
Fenil Mehta,etal. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 31-35

www.ijera.com DOI: 10.9790/9622-100405313531|P a g e

A Survey of Deep Learning on Chess

Fenil Mehta
1
, Hrishikesh Raipure

2
, Shubham Shirsat

3
, Shashank Bhatnagar

4
,

Prof. Bailappa Bhovi
5

1,2,3,4,5
(Department of Computer Engineering, International Institute of Information Technology, Pune, India)

1
(Email id: fenilgmehta@gmail.com)

2
(Email id:hrishikesh.raipure64@gmail.com)

3
(Email id:shubhamshirsat00@gmail.com)

4
(Email id: shashank.bhatnagar27@gmail.com)

5
(Email id: bailappab@isquareit.edu.in)

ABSTRACT

This paper describes the various approaches taken using deep learning algorithms for the purpose of developing

a chess program that can perform better than any of the previously developed hard coded game specific engines.

Some of the discussed models outperform the current top chess engines or expert human players, some models

have achieved very high performance, setting new benchmarks in the domain, while some of these models

implement a new architecture or methodology and achieve average performance.

Keywords - Artificial Intelligence, Chess Engines, Lookahead, Neural Network.

--- ----------

Date of Submission: 14-04-2020 Date of Acceptance: 28-04-2020

--- ----------

I. INTRODUCTION
 One of the most popular applications of

artificial intelligence is developing a generalized

algorithm or a methodology which can work on any

board game, instead of having to develop game-

specific algorithms. The idea to develop such

applications arises as humans can improve in any

game after playing for a few times. This ability of

identifying repetitive patterns from given data has

inspired many researchers to work on deep

learning’s application on games, while also aiming

for artificial general intelligence.

The objective here is to examine the

previous research about developing chess engines

using deep learning. The papers used here go

through the development of very simple network

architectures to highly complex networks with a

wide variety of features and also many hand tuned

features and information unique to the domain. We

attempt figuring out the working of the architectures

and various search algorithms which lead to an

improvement in the model's performance.

The papers surveyed discuss the properties

of the different architectures used, their advantages

and disadvantages, and their performance relative to

some given benchmark. The choice of this

architecture is in turn, dependent on the choice of

board game selected, the target engine or minimum

score to achieve, or to reach a certain level of

performance that was previously unachievable in

that context. Some of the architectures considered

are Multi-dimensional Recurrent Neural Network

(MDRNN), Multi-layer Perceptron (MLP), and

Convolutional Neural Networks (CNN).

The papers surveyed also discuss the

importance of choosing an efficient searching

technique. For a system to have as low time

complexity as possible, choosing an efficient

searching algorithm is important. Some of the

searching techniques mentioned are Alpha-Beta

search, Quiescence search, and the Monte-Carlo

Tree Search (MCTS). The model's performance is

hugely affected by the searching algorithm.

The input representation also has to be

considered because some architectures work with

only certain input formats. For example, A

Convolutional Neural Network works better with an

array representation of input. But having to process

every image into a multidimensional array is time

consuming and will deter the speed of execution. A

flat array encoded with bits can improve the

performance as it will be much easier to perform

computations on.

II. LITERATURE SURVEY
[1] This paper introduces NeuroChess,

which trains itself from the end results of played

games. NeuroChess uses evaluation functions based

on the Artificial Neural Network (ANN). It makes

use of inductive neural network learning, temporal

differencing (TD), and a variant of explanation-

based learning, called explanation-based neural

RESEARCH ARTICLE OPEN ACCESS

mailto:fenilgmehta@gmail.com
mailto:hrishikesh.raipure64@gmail.com
mailto:shubhamshirsat00@gmail.com
mailto:shashank.bhatnagar27@gmail.com
mailto:bailappab@isquareit.edu.in

Fenil Mehta,etal. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 31-35

www.ijera.com DOI: 10.9790/9622-100405313532|P a g e

network (EBNN). It uses TD to construct neural

network evaluation functions. The games are

analyzed in terms of a chess model using EBNN.

