for inter-

chip processing and communication at relatable

speed. It is called as a full-duplex synchronous serial

communication protocol [2], signifying that the data

can be simultaneously transmitted in both directions

(bi-directional). The fine advantageous factor of SPI

protocol is that, it can transfer the data without any
interruption occurrence. This way, many bits can be

transmitted and received through this protocol at a

time. This protocol depicts the Master-Slave

relationship where data reception and transmission

occurs simultaneously. The Master device is the

main component that controls effectively the Slave

device to which it communicates, the Slave device

on the other hand is bound to accept the instruction

from the master device during communication.

 The simplest kind of arrangement for the

Serial Peripheral Interface (SPI) is the combination
of a single Slave with a single Master [2]. But,

however one Master device or module can

communicate with more than one Slave device i.e.,

RESEARCH ARTICLE OPEN ACCESS

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 2 | P a g e

with multiple Slave devices. SPI technology comes

with a high-speed, full-duplex and synchronous

communication bus protocol, which enables for

information transmission between any

microcontroller device and related peripherals.

However, looking into the aspect of verification,

Systemverilog which is considered as a Hardware

description language is used in developing a test
plan environment for the SPI protocol by

implementing oops programming language. With

Systemverilog, advanced features help in developing

a potential verification environment, but still a

standardized verification approach can be done with

the implementation of UVM (Universal Verification

Methodology).

 Fig.1: Single Master-Single Slave configuration.

The devices in SPI protocol are connected

in Master–Slave relationship fashion as a multi–

point interface. At this type of interface, one device

takes the role of Master (usually a Microcontroller)
and other devices so connected (PICs or even other

Microcontrollers) are considered as Slaves.

1.1. Single Slave configuration

A SPI protocol has only one master but many

slave devices. The SPI bus protocol consists of 4

signaling pins [4]. They are: -

 (MOSI) Master-Out / Slave-In

 (MISO) Master-In / Slave-Out

 (SCLK or SCK or MK) Serial Clock or

Master clock

 (SS) Slave Select pin / (CS) Chip Select pin

The operational functionality of each signal pin is

mentioned here: -

• SCK or MK (Serial clock or Master clock): - This

pin provides clock signals to Slave or Slaves and

only Master can control this clock signal. however,

this pin remains in idle state.i.e. inactive (tri-state)

when no operation is performed.

• SS or CS (Slave Select or Chip Select): -This pin

selects the Slave to which Master module wants to
communicate or transfer data.

• MOSI (Master-Out/Slave-In): - This stands as

Master output and Slave input pin. This pin is used

in transmission of data from Master module to the

Slave module. It is a unidirectional pin.

• MISO (Master-In/Slave-Out): - This pin is known

as Master input and a Slave output pin. This pin is

used in transmission of data from the Slave Module

to the Master Module. It is also a unidirectional pin.

 Fig.2: Single Master- Multi Slave.

1.2. Multi Slave Configuration

As multiple Slaves can be implemented

with a single SPI Master. The Slaves can be

connected as individual modules or in a daisy-chain

fashion. In individual configuration, there is

individual Chip Select(CS) pin for every Slave

module that is controlled by Master module. With

the Chip Select (CS) signal being enabled by the

Master, the clock generated by the Master module

along with the data on the MOSI / MISO lines are

accessible for the selected Slave. But, when multiple
Chip Select(CS) signal pins are activated, it leads to

data corruption on MISO line, since there is no way

the Master can identify which Slave is transmitting

or receiving the data. By taking a look at Figure 2,

with the increase in number of Slaves, the number of

Chip Select (CS) pins of the Master gradually

increases. This readily adds to the increased number

of input and output pins needed which is available

from the Master and bounds or limits the number of

Slaves that can be implemented. However, different

techniques can be adopted to gradually increase the

number of Slaves in individual configuration, for
instance using a mux module to control a Chip

Select(CS) signal.

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 3 | P a g e

Fig.3: Transfer Modes in SPI.

1.3. SPI Modes of Operation
0th MODE:

In this mode Clock Phase is 0 and Clock Polarity is

LOW (CPHA = 0 and CPOL = 0). At Mode 0

configuration, data is sampled during rising edge and

pushed or shifted on the falling edge.

1st MODE:

In this mode Clock Phase is 1 and Clock Polarity is

LOW (CPHA = 1 and CPOL = 0). At Mode 1

configuration, data is sampled during the falling

edge and pushed or shifted on the rising edge.

2nd MODE:

In this mode Clock Phase is 0 and Clock Polarity is
HIGH (CPHA= 0 and CPOL = 1). At Mode 2

configuration, data is sampled during the rising edge

and pushed or shifted on the falling edge.

