
Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 1 | P a g e

A Survey of Programming Editors for the Visually Impaired

Dr Mercy Rajaselvi V
1
, Jane Gloria F

2
, Mohitha V

3
, Guhan Selvarajan

 4

1
 (Department of Computer Science, Easwari Engineering College, Chennai-89

2
 (Department of Computer Science, Easwari Engineering College, Chennai-89

3
 (Department of Computer Science, Easwari Engineering College, Chennai-89

4
 (Department of Computer Science, Easwari Engineering College, Chennai-89

ABSTRACT
It is commonly known fact that the differently abled are not provided with proper education and educational

tools because of the lack of proper infrastructure or equipment to help them. Throughout the years, various

technologies have been developed that can be used to teach differently abled students computer programming.

But none of these specifically target the visually challenged student or have certain drawbacks that do not enable

easy learning and usage. Audio Language Programming was introduced to help the visually impaired grasp

algorithmic thinking and problem solving. But there is no concentration on code writing because the main

objective of ALP is to learn programming concepts rather than syntax. Tools that aim to help the visually

impaired students to code must do so without costly equipment or extreme changes to existing systems. It

should be a software solution that can be easily implemented. Such solutions can also be commercialized to help

easier coding for industry experts. To enable the visually impaired students to easily access computer

programming tools and techniques will open new opportunities for them. One main method discussed

throughout this survey will be the use of voice-enabled programming editors that will enable hands-free coding.

Keywords - Audio Programming language, Programming tool, visually challenged, Speech to text, Speech

interface

--- ----------

Date of Submission: 07-04-2020 Date of Acceptance: 22-04-2020

--- ----------

I. INTRODUCTION
Computer Science is a branch of

engineering which revolves around logic and

reasoning, which greatly depends on visual cues.

This restricts the study and practice of computer

science and various other associated technologies to

people who are visually impaired. Normal teaching

and practice methods are ineffective to students with

special needs. Flowcharts and other visual aids

cannot be implemented and used by the visually

impaired student. They require special hardware like

braille keyboards, etc. in order for them to use

computer system. This proves to be difficult in many

parts of the world, especially India. And so many

visually impaired students opt for descriptive

subjects like arts which they can dictate to an

external scribe. This proves to be a time-consuming

task which limits the range of study of these

students.

Foundations for computer studies start at

the school level. By encouraging students to take up

such technical studies, the future prospects of these

students are vastly improved. Over the years, the

popularity of computer studies has increased with a

greater number of students opting for degrees in this

field with rising opportunities for well paid jobs.

Getting more students involved in this field is

imperative to enhancing the lives of students,

especially students with special needs.

One way to get more visually impaired

students into technical subjects like coding is to

make a user interface that is accessible. It could be

accomplished by making the whole software voice-

enabled. Each component on the screen is described

in such systems enabling the user to access the

components with ease. Voice-enabled systems use

various technologies to achieve complete autonomy.

These systems can also be further expanded to help

developers who have sustained industry related

injuries and have trouble typing. This survey

discusses the various available software and

programming tools, either implemented or under

research, that enable voice programming.

RESEARCH ARTICLE OPEN ACCESS

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 2 | P a g e

II. LITERATURE SURVEY
Muhammad Shoaib et al. [1] devised and

researched the use of a new type of auditory

feedback called adaptive auditory feedback to enable

the blind user to access the contents of the desktop.

This technology has been found to be better than

traditional speech-only and non-speech only

auditory feedback mechanisms. This technology has

been used to enable the visually impaired user to use

computer systems with ease. Adaptive Auditory

Feedback is found to switch between speech-only

and non-speech only feedback on the basis of user

state (starting state- speech only, continuing state-

non-speech only). The repetitive speech-only

instructions are found to become more irritating and

time-consuming for the user. A survey of AAF was

conducted using 15 participants who were given the

task of filling a form. After the task was completed,

the user response to the system was

recorded. According to the response, it was

identified that listening to similar speech-only

instructions for more than three times becomes

irritating/annoying to the visually impaired. The

results and the detailed interviews with participants

showed that adaptive auditory feedback is more

appropriate than speech-only and non-speech

feedback and more enjoyable. It also was found to

convey more meaningful and critical information

compared to non-speech auditory feedback.