Temporal Differencing was used to find an

evaluation function V, which scored chess boards

according to their usefulness from the perspective of

one side. For learning the training pattern, TD

transforms the entire chess game denoted by a

sequence of chess boards. The final board values i.e.

V(Sfinal) will be 1 if Sfinal is a win for white, 0 if Sfinal

is a draw and -1 if Sfinal is a loss for white. A

separate neural network, called the chess model M,

represents domain-specific knowledge, which

captures temporal dependencies of chess board

features. EBNN uses knowledge learned from

previously played expert-level games for the purpose

of analysis. Both, the target values' values and slopes

contributed for the functions to fit more accurately.

Hence, to achieve this, the Tangent-Prop algorithm

was used.

[2] The various board games have either a

fixed or a flexible size. Increasing board size leads to

exponential increase in the branching factor. Game

engines have increased time and space complexity

because of such scalability issues. Hence, to

overcome such an issue, this paper makes use of

MDRNN (Multi-dimensional Recurrent Neural

Networks). Atari-Go and Gomoku, the variations of

Go with simpler rules were chosen to develop the

model on. MDRNN is implemented along both

dimensions, resulting in a large but simple

feedforward neural network. To keep the

architecture free from domain-specific knowledge,

evolutionary methods are used and to not depend on

any particular algorithm. Given an equal number of

hidden units, MDRNN performed better than MLP

when assigned random weights and averaged over

100 games. As the board size increased, the

performance of MDRNN got better, and deteriorated

for MLP. It was found out that the correlations were

always positive and high for all board sizes except

for Gomoku with board size 5x5 which had a score

of 0 in majority of the networks. The proportionality

p was greater than 0.5, representing good scalability.

Training the architecture using coevolution was done

to make results independent of the biased fitness

measure. The results showed that the performance of

the architecture wasn't affected significantly by the

size of the board. In the final experiment for

scalability in trained networks, it was found that the

correlation was low but p was high.

[3] For finding the optimal path to go from

one board state to another, neural networks are used.

It was found that, when using neural networks,

pruning of costly branches was done at a greater

scale. This contributed to the development of hybrid

AI game-tree search systems. Here, they have

experimented with two different neural classifier

architectures:

I. The first MLP architecture consisted of one

hidden layer, having 30 neurons in it.

II. The second MLP architecture had two hidden

layers, with 30 and 20 neurons respectively.

The input is a vector of the set {-1, 0, 1}

where each square is represented by five values of

the mentioned set where negative numbers represent

presence of black piece and positive numbers

represent presence of white piece. Squares with no

pieces are represented by zeros.

The proposed approach is geometrically

oriented and relies on calculating Manhattan

distance between the potential target square and a

particular, arbitrarily chosen predefined square.

[4] Devising various approaches for

evaluation function that can set weights to the chess

engine’s neural network has become a popular

research topic in recent years. In this paper, the

authors have described a methodology for

calculating each chess piece’s positional value. This

chess engine uses Alpha-Beta searching algorithm

with iterative deepening, stabilization of positions

through the Quiescence algorithm, hash tables and

move generator through the 0x88 hexadecimal

method. The evaluation function that gives heuristic

value of position for either side (black or white

piece) is given by:

𝑓 = 𝑚𝑖

𝑟

𝑖=1

+ 𝑐𝑖 × 𝑝𝑖

𝑞

𝑖=1

mi is the material value of the piece i and it is static,

ci is the adjustment of the weight pi (ci = 0.5 × mi),

piis the positional value of the piece i and it is

dynamic. pi ∈ [0, 1].

This paper integrates a genetic algorithm

known as an evolutionary algorithm that helps

change the weight of the deep neural network.

