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ABSTRACT 

This paper describes the various approaches taken using deep learning algorithms for the purpose of developing 

a chess program that can perform better than any of the previously developed hard coded game specific engines. 

Some of the discussed models outperform the current top chess engines or expert human players, some models 

have achieved very high performance, setting new benchmarks in the domain, while some of these models 

implement a new architecture or methodology and achieve average performance. 
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I. INTRODUCTION 
 One of the most popular applications of 

artificial intelligence is developing a generalized 

algorithm or a methodology which can work on any 

board game, instead of having to develop game-

specific algorithms. The idea to develop such 

applications arises as humans can improve in any 

game after playing for a few times. This ability of 

identifying repetitive patterns from given data has 

inspired many researchers to work on deep 

learning’s application on games, while also aiming 

for artificial general intelligence. 

The objective here is to examine the 

previous research about developing chess engines 

using deep learning.  The papers used here go 

through the development of very simple network 

architectures to highly complex networks with a 

wide variety of features and also many hand tuned 

features and information unique to the domain. We 

attempt figuring out the working of the architectures 

and various search algorithms which lead to an 

improvement in the model's performance. 

The papers surveyed discuss the properties 

of the different architectures used, their advantages 

and disadvantages, and their performance relative to 

some given benchmark. The choice of this 

architecture is in turn, dependent on the choice of 

board game selected, the target engine or minimum 

score to achieve, or to reach a certain level of 

performance that was previously unachievable in 

that context. Some of the architectures considered 

are Multi-dimensional Recurrent Neural Network 

(MDRNN), Multi-layer Perceptron (MLP), and 

Convolutional Neural Networks (CNN). 

The papers surveyed also discuss the 

importance of choosing an efficient searching 

technique. For a system to have as low time 

complexity as possible, choosing an efficient 

searching algorithm is important. Some of the 

searching techniques mentioned are Alpha-Beta 

search, Quiescence search, and the Monte-Carlo 

Tree Search (MCTS). The model's performance is 

hugely affected by the searching algorithm. 

The input representation also has to be 

considered because some architectures work with 

only certain input formats. For example, A 

Convolutional Neural Network works better with an 

array representation of input. But having to process 

every image into a multidimensional array is time 

consuming and will deter the speed of execution. A 

flat array encoded with bits can improve the 

performance as it will be much easier to perform 

computations on. 

 

II. LITERATURE SURVEY 
[1] This paper introduces NeuroChess, 

which trains itself from the end results of played 

games. NeuroChess uses evaluation functions based 

on the Artificial Neural Network (ANN). It makes 

use of inductive neural network learning, temporal 

differencing (TD), and a variant of explanation-

based learning, called explanation-based neural 
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network (EBNN). It uses TD to construct neural 

network evaluation functions. The games are 

analyzed in terms of a chess model using EBNN. 

Temporal Differencing was used to find an 

evaluation function V, which scored chess boards 

according to their usefulness from the perspective of 

one side. For learning the training pattern, TD 

transforms the entire chess game denoted by a 

sequence of chess boards. The final board values i.e. 

V(Sfinal) will be 1 if Sfinal is a win for white, 0 if Sfinal 

is a draw and -1 if Sfinal is a loss for white. A 

separate neural network, called the chess model M, 

represents domain-specific knowledge, which 

captures temporal dependencies of chess board 

features. EBNN uses knowledge learned from 

previously played expert-level games for the purpose 

of analysis. Both, the target values' values and slopes 

contributed for the functions to fit more accurately. 

Hence, to achieve this, the Tangent-Prop algorithm 

was used. 