Abhishek Chand et al [2] discussed a voice

coding environment using a technology called

Silvius. Silvius is a hybrid of commercially available

speech recognition tools like Dragon Naturally

Speaking and Aenea. A server is used to recognise

sentences got from piping the microphone output.

The sentence will then be parsed and run through a

grammar which will produce virtual keystrokes.

Silvius has created a parser tree with meta-python

objects. An N-gram language model is generated by

walking the parser tree. An Abstract Syntax Tree

(AST) is produced using the text. The AST is

walked and commands are executed. Silvius has

been deemed advantageous because of its low

computing power and the fact that it can work on

cloud.

Anurag Singh et al [3], discussed the

implementation of a voice to code editor in Java

language. They outlined the need for five modules

for complete operation of the system. The five

modules are Language Specifying module, Text

Operation module, Commands Specification

module, Differentiate Text and Symbol module and

Compile and Run module. Each module is designed

in such a way as to efficiently help the programmer

code using only spoken commands. The project is

still ongoing as of the publishing of this paper. The

future works the the authors have detailed are the

implementation of the system to work with multiple

programming languages like C, C++, HTML, etc.,

Lucas Rosenblatt et al [4] researches the

use of voice assisted programming for people with

upper body impairments like those with limited or

no use of their upper extremities. The research had

been conducted in three parts. First, a Wizard of Oz

study was conducted with ten people without upper

body impairments. These people were asked to

complete programming tasks using only voice

commands. Second, with the results of the WoZ

study, VocalIDE was created as a vocal

programming editor. Third was the study of the

prototype when people with disabilities used

VocalIDE. VocalIDE is a voice to code editor using

JavaScript. It is a web application that allows user to

write and edit code using a set of vocal commands.

The system had two components: the automatic

speech recogniser and the rule-based syntax parser.

The feasibility of the system was analysed by

researching the ease of use of VocalIDE by people

having upper body impairments. This process had

been implanted in four parts: the Box and Block

Test, the baseline current computer interaction test,

the system evaluation using their voice, and an

unstructured interview where the participants were

asked about their experience in using both traditional

user interface and VocalIDE. . The participants had

completed 300 tasks (150 baseline, 150 VocalIDE).

The duration to complete each task in the baseline

condition had been 21.24 seconds, while the average

task completion time in the VocalIDE condition had

been 13.81 seconds. The most frequent challenge

faced had been the misinterpretation of the spoken

commands. The overall result of VocalIDE has

estimated that VocalIDE helps in coding and could

potentially improve coding experience.

Kaveendra Lunuwilage et al, [5], discussed

the development of research project of DICENS. It

is targeted for visually impaired users to use voice-

based commands in order to learn programming

language concepts. DICENS aims to develop a set of

technologies and products to help visually impaired

users learn programming faster and with more

accurate results. The program workflow is loaded

onto the system before the user starts coding so that

the logical flow of the program is maintained. The

four components in the DICENS research project are

the Speech Recognition Engine, Semantic Analysis

Engine, Code Play Supervision Engine and User

Interaction and Braille Engine. Voice commands are

recognized by the speech recognition engine which

are then processed to identify the keywords and the

program structure is developed. The editing and

navigation are done by using the last two

components to make the system more user friendly.

The system also provides alternative solutions which

makes the user’s program more logically sound. This

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 3 | P a g e

research project achieved an accuracy of 85% but

failed in areas with high noise.