“Initialize population” module assigns initial random

weights to the neural network, features of the

position obtained in module feature extraction, “Play

tournament” module coordinates a tournament

between n virtual players. The first n/2 virtual

players with the highest points are chosen by the

“Selection” module. These players then generate the

rest of the n/2 players by undergoing mutation

through the “Mutation” module. After the generation

process, the evolutionary algorithm begins

execution. It is expected that by adding the number

of inputs to the neural networks, the positional value

of the chess pieces will be assessed in a more precise

manner and, consequently, the strength of the chess

engine will be increased.

[5] This thesis used machine learning in

order to create a new chess engine called Giraffe.

The Giraffe program introduced in this work makes

use of the TDLeaf(�) algorithm. The

implementation took positions as inputs and for each

Fenil Mehta,etal. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 31-35

www.ijera.com DOI: 10.9790/9622-100405313533|P a g e

position a sequence of numbers was given as output

that worked as a signature. The position similarity is

the reason for humans’ high search efficiency. Here

the unwanted searching could be avoided if humans

can make out the equally efficient moves. The

average branching factor of the search trees was

drastically reduced by this. The Giraffe engine gives

the probabilities of all the moves by a particular

chess piece that can take place. The main drawback

of this engine is its low search speed, which is

caused by the low hit rate. The main focus of this

thesis was to evaluate the position accurately else

deeper and wider searches were required to

compensate. This chess engine played very well in

the start and end of the game because this chess

engine focused on the tricky moves rather than

considering the far moves and it also understood the

complicated moves which is difficult for human

players to understand.

[6] This thesis has shown how trained deep

value neural networks are able to play chess as high

level human chess players play, without looking

ahead more than one move. In this thesis,

performances of Multilayer Perceptron and

Convolutional Neural Network are examined. Data

sets containing a collection of games represented in

Portable Game Notation (PGN) are parsed and

different board representations are created. These

board representations are used as inputs to the

Multilayer Perceptron and Convolutional Neural

Network architecture. To assign every chess board

position a fractional centipawn (cp) value as a label,

Stockfish, one of the powerful chess engines used so

that classification and regression experiment can be

performed. Different ANN architectures have been

trained to approximate Stockfish’s evaluation

function as precisely as possible. This neural

network based chess program employs Mini-Max

search and Alpha-Beta pruning algorithm for

choosing next move.

The conducted experiments showed that

MLPs performed better than CNNs. Given these

results, the proposed system was still behind the

strongest existing chess engines and the top human

players.

[7] In this work, the DeepChess program is

introduced, the performance of which is on par with

grandmaster-level players. The architecture of

DeepChess uses a deep neural network. No domain-

specific knowledge is imparted in the model

manually. Deep neural network training is

performed in two sections, one is unmonitored pre-

training and the other is supervised training.

Identification of high-level features is accomplished

by adopting unsupervised training by the model.

Supervised training enables the model to be able to

compare two chess board positions and select the

more favorable one. The training depends

completely on datasets of a few million chess games.

DeepChess assigns scores to the potential

positions and this score represents how good the

given position is. This model receives two positions

as input and learns to predict which position is better

after comparing both the positions. For training,

pairs consisting of two moves are given as input.

These pairs contain one move from a game where

White is the winner, and another move from a game

in which Black wins. DeepChess can be said to have

an aggressive style, often sacrificing pieces to

benefit in the long term.

Already trained Pos2Vec DBN used as

initial weights for this DeepChess model’s

supervised network and during the training phase the

whole network as well as Pos2Vec parts was

modified. The Falcon chess engine was used as the

baseline of the experiment. Falcon is a chess

program which plays at the grandmaster level.

This style of playing chess is very similar to

that of human grandmasters. Hence the DeepChess

has an adventurous playing style with frequent

positional sacrifices.