3rd MODE:

In this mode Clock Phase is 1 and Clock Polarity is

HIGH (CPHA= 1 and CPOL = 1). At Mode 3

configuration, data is sampled during the falling

edge and pushed or shifted on the rising edge.

1.4. Features of SPI: -

1. Comes with full duplex communication.
2. Throughput is better and Higher than TWI i.e.,

I2C (integrated Interface circuit).

3. Not limited to specific bit size, In the case of bit

transferring.

4. With Better and Simple hardware interfacing

compared to UART and I2C.

5. Power requirement is quite low.

6. Without any need of precision oscillators for

Slaves as Slaves uses master’s clock.

7. Lower power requirements than I2C due to less

circuitry.

II. DESIGN METHODOLOGY
The current work involves a single Master

and single Slave SPI configuration, where single

Slave module is used as an instance for multiple

modules (sub Slaves) those which connects to it. The

Figure shown below provides a glimpse of the
Design Under Test (DUT) with Master and Slave

module which can operate at different frequency

with different Slave modules.

Fig.4: DUT (Design Under test).

2.1. Features of the current DUT: -

• With 16-bit shift register both Slave and Master

module.

• The Receive buffer register (Rreg) with 16-bit

capacity present in Master and Slave module.

• The Transmit data register (Treg) with 16-bit

capacity present in Master and Slave module.

• Clock generator with up to 8-bit baud rate, can

also can be extended up to 16 bit.
• Serial clock (SCK) pin.

• Master-Out-Slave-In (MOSI) pin.

• Master-In-Slave-Out (MISO) pin.

• Multiple Chip Select or Slave Select (SS) pins (4

pin mode only).

• SPI Clock Frequency ranging from 62MHz to

160MHz.

• Stream signal length (112 bits up to 256 bits),

currently supporting 112 bits.

• Adjustable delay settings for even and odd burst

case when paired with FIFO (First-In-First-Out).
• SPI transfer mode.

• Interrupt capability i.e., Master Done and Slave

Done signals.

• With Up to 62 MHz operation, with max clock

frequency being 133MHz for 16bit data transfer.

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 4 | P a g e

 Fig.5: Signals involving data transmission.

2.2. Other DUT Operations: -

• Supports MOSI and MISO copying(boosting).

• Supports FIFO and SPRAM modules as Slaves

with delay burst read setting(programmable).

• Instant Data reading mechanism using SPRAM

module without resorting to Ideal State.

Fig.6: Chip-select-active-to-transmit-start delay.

Fig.7: Transmit-end-to-chip-select-inactive delay.

• T2CDELAY is accessible and implied only in

Master mode. As it instigates or indicates hold time

to the Slave device or module, that delays the chip

select deactivation process solely based on clock

cycles after the last bit is transferred. T2CDELAY

can be set up or configured between 2 to 16 SPI

module clock cycle, currently the present DUT
module supports 2, but can also be extended upto 8.

• C2TDELAY is accessible and implied only in

Master mode. It instigates or indicates setup time for

the Slave device or module, that delays the data

transmission from the chip select active edge based

on the transition edge of clock cycles. C2TDELAY

can be configured between 2 to16 SPI module clock

cycles, currently the present DUT module supports

16.

III. VERIFICATION METHODOLOGY
 Verification involves test plan like a road

map which provides an indication as to how to

achieve the necessary goal for testing the DUT. The

test plan provides, a blue print which includes

introduction, assumptions, test cases to be run,
different features that can be tested, what kind of

approach to be taken. All this criterion helps the

verification engineer to observe and understand how

the verification process should be approached and

done. The verification test plan can be expected in

different methods or ways, such as document, simple

text file or a spreadsheet. The descriptions to a

Testbench architecture and description of each

component and its functionality is a needed criterion

for verification.

 Systemverilog being an effective and
potential hardware description language (HDL)

provides good verification environment, it duly

employs Constraint Random Generation (CRG),

Assertion Based testing and Verification, also

provides Coverage Driven Verification. These

aspects provided by the systemverilog improvises

the verification process gradually. The Feature of

systemverilog is that it delivers enhanced hardware-

modeling, which gradually and effectively improve

the RTL design productivity and simplify the test

process for the given DUT. Direct Programming
Interface is a programming interface which is a part

of Systemverilog that can be implemented to

interface foreign languages with Systemverilog.

Foreign languages that systemverilog supports can

be C, C++, SystemC as well as others.

 With the Universal Verification

Methodology (UVM) on the other hand is one such

methodologies apart from Systemverilog which was

created for the need to automate DUT verification.