Rinor S. Maloku et al., [6] developed

HyperCode, an interface that enables for voice

coding in Java. HyperCode consists of python scripts

which will map the continuously spoken text to

custom commands in Natlink. Dragon Naturally

Speaking was used as the standard speech

recognition software. A survey was conducted to test

the times taken by different modes of input like:

keyboard, mouse and voice. The conclusion of the

survey was that using a combination of keyboard,

mouse and voice inputs produced the best results (46

seconds compared to 65 seconds and 84 seconds

using keyboard/mouse and voice input respectively).

HyperCode is used to achieve this combination

input.

Amber Wagner et al. [7], suggested the

need for a voice-driven tool for motorically

challenged children to help them learn to code. They

developed Myna, a voice driven Java application.

This tool runs parallel to Scratch (graphical

programming interface developed by MIT). The tool

can obtain the voice commands from the user and

simultaneously does processing and interpretation of

the commands against a pre-defined grammar.

Scratch helps in simulating the actions of the mouse

and keyboard required while writing and compiling

code. The implementation of this project has been

completed but further improvements like adding all

static commands to the grammar and adding the

provision to undo or remove commands are still

pending. The future scope of this project has been

said to be fully understood only after obtaining solid

data of its implementation and usefulness in the

learning environment.

D.D. Langan, et al., [8], created a

programming IDE manually disabled by making the

entire system voice enabled. Since programming

languages (with well-defined grammar) provide only

a limited set of input at any given time, these limited

inputs can be selected vocally as they are listed out

by the IDE. This research led to the development of

a voice-activated syntax directed editor called

VASDE which was used to create Java programs.

Eclipse and JSAPI were combined to create the main

infrastructure of VASDE. In addition to VASDE a

voice activated GUI editor called VAGUE was

implemented to support buttons, labels, text-fields,

combo-boxes, etc. VAGUE generated the described

GUI using Java code with Eclipse as the platform.

Even with both VASDE and VAGUE implemented

together, it could not provide the entire solution for

manually disabled programmers as only a portion of

it was voice activated. The overall system resulted in

time lags and certain user spoken commands being

ignored, the research also resulted in low accuracy

during the recognition of certain commands.

Dat Tran et al.[9], designed an audio

programming tool enables the blind or visually

impaired use to code in the C# programming

language. All the components are voice-enabled

meaning the entire project can be made and

deployed using only the user’s spoken commands.

The user is able to start the project by choosing a

template from a list of available templates. Features

like auto-completer helps the user write long class or

method names. Compiling and debugging in this has

been done by the compiler by auto generating code

for producing voice. Errors will be read out one at a

time and the user is guided to the line of code

containing error in the program. This procedural

error correction is repeated till all the errors are

corrected. The user can also use mouse and

keyboard shortcuts for checking the output.
Andrew Begel et al, [10] give an account

about the cognitive effects of a speech enabled

programming editor which they designed and

implemented called SPEED (SPEech EDitor). It

enables coding in Java on the Eclipse IDE. The

author has tested the system using both a

commercial speech to text converter (DNS) and a

machine-based speech recogniser. The overall

conclusion of this experiment was that developers

found it slower to code using voice that actually

manually typing the code. But SPEED was relatively

simple for the developers to learn and they preferred

to described the code template rather than speak

literal syntax. Users using DNS found both speed

and accuracy to be dismal whereas users using

human voice recogniser reported higher speeds but

only after sufficient training. Recognition time

ranges between 0.5 to 0.75 seconds. Users testing

the human speech recognizer could speak at a

normal pace and were able to pause in the middle of

uttering a command. These users reported 12% to

21% error while using spoken Java Spoken

Commands. Even after SPEED reported such

successes, developers in the industry were hesitant to

use the system citing noise pollution, cognitive

interferences and wasting time by not using their

hands.

 Alain Désilets et al.[11] have proposed a

solution for people suffering from Repetitive Strain

Injury (RSI). Multiple studies have taken voice-

enabled coding as the solution for Repetitive Strain

Injury (RSI). One such study resulted in VoiceCode.