[8] In this project, an intelligent chess board

is made which is very useful for the beginners to

understand the rules of chess. The intelligent system

proposed here helps the users to know all the correct

positions of each piece on the chessboard. A back

propagation neural network was used for this project

as the training algorithm. The architecture described

in here, works with the chess pieces according to

their attributes without needing computer devices.

The aim here is to find the next piece to be moved,

given the current board state and also to obtain the

available positions where this piece can move on.

Implementation of the hardware component

of this project done by using the FPGA cart because

of its simplicity, efficiency and ability to reset.

System uses LDR sensors to detect and

determine which piece of chess to be delivered. The

proposed system that replaces the proper position of

each piece on the chessboard consists of 64 laser

diodes, 64 pressure buttons, 64 LEDs.

[9] This paper introduces AlphaZero, a

general reinforcement learning algorithm. This

engine is applicable to Chess, Shogi and Go. The

deep neural network takes input as the board

position s and gives a vector of move probabilities p

as output, having components pa = Pr(a|s) for every

action a anda scalar value v evaluating the outcome

z from position s. MCTS was used to get output as a

vector � having probability distribution over the

moves. The parameters are arbitrarily initialized in

the beginning and then trained by self-play

reinforcement learning. For tuning of the

hyperparameters, the optimization technique used

was Bayesian optimization. Stockfish, Elmo and

AlphaGo Zero were used for comparison with

Fenil Mehta,etal. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 31-35

www.ijera.com DOI: 10.9790/9622-100405313534|P a g e

AlphaZero. Here, 100 games were played to get the

outcomes. These games had a time restriction of 1

minute for each move. Both AlphaZero and its

predecessor worked on a single machine with 4

TPUs.The chess and shogi engines, Stockfish and

Elmo respectively, played with the configuration of

64 threads and 1 GB hash size. They played with

this configuration at their strongest level. AlphaZero

won against all the opponents; losing zero games to

Stockfish, eight games to Elmo and forty to

AlphaGo Zero. It was observed that AlphaZero

searches just 80k positions per second in chess and

40k in shogi, compared to the 70 million for

Stockfish and 35 million for Elmo.

The algorithm of AlphaZero differs in

many ways from that of AlphaGo Zero. AlphaGo

Zero worked by evaluating and optimizing the

winning probability, given that the outcome was

binary. AlphaZero on the other hand, evaluated and

optimized the expected outcome, based on the

number of draws obtained and other outcomes.

It was observed that AlphaZero follows a

human-like approach for searching as it focused on

the most promising variations through its deep

neural network.

[10] This paper considers various

approaches using different combinations of

architectures and input representations for training

ANNs to evaluate chess positions. A dataset of

around 3,000,000 different chess positions played by

highly skilled chess players was taken and labelled

with the evaluation function of Stockfish, one of the

strongest existing chess engines.

They have compared the results of MLP

and CNN for differently normalized four different

datasets for different notations of chess boards,

namely Bitmap and Algebraic notation. The outputs

have shown that MLP is relatively better than CNN

for all the datasets taken and both the board

representations and have shown that Bitmap notation

gives better results while on the other hand algebraic

notation giving more information to the network

adversely affects the results.

On testing the best MLP architecture with

the Kaufman Test, the optimal move was played

only twice - in position 3 and position 6. And in

positions 12, 14, 15, 19, 22 and 23 losing moves

were chosen by the ANN. While for the other

positions, moves with maximum cp value difference

of 1.5 were chosen as compared to the optimal

move.

[11] Presents CrazyAra which is a

Convolutional Neural Network based on supervised

training for the chess variant crazyhouse. They have

used networks with Monte-Carlo Tree Search to

predict the game moves. There is only a smaller

dataset of lesser quality than Go and chess, however,

the results obtained are promising. They have used a

more compact input board presentation by making

the state fully Markovian, removed the history

component as opposed to the AlphaZero and

performed rescaling/normalization for better

performance. To lower the changes of blunders,

more sample efficient Monte-Carlo tree search has

been used. Transposition tables, called Q-Values, are

alluded to pick a move. These tables are used for

sharing evaluations across multiple nodes.