UVM is an effective collection of API's and comes

with a set of proven verification instructions or

guidelines that is written for Systemverilog which
can help the vilification engineers to develop an

effective and efficient verification environment. It is

an accessible open-source standard which is

maintained by Accellera. Since the use of UVM

methodology, engineers began to develop

verification components that were significantly

generic and which could be used from one project to

another, this elevated the cooperation and sharing of

methods and techniques among different verification

users. It also greatly promoted and encouraged the

expansion of verification components without
modifying the original code.

3.1. Components of Systemverilog.

Transaction class: It defines the pin level activity

created or generated by agent (having to drive

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 5 | P a g e

stimulus to the DUT through the driver) or the

activity to be observed by the agent.

Generator class: In this class the stimulus is

Generated (created through randomization) and then

sent to the Driver.

Driver class: This stimulus is received in this class

(transaction) which is passed from the generator and

then pushes or drives the packet level data to the
transaction into pin level (to DUT).

Monitor class: Pin level activity is observed on the

interface signals through this class and then converts

it into packet level signals which is then pushed or

sent to the components or class such as scoreboard.

Agent class: This class contains other classes such

as generator, driver, and monitor that is specific to

protocol or Interface.

Scoreboard class: This class receives data items

from monitor and performs comparison with

expected values. However, the expected values are
generated from the reference model also a copy can

be taken from driver class.

Environment class: It is also a container class for

grouping and containing the components such as

agent and scoreboard.

Test program:

1. Configures testbench

2. Initiates the construction process of testbench

components.

3. Initiates the process of stimulus driving.

Testbench Top class: The topmost module is the

testbench top, where the DUT and Testbench is
connected. This module consists of instances of

DUT, interface classes and Test program, where the

interface connects the DUT and Testbench.

3.2. Components of UVM.

Sequence-item: The class consist of variables (data)

or inputs that are necessary for generating the

desired stimulus. For the stimulus generation, the

sequence-items are needed to be randomized in

manner of sequences. Thus, the data variables

defined in sequence-items must specifically be
declared with rand keyword and can also contain

constraints if necessary. Sequence-item in UVM is

constructed through extending the

uvm_sequence_item.

Sequence: A Sequence creates or develops a series

of sequence_item’s and pushes it to the driver

through sequencer, Sequence process is performed

by extending the uvm_sequence.

Sequencer: The Sequencer is an extended class of

the uvm_sequencer that manages the flow of

response between the sequence and the driver. TLM

Interface is used by Sequencer and Driver to
establish transaction communication.

Driver: Driver is constructed through extending the

uvm_driver. TLM port (seq_item_port) must be

addressed for interaction between sequencer and

driver. Through Interface connection driver drives

the data to DUT.

Monitor: Monitor class is constructed through

extending the uvm_monitor class, it is a passive type

component which perform the sampling of DUT
signals at the Virtual interface level and transforms

the activities at signal level to the transaction level

activities. However, Monitor class does not drive

DUT signals.

Agent: Agent is constructed through extending the

class uvm_agent. The agent contains or groups the

verification components like driver, monitor,

collector and sequencer. It is used to connect the

above mentioned components using TLM

connections. The agent comes with one of the

operating modes that is either active or passive
sometimes both.

 Environment: Environment class is constructed

through extending the uvm_env class. This class

groups and contains other classes like agents,

scoreboard, top-level monitor.

Test: The Test is constructed through extending the

uvm_test. It is the upper most class. The Test class

being the top most class is in charge of Testbench

construction, its configuration along with initiation

of components involved in it.

 Fig.8: UVM Architecture.

IV. SIMULATION RESULTS
 This section provides an insight about the

simulation results of the present Design Under Test
(DUT) i.e., Single Master Single Slave with Slave

interface supporting many sub Salves. The DUT is

interfaced with generator module, interface module

along with driver and monitor modules in order to

obtain effective performance in the constrained

mode. After integration part, the simulation is

performed using QuestaSim with mentor questa

2020.1 simulator tool. Also, simulation results for

DUT verification using UVM methodology is

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 6 | P a g e

performed using DOULOS EDA-Playground tool

with using synopsys VCS 2020.03 simulator along

with mentor questa 2020.1 simulator tool.

 Fig.9: Master communicating with FIFO Slave.

The Figure 9 shows the DUT simulation
with FIFO implemented with it. Here the data is

stacked with write signal (wr) being high over a

specific duration of time throughout the simulation.

It is a two clock pulse frequency mode (cdiv=0). The

stream signal is high for every seven times 16-bit

data transmission indicating transfer of 112-bits.