This has allowed developers to code using naturally

spoken syntax which gets converted to proper code

in real time. Since programming language syntax is

awkward to utter, VoiceCode is aiming to create an

environment in which the programmer can use

naturally spoken commands to write code, navigate

and also modify the code. It the Continuously

spoken voice commands are interpreted as mostly

independent context sensitive commands i.e based

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 4 | P a g e

on the previous word spoken, the command is

interpreted. Once the user corrects an error in the

program, VoiceCode adapts itself to not make the

same mistake. Code templates and flexible wording

are used so that the same code can be produced by

multiple naturally spoken commands. Developers

found the system useful but it could not be

effectively used by beginners or visually impaired

students to learn or execute code.

Michael Nichols et al., [12], created a

special purpose programming language for

navigating VoiceXML pages called Aural Language

for VoiceXML Interpretation and Navigation

abbreviated as ALVIN. VoiceXML was created by

the W3C consortium for the purpose of accessing

internet content using audio. ALVIN allows

individual statements to be differentiated based on

the content rather than punctuation present in the

command. The design is based on a consistent

command syntax also known as sentence structure.

Alan Desilets, [13] researched the various

techniques and issues available in existing voice

coding and proposed a new solution termed as

VoiceGrip. VoiceGrip was proposed to aid the

programmer to code by voice thus enabling a hands-

free experience. The user will give input in the form

of spoken pseudocode syntax which will be easier to

speak out loud than normal coding syntax. This

pseudocode syntax will first be mapped to normal

words by the speech recognition engine’s dictation

grammar. VoiceGrip commands are recognised as

Voice Macros which invoke the Programming editor

macro. These editor macros then in turn invoke one

of two types of modules: Compilation command

module and Translation command module.

Pseudocode to Computer code translation of

VoiceGrip uses simple deterministic parsing

algorithm with three parts. They are translating the

input pseudocode command to a programming

construct, translating the construct to either a native

symbol (if the construct maps with a known variable

in the symbols database) or creating a new mapping

for an unknown construct for future use. The error

rate in VoiceGrip was between 2.7% to 6.6%. The

errors mainly arose due to homophonic words and

pronunciation of the pseudocode
Ann C. Smith et al, [14], designed the

JavaSpeak tool specifically for the visually impaired

students. It is basically a code editor with auditory

feedback which gives helpful hints about the

structure and flow of the program. It gives the user

required information about the syntax and semantics

of the programming language, in this case Java.

Arno’ld et al, [15], discussed

VocalProgramming. It aims at helping veteran

developers who have developed RSI to continue

coding using only voice commands. The system

employs a VoiceGenerator which takes as input

Context Free Grammar (CFG) for a specific

programming language like BASIC, C or C++ and

voice literals from the programming like the names

of classes, functions and so on. This is also

associated with a set of pronounceable phrases that

the programmer can use to edit the code. The output

of such a system is a programming environment that

can be controlled using only voice-based commands.

The system aims to bundle its software with

commercially available and popular speech to text

converters which ensure that they will have a higher

accuracy with time. The issue with this system is the

implementation of intended nesting and iteration. It

can be solved by normalizing and denormalizing the

grammar to make sense of the user’s intent.

Yasuhisa Niimi et al., [16], developed a

voice-input programming system ‘SPOKEN-

BASIC-I’. They divided the system into four major

components: acoustic, lexical matching syntactic and

semantic processors. Spoken words that have no

predefined category in this system form their own

category. The result of this system was two

executable programs that can be created using

SPOKEN-BASIC-I in which a total of 282

utterances were processed using the best-first

strategy. A total of 85.5% of the utterances were

correctly recognised while 6%were incorrectly

recognised and 8.5% were rejected. Processing time

of this system has been found to be between ¼ to1/5

times of real time processing.