[2] The various board games have either a 

fixed or a flexible size. Increasing board size leads to 

exponential increase in the branching factor. Game 

engines have increased time and space complexity 

because of such scalability issues. Hence, to 

overcome such an issue, this paper makes use of 

MDRNN (Multi-dimensional Recurrent Neural 

Networks). Atari-Go and Gomoku, the variations of 

Go with simpler rules were chosen to develop the 

model on. MDRNN is implemented along both 

dimensions, resulting in a large but simple 

feedforward neural network. To keep the 

architecture free from domain-specific knowledge, 

evolutionary methods are used and to not depend on 

any particular algorithm. Given an equal number of 

hidden units, MDRNN performed better than MLP 

when assigned random weights and averaged over 

100 games. As the board size increased, the 

performance of MDRNN got better, and deteriorated 

for MLP. It was found out that the correlations were 

always positive and high for all board sizes except 

for Gomoku with board size 5x5 which had a score 

of 0 in majority of the networks. The proportionality 

p was greater than 0.5, representing good scalability. 

Training the architecture using coevolution was done 

to make results independent of the biased fitness 

measure. The results showed that the performance of 

the architecture wasn't affected significantly by the 

size of the board. In the final experiment for 

scalability in trained networks, it was found that the 

correlation was low but p was high. 

[3] For finding the optimal path to go from 

one board state to another, neural networks are used. 

It was found that, when using neural networks, 

pruning of costly branches was done at a greater 

scale. This contributed to the development of hybrid 

AI game-tree search systems. Here, they have 

experimented with two different neural classifier 

architectures: 

I. The first MLP architecture consisted of one 

hidden layer, having 30 neurons in it. 

II. The second MLP architecture had two hidden 

layers, with 30 and 20 neurons respectively. 

The input is a vector of the set {-1, 0, 1} 

where each square is represented by five values of 

the mentioned set where negative numbers represent 

presence of black piece and positive numbers 

represent presence of white piece. Squares with no 

pieces are represented by zeros. 

The proposed approach is geometrically 

oriented and relies on calculating Manhattan 

distance between the potential target square and a 

particular, arbitrarily chosen predefined square. 

[4] Devising various approaches for 

evaluation function that can set weights to the chess 

engine’s neural network has become a popular 

research topic in recent years. In this paper, the 

authors have described a methodology for 

calculating each chess piece’s positional value. This 

chess engine uses Alpha-Beta searching algorithm 

with iterative deepening, stabilization of positions 

through the Quiescence algorithm, hash tables and 

move generator through the 0x88 hexadecimal 

method. The evaluation function that gives heuristic 

value of position for either side (black or white 

piece) is given by: 

𝑓 =  𝑚𝑖

𝑟

𝑖=1

+  𝑐𝑖 × 𝑝𝑖 

𝑞

𝑖=1

 

mi is the material value of the piece i and it is static, 

ci is the adjustment of the weight pi (ci = 0.5 × mi), 

piis the positional value of the piece i and it is 

dynamic. pi ∈ [0, 1]. 

This paper integrates a genetic algorithm 

known as an evolutionary algorithm that helps 

change the weight of the deep neural network. 

“Initialize population” module assigns initial random 

weights to the neural network, features of the 

position obtained in module feature extraction, “Play 

tournament” module coordinates a tournament 

between n virtual players. The first n/2 virtual 

players with the highest points are chosen by the 

“Selection” module. These players then generate the 

rest of the n/2 players by undergoing mutation 

through the “Mutation” module. After the generation 

process, the evolutionary algorithm begins 

execution. It is expected that by adding the number 

of inputs to the neural networks, the positional value 

of the chess pieces will be assessed in a more precise 

manner and, consequently, the strength of the chess 

engine will be increased. 

[5] This thesis used machine learning in 

order to create a new chess engine called Giraffe. 