However, it can be extended up to 256-bits.

Fig.10: Master stream signal being high.

The above Figure 10, depicts or shows that

the transmitted Slave data that was stacked is read

by enabling read (rd) signal, which is enabled for a

given specific period of time. Thus the data is

obtained in the form of packet signals with avoiding
to revert to ideal state.

 Fig.11: Master communication with SPRAM.

Figure 11 shows the simulation result of

SPI interfaced with SPRAM (Single Port Random

Access Memory) module operating at four pulse

clock frequency mode (cdiv=1), here the RAM reads

the data with one Master clock cycle delay without

resorting to ideal state. This mechanism helps in
faster Data read, also in this mechanism Stream

signal is high for every seven times 16-bit data

transmission indicating transfer of a total 112-bits.

However, it can be extended up to 256-bits.

 Fig.12: Transmission Delay.

 Fig.13: Slave Select Delay.

The Figures 12 and 13 depicts the

transmission delay and Chip Select (CS) or Slave

Select (SS) hold delay, where the transmission delay

is around 16 delay pulses and Chip Select delay is

around 2 pulses.

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 7 | P a g e

 Fig.14: Coverage Report.

 Fig.15: UVM Simulation result.

Above Figure 15 shows multiple Slaves (3

slaves) operating at different Master frequency with

clock frequency (cdiv) kept at cdiv=0, cdiv=1,

cdiv=2.

 Fig.16: Timing Summary.

Fig.17: Power report.

Figure 16 and 17 shows the timing report and power

consumption of the DUT.

V. CONCLUSION
In this paper, a Systemverilog based UVM

environment is developed for SPI protocol. The test

bench is able to verify and validate the operation of

full duplex serial data transfer between the single
Master and multiple sub Slave modules with

different clock frequencies with fixed stream signal

length and also coverage report is generated.

However, the present design supports 16-bit data

transfer, it also can be extended to 32-bit with minor

adjustments in delay aspect and the stream signal

length can also be increased as it currently supports

112-bit transfer. On an overall note a reusable SPI

protocol is designed and verified of its functionality
using Systemverilog and UVM (Universal
Verification Methodology).

REFERNCE
[1]. P. Rajashekar Reddy and P.Sreekanth,

Assistant Professors of CVR College of

Engineering College, ECE, Hyderabad,

“Serial Peripheral Interface-Master

Universal Verification Component using

UVM”, International Journal of Advanced

Technologies in Engineering and

Management Sciences (IJASTEMS-ISSN:

2454-356X) Volume.3,Issue.6,June.2017.

[2]. Ananthula Srinivas, M.Kiran Kumar , Jugal

Kishore Bhandari “Design and Verification

of Serial Peripheral Interface”, IJEDR,
ISSN: 2321-9939.

[3]. Pallavi Polsani, V. Priyanka B and Y.

Padma Sai “Design & Verification of Serial

Peripheral Interface (SPI) Protocol”,

International Journal of Recent Technology

CHETAN N, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-VI) July 2021, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1107060108 8 | P a g e

and Engineering (IJRTE) ISSN: 2277-3878,

Volume-8 Issue-6, March 2020.

[4]. Punith Kumar M B1 , Sreekantesha H N

“Design and Verification of Serial

Peripheral Interface Master Core Using

Universal Verification Methodology”,
International Journal of Computer Sciences

and Engineering, Vol.-7, Special Issue-14,
May 2019 E-ISSN: 2347-2693.

[5]. W.Ni and J.Zhang, “Research of reusability

based on UVM verification,” in 2015 IEEE

11th International Conference on ASIC,

Nov 2015, pp. 1-4.

[6] Zhili Zhou, Zheng Xie, Xin‟an Wang and

Teng Wang, “Development of verification

Environment for SPI Master Interface

Using Systemverilog”, 978-1-4673-2197-

6/12/$31.00 ©2012 IEEE.

 [7]. “IP Design of Universal Multiple Devices

SPI Interface” Tianxiang Liu1, Yunfeng
Wang1 * Department of Electronic

Engineering, Xiamen University, 2011

IEEE.

[8]. A.K. Swain and K. Mahapatra, “Design and

Verification of WISHBONE bus interface

for System-On-Chip integration,” in india

Conference (IINDICON),2010 Annual

IEEE. IEEE,2010,pp. 1-4.

CHETAN N, et. al. “Verification of SPI protocol Single Master Multiple Slaves using

Systemverilog and Universal Verification Methodology (UVM).” International Journal of

Engineering Research and Applications (IJERA), vol.11 (7), 2021, pp 01-08.