Table1: Comparison on various methods used in programming editors for visually impaired

S.NO TECHNIQUES RESULT PROS AND CONS

1 Adaptive auditory feedback

[1]

AAF was found to be more

comfortable and satisfactory to

use compared to speech only

auditory feedback. AAF results

in less irritation and joyful

experience to visually impaired

users using computer system.

Pros:

AAF was easier and less irritating

to use.

Cons:

Once AAF enters into non speech

auditory feedback it cannot switch

back to speech only feedback and

user has to manually change modes.

It is not optimized to each person’s

cognitive ability.

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 5 | P a g e

2 Dragon Naturally

Speaking (DNS), Aenea.,

Kaldi, SPARK. [2]

Silvius can run in cloud or

locally and requires low

computing resources.

Pros:

The grammar can be customized

according to user’s need.

Silvius can work across all

platforms.

Cons:

Silvius which is a hybrid of DNS

and Aenea has poor recognition rate

compared to it predecessor.

3 ElectonJS, pyQt4.[3] The protype implementation of

the project is still in progress.

The completed system will be

will be JAVA voice to code

editor that will also help in

error correction.

Pros:

The editor after it’s implementation

will work leniently without any

ambiguity and support for error is

will be provided.

Cons:

Implementation will be hard as

computer syntax is not naturally

spoken

.

4 Automatic speech

recogniser and rule-based

syntax parser. [4]

Users were made to work with

traditional IDE and VocalIDE.

It was found that the average

task completion time for

traditional IDE is 21.24 seconds

and VocalIDE is 13.81 seconds.

Pros:

The VocalIDE is comparatively

faster than the traditional

development environments.

Cons:

The system design and evaluation

were primarily limited to navigation

and selection and the system is

limited by insufficient speech

recognition accuracy.

5 Speech Recognition

Engine, Semantic Analysis

Engine, Code Play

Supervision Engine and

Braille Engine. [5]

DICENS system showed 85%

accuracy for Speech

Recognition Engine.

Pros:

The system is easier to use and also

helps the programmer by providing

alternate solutions that makes the

program more logical.

Cons:

The system failed in high noise

areas.

6 Dragon Naturally Speaking

(DNS) and Natlink. [6]

A time measurement was taken

for common programming tasks

using keyboard, voice input and

a combination of both. It was

found that combination of both

voice input and keyboard was

faster which is achieved using

HyperCode.

Pros:

It uses a combination of both

keyboard/ mouse and voice

recognition for better results.

Cons:

It does not provide feedback and

error correction for users with

disabilities.

7 Scratch, Cloud Garden,

Java Robot, View. [7]

Myna successfully added static

commands to the grammar,

commands for editing. Features

like scroll bar for navigation,

multi-lingual support and

grammar customization were

Pros:

Myna provides a way for the user to

navigate across the screen and also

has multi-lingual support.

Cons:

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 6 | P a g e

implemented later. Myna is not 100% voice controlled

and can be used only with Scratch

IPE.

8 Java Speech API (JSAPI),

Voice Activated JAVA and

a view named Voice Input.

[8]

Users reported that it was easy

to learn and master. Addition of

red-green light made the system

better to use.

Pros:

The users stated that using this

system was better than typing and it

was easy to learn.

Cons:

The word recognition rate was

slow. The system also had time

lags.

9 C# and text-to-speech

Software Development

Toolkit (SDK). [9]

The system was tested with

blind and vision impaired users.

Both users were able to perform

the same task. Blind users

preferred applications with

keyboard while vision impaired

preferred applications with

mouse.

Pros:

The system provided automatic

code completion and code templates

for the user.

Cons:

The system is only implement for

C# and can be implement only with

the help of Visual Studio .NET for

coding.

10 Eclipse IDE plugin named

SPEED. [10]

The developed editor SPEED

supports in code editing,

authoring and navigation.

SPEED’s recognition delay was

between 0.5-0.75 seconds.