The Giraffe program introduced in this work makes 

use of the TDLeaf(�) algorithm. The 

implementation took positions as inputs and for each 
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position a sequence of numbers was given as output 

that worked as a signature. The position similarity is 

the reason for humans’ high search efficiency. Here 

the unwanted searching could be avoided if humans 

can make out the equally efficient moves. The 

average branching factor of the search trees was 

drastically reduced by this. The Giraffe engine gives 

the probabilities of all the moves by a particular 

chess piece that can take place. The main drawback 

of this engine is its low search speed, which is 

caused by the low hit rate. The main focus of this 

thesis was to evaluate the position accurately else 

deeper and wider searches were required to 

compensate. This chess engine played very well in 

the start and end of the game because this chess 

engine focused on the tricky moves rather than 

considering the far moves and it also understood the 

complicated moves which is difficult for human 

players to understand. 

[6] This thesis has shown how trained deep 

value neural networks are able to play chess as high 

level human chess players play, without looking 

ahead more than one move. In this thesis, 

performances of Multilayer Perceptron and 

Convolutional Neural Network are examined. Data 

sets containing a collection of games represented in 

Portable Game Notation (PGN) are parsed and 

different board representations are created. These 

board representations are used as inputs to the 

Multilayer Perceptron and Convolutional Neural 

Network architecture. To assign every chess board 

position a fractional centipawn (cp) value as a label, 

Stockfish, one of the powerful chess engines used so 

that classification and regression experiment can be 

performed. Different ANN architectures have been 

trained to approximate Stockfish’s evaluation 

function as precisely as possible. This neural 

network based chess program employs Mini-Max 

search and Alpha-Beta pruning algorithm for 

choosing next move. 

The conducted experiments showed that 

MLPs performed better than CNNs. Given these 

results, the proposed system was still behind the 

strongest existing chess engines and the top human 

players. 

[7] In this work, the DeepChess program is 

introduced, the performance of which is on par with 

grandmaster-level players. The architecture of 

DeepChess uses a deep neural network. No domain-

specific knowledge is imparted in the model 

manually. Deep neural network training is 

performed in two sections, one is unmonitored pre-

training and the other is supervised training. 

Identification of high-level features is accomplished 

by adopting unsupervised training by the model. 

Supervised training enables the model to be able to 

compare two chess board positions and select the 

more favorable one. The training depends 

completely on datasets of a few million chess games. 

DeepChess assigns scores to the potential 

positions and this score represents how good the 

given position is. This model receives two positions 

as input and learns to predict which position is better 

after comparing both the positions. For training, 

pairs consisting of two moves are given as input. 

These pairs contain one move from a game where 

White is the winner, and another move from a game 

in which Black wins. DeepChess can be said to have 

an aggressive style, often sacrificing pieces to 

benefit in the long term. 

Already trained Pos2Vec DBN used as 

initial weights for this DeepChess model’s 

supervised network and during the training phase the 

whole network as well as Pos2Vec parts was 

modified. The Falcon chess engine was used as the 

baseline of the experiment. Falcon is a chess 

program which plays at the grandmaster level. 

This style of playing chess is very similar to 

that of human grandmasters. Hence the DeepChess 

has an adventurous playing style with frequent 

positional sacrifices. 

[8] In this project, an intelligent chess board 

is made which is very useful for the beginners to 

understand the rules of chess. The intelligent system 

proposed here helps the users to know all the correct 

positions of each piece on the chessboard. A back 

propagation neural network was used for this project 

as the training algorithm.  The architecture described 

in here, works with the chess pieces according to 

their attributes without needing computer devices. 

The aim here is to find the next piece to be moved, 

given the current board state and also to obtain the 

available positions where this piece can move on. 

Implementation of the hardware component 

of this project done by using the FPGA cart because 

of its simplicity, efficiency and ability to reset. 

System uses LDR sensors to detect and 

determine which piece of chess to be delivered. The 

proposed system that replaces the proper position of 

each piece on the chessboard consists of 64 laser 

diodes, 64 pressure buttons, 64 LEDs. 