III. CONCLUSION
On reviewing the previous works on using

Deep Learning for chess, we find that there are

numerous architectures that are suitable for

developing a game engine which can outperform

previously created programs or even defeat world

champions. Certain search techniques, architectures

and algorithms have been found to give promising

results.

ANN have demonstrated huge reduction in

the evaluation of low performing board positions

and only highly advantageous positions are

explored. However, hardcoded engines like

Stockfish are able to explore millions of moves in

one second and are able to find checkmate moves

quickly in the game ending. ANN are able to play

tactical games and have been able to win games but

the computation power required is high as compared

to hardcoded engines.

REFERENCES
[1]. S. Thrun, “Learning To Play the Game of

Chess,” Proceedings of the 7th International

Conference on Neural Information Processing

Systems, 1994.
[2]. T. Schaul, J. Schmidhuber, “A Scalable

Neural Network Architecture for Board

Games,” Artificial Neural Networks –

ICANN 2009 Lecture Notes in Computer

Science, vol 5768, pp. 1005-1014, 2009.
[3]. C. Dendek and J. Mandziuk, "A Neural

Network Classifier of Chess Moves," 2008

Eighth International Conference on Hybrid

Intelligent Systems, Barcelona, 2008, pp. 338-

343.
[4]. E. Vázquez-Fernández, C. A. Coello Coello

and F. D. Sagols Troncoso, "Assessing the

positional values of chess pieces by tuning

neural networks' weights with an evolutionary

algorithm," World Automation Congress

2012, Puerto Vallarta, Mexico, 2012, pp. 1-6.
[5]. M. Lai, “Giraffe: Using Deep Reinforcement

Learning to Play Chess,” M.Sc. thesis, Dept.

Computing., Imperial College London,

London, 2015.
[6]. M. Sabatelli, “Learning to Play Chess with

Minimal Lookahead and Deep Value Neural

Fenil Mehta,etal. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 4, (Series -V) April 2020, pp. 31-35

www.ijera.com DOI: 10.9790/9622-100405313535|P a g e

Networks,” M.Sc. thesis, University of

Groningen, Amsterdam, 2017.
[7]. O. E. David, N. S. Netanyahu, and L. Wolf,

“DeepChess: End-to-End Deep Neural

Network for Automatic Learning in Chess,”

Artificial Neural Networks and Machine

Learning – ICANN 2016 Lecture Notes in

Computer Science, pp. 88–96, 2016.
[8]. A. H. Omran, Y. M. Abid and H. Kadhim,

"Design of artificial neural networks system

for intelligent chessboard," 2017 4th IEEE

International Conference on Engineering

Technologies and Applied Sciences

(ICETAS), Salmabad, 2017, pp. 1-7.
[9]. D. Silver, T. Hubert, J. Schrittwieser, I.

Antonoglou, M. Lai, A. Guez, M. Lanctot, L.

Sifre, D. Kumaran, T. Graepel, T. Lillicrap,

K. Simonyan, and D. Hassabis. (Dec. 2017).

Mastering Chess and Shogi by Self-Play with

a General Reinforcement Learning Algorithm.

[Online]. Available:

https://arxiv.org/abs/1712.01815
[10]. M. Sabatelli, F. Bidoia, V. Codreanu, and M.

Wiering, “Learning to Evaluate Chess

Positions with Deep Neural Networks and

Limited Lookahead,” Proceedings of the 7th

International Conference on Pattern

Recognition Applications and Methods, 2018.
[11]. J. Czech, M. Willig, A. Beyer, K. Kersting,

and J. Fürnkranz. (Aug. 2019). Learning to

Play the Chess Variant CrazyHouse Above

World Champion Level with Deep Neural

Networks and Human Data. [Online].

Available: https://arxiv.org/abs/1908.06660