Pros:

SPEED was easy to learn and

provided navigation to desired line

where code has to be edited.

Cons:

Software was found to be three

times slow.

11

Continuously spoken

words combining both

commands and normal

English, Context-sensitive

commands and automatic

generation of abbreviation.

[11]

VoiceCode was able to

interpret continuously spoken

commands and make effective

use of templates. It also helped

programmers with error

correction.

Pros:

VoiceCode helps programmer by

making use of templates. It helps is

error correction and adapts itself not

to make the error again.

Cons:

Though VoiceCode was useful for

programmers to program using

voice it did not provide sufficient

aide to the visually impaired.

12 VoiceXML, Prolog-based

Common Gateway

Interface (CGI). [12]

Prototype implementation of

ALVIN language is still in

progress.

Pros:

ALVIN language uses mixed-

interactive approach to avoid

ambiguity.

Cons:

It is only being implemented for

Voice based XML pages.

13 Pseudocode to

programming construct

mapping using

deterministic parsing

algorithm. [13]

Only 1111 of the 16734

pseudo-symbols were not

matched to the correct native

symbols. In 665 of those cases

it was found that the native

symbol matched by the

algorithm was homophonic to

Pros:

VoiceGrip covers most of the code

editing problems in programming

thus helps the users to edit code

easily.

Cons:

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 7 | P a g e

the correct one. 2.7% to 6.6% error in recognition

due to homophones and mis

pronunciation in 343 unique users.

14 JAVA Compiler Compiler

(JAVA CC) and IBM’s

ViaVoice, Java Speech

Markup Language

(JSML).[14]

JavaSpeak has three subsytems

namely navigation subsystem,

Syntatic Reader Subsytem and

Aural Cue Subsytem which

being developed.

Pros:

JavaSpeak uses JSML to implement

different voice tones and emphasis

while reading the text.

Cons:

The focus of the system is to teach

JAVA rather than efficient coding.

15 Syntax-directed editor

generators and Dragon

Naturally Speaking (DNS),

Microsoft Visual Studio.

[15]

VocalProgrammer will be built

with log capabilities that will

allow users to capture voice

commands as interpreted by

voice engine and the voice

engines text output.

Pros:

The system is developed in a way

that all the commands can be

accessed using menus.

Cons:

There are issues in integrating the

existing technologies into

VocalProgrammer. Since computer

language is not spoken, this causes

problems while using the system.

16 Acoustic processor, lexical

matching processor,

semantic processor and

syntactic processor. [16]

Two executable programs were

written using ‘SPOKEN-

BASIC-I’. With best-first

strategy 85.5% were correctly

recognized, 6.0% were

incorrectly recognized, 8.5% of

the words were rejected out of

282 words.

Pros:

SPOKEN-BASIC uses two parsing

strategies depth first and best first

where the time required to

recognize an utterance is 1/4
th

 to

1/5
th

 of the real time.

Cons:

The system is for BASIC language

which is not used anymore.

III. CONCLUSIONS
From the above literature survey, it is noted

that a fully autonomous system that enables the

visually impaired user to code has not been

completely implemented. The issue lies in either the

speech recognition or in the error correction module.

Speech recognition proves to an area in which

improvements can be made. Accuracy and

navigation modules are yet to be made user friendly.

Since the advent of speech recognition,

steps have been taken to make entire systems voice-

enabled. But no system has been fully developed to

accurately help the visually impaired user to use the

computer system with ease. Coding for the visually

impaired using spoken commands is still heavily

under research.

REFERENCES
[1]. Shoaib, M., Hussain, I. and Mirza, H.T.,

2019. Automatic switching between speech

and non-speech: adaptive auditory feedback

in desktop assistance for the visually

impaired. Universal Access in the Information

Society, Springer, pp.1-11.