[9] This paper introduces AlphaZero, a 

general reinforcement learning algorithm. This 

engine is applicable to Chess, Shogi and Go. The 

deep neural network takes input as the board 

position s and gives a vector of move probabilities p 

as output, having components pa = Pr(a|s) for every 

action a anda scalar value v evaluating the outcome 

z from position s. MCTS was used to get output as a 

vector � having probability distribution over the 

moves. The parameters are arbitrarily initialized in 

the beginning and then trained by self-play 

reinforcement learning. For tuning of the 

hyperparameters, the optimization technique used 

was Bayesian optimization. Stockfish, Elmo and 

AlphaGo Zero were used for comparison with 
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AlphaZero. Here, 100 games were played to get the 

outcomes. These games had a time restriction of 1 

minute for each move. Both AlphaZero and its 

predecessor worked on a single machine with 4 

TPUs.The chess and shogi engines, Stockfish and 

Elmo respectively, played with the configuration of 

64 threads and 1 GB hash size. They played with 

this configuration at their strongest level. AlphaZero 

won against all the opponents; losing zero games to 

Stockfish, eight games to Elmo and forty to 

AlphaGo Zero. It was observed that AlphaZero 

searches just 80k positions per second in chess and 

40k in shogi, compared to the 70 million for 

Stockfish and 35 million for Elmo. 

The algorithm of AlphaZero differs in 

many ways from that of AlphaGo Zero. AlphaGo 

Zero worked by evaluating and optimizing the 

winning probability, given that the outcome was 

binary. AlphaZero on the other hand, evaluated and 

optimized the expected outcome, based on the 

number of draws obtained and other outcomes. 

It was observed that AlphaZero follows a 

human-like approach for searching as it focused on 

the most promising variations through its deep 

neural network.  

[10] This paper considers various 

approaches using different combinations of 

architectures and input representations for training 

ANNs to evaluate chess positions. A dataset of 

around 3,000,000 different chess positions played by 

highly skilled chess players was taken and labelled 

with the evaluation function of Stockfish, one of the 

strongest existing chess engines. 

They have compared the results of MLP 

and CNN for differently normalized four different 

datasets for different notations of chess boards, 

namely Bitmap and Algebraic notation. The outputs 

have shown that MLP is relatively better than CNN 

for all the datasets taken and both the board 

representations and have shown that Bitmap notation 

gives better results while on the other hand algebraic 

notation giving more information to the network 

adversely affects the results.  

On testing the best MLP architecture with 

the Kaufman Test, the optimal move was played 

only twice - in position 3 and position 6. And in 

positions 12, 14, 15, 19, 22 and 23 losing moves 

were chosen by the ANN. While for the other 

positions, moves with maximum cp value difference 

of 1.5 were chosen as compared to the optimal 

move. 

[11] Presents CrazyAra which is a 

Convolutional Neural Network based on supervised 

training for the chess variant crazyhouse. They have 

used networks with Monte-Carlo Tree Search to 

predict the game moves. There is only a smaller 

dataset of lesser quality than Go and chess, however, 

the results obtained are promising. They have used a 

more compact input board presentation by making 

the state fully Markovian, removed the history 

component as opposed to the AlphaZero and 

performed rescaling/normalization for better 

performance. To lower the changes of blunders, 

more sample efficient Monte-Carlo tree search has 

been used. Transposition tables, called Q-Values, are 

alluded to pick a move. These tables are used for 

sharing evaluations across multiple nodes. 

 

III. CONCLUSION 
On reviewing the previous works on using 

Deep Learning for chess, we find that there are 

numerous architectures that are suitable for 

developing a game engine which can outperform 

previously created programs or even defeat world 

champions. Certain search techniques, architectures 

and algorithms have been found to give promising 

results. 

ANN have demonstrated huge reduction in 

the evaluation of low performing board positions 

and only highly advantageous positions are 

explored. However, hardcoded engines like 

Stockfish are able to explore millions of moves in 

one second and are able to find checkmate moves 

quickly in the game ending. ANN are able to play 

tactical games and have been able to win games but 

the computation power required is high as compared 

to hardcoded engines. 
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