[2]. Abhishek Chand, Subhojeet Chakraborty,

Abhinava Anand, Swapnil Dhande, Mansa

Mane, & Parag Kulkarni. (2018). CODE BY

VOICE USING SILVIUS. International

Journal Of Advance Research And Innovative

Ideas In Education, 4(3), (pp. 2144-2147).

[3]. Singh, A., Tambatkar, G., Hanwante, S.,

Agrawal, N., Hajare, R. and Khante, K., 2018.

Voice to Code Editor Using Speech

Recognition.

[4]. Rosenblatt, L., Carrington, P., Hara, K. and

Bigham, J.P., 2018. Vocal Programming for

People with Upper-Body Motor Impairments.

In Proceedings of the Internet of Accessible

Things (pp. 1-10).

[5]. Lunuwilage, K., Abeysekara, S., Witharama,

L., Mendis, S. and Thelijjagoda, S., 2017,

December. Web based programming tool with

speech recognition for visually impaired

users. In 2017 11th International Conference

on Software, Knowledge, Information

Dr Mercy Rajaselvi V,etal. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 10, Issue 4, (Series - III) April 2020, pp. 01-08

www.ijera.com DOI: 10.9790/9622-1004030108 8 | P a g e

Management and Applications (SKIMA) (pp.

1-6). IEEE.

[6]. Maloku, R.S. and Pllana, B.X., 2016.

HyperCode: Voice aided

programming. IFAC-PapersOnLine, 49(29),

pp.263-268.

[7]. Wagner, A., Rudraraju, R., Datla, S.,

Banerjee, A., Sudame, M. and Gray, J., 2012,

May. Programming by voice: a hands-free

approach for motorically challenged children.

In CHI'12 Extended Abstracts on Human

Factors in Computing Systems (pp. 2087-

2092). ACM.

[8]. LANGAN, D., HAIN, T., HUBBLE, T. and

FRØSETH, J.,2009. A voice-activated

programming IDE for manually disabled

programmers.

[9]. Tran, D., Haines, P., Ma, W. and Sharma, D.,

2007, September. Text-to-speech technology-

based programming tool. In Proceedings of

the 7th WSEAS International Conference on

Signal, Speech and Image Processing (pp.

173-176). World Scientific and Engineering

Academy and Society (WSEAS).

[10]. Begel, A. and Graham, S.L., 2006,

September. An assessment of a speech-based

programming environment. In Visual

Languages and Human-Centric Computing

(VL/HCC'06) (pp. 116-120). IEEE.

[11]. Désilets, A., Fox, D.C. and Norton, S., 2006,

April. Voicecode: An innovative speech

interface for programming-by-voice.

In CHI'06 Extended Abstracts on Human

Factors in Computing Systems (pp. 239-242).

[12]. Nichols, M., Gupta, G. and Wang, Q., 2005.

Voice-commanded Scripting Language for

Programming Navigation Strategies on-the-

fly. In Proceedings of the HCI International

2005.

[13]. Desilets, A., 2001. VoiceGrip: a tool for

programming-by-voice. International Journal

of Speech Technology, 4(2), pp.103-

116.Springer

[14]. Smith, A.C., Francioni, J.M. and Matzek,

S.D., 2000, November. A Java programming

tool for students with visual disabilities.

In ACM SIGACCESS Conference on Assistive

Technologies: Proceedings of the fourth

international ACM conference on Assistive

technologies (Vol. 13, No. 15, pp. 142-148).

[15]. Arno`ld, S.C., Mark, L. and Goldthwaite, J.,

2000, November. Programming by voice,

VocalProgramming. In Proceedings of the

fourth international ACM conference on

Assistive technologies (pp. 149-155). ACM.

[16]. Niimi, Y. and Kobayashi, Y., 1978, April. A

voice-input programming system using

BASIC-like language. In ICASSP'78. IEEE

International Conference on Acoustics,

Speech, and Signal Processing (Vol. 3, pp.

425-428). IEEE.

