
Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37 

 

 
www.ijera.com                               DOI: 10.9790/9622-1011013137                                  31 | P a g e  

   

 

 

 

 

 

 

Design and Implementation of Home Autonomous System Based 

on Machine Learning Algorithms 
 

Basman M. Hasan Alhafidh
1
, Amar I.Daood

2
, Modhar A. Hammoudy

 3 

1
Dept. of Comp. Engineering College of Engineering University Mosul, Iraq 

2
Dept. of Comp. Engineering College of Engineering University Mosul, Iraq 

3
Alhammoudy Dept of Comp. Engineering College of Engineering University Mosul, Iraq 

 

ABSTRACT 
Home automation systems are cutting edge tech- nologies to monitor and control a smart home environ- ment to 

produce an efficient system that accurately predicts the needs of the human occupants. Past research has focused 

on the accuracy of prediction of   a users future action. However, a focus on prediction accuracy often comes at 

the cost of slower processing time. additionally, a need of hardware implementation is necessary to assure the 

consistency of the simulation results. Finally, much of that work uses synthetic datasets which do not always 

reflect the real-world interactions that occur between  an  individual  and  the home environment. This paper 

focuses on the prediction of future human actions in an intelligent environment with the goal of achieving both 

high prediction accuracy and response times that are appro- priate for a real-time application environment. 

Using several different machine learning algorithms, both the simulation experiments and hardware 

implementation were accomplished using the MavPad dataset which was gathered from a fully-instrumented 

home environ- ment. In the first stage of this study investigates which machine learning algorithm will satisfy 

the conditions of real-time application. The findings show that neural network technique provides a feasible 

solution in term of accuracy. Going deeper, the authors use simulation to investigate the performance of a 

multilayer neural network that predicts future human actions. In the second stage of this work the authors 

present a hardware implementation of the deep learning model on a FPGA. The results showed that the 

hardware implementation demonstrated similar accuracy with significantly improved performance compared to 

the software- based implementation due to the exploitation of parallel computing and using optimization tech- 

niques to map the designed system into the target device. Furethermore, our implementation of FPGA- based 

neural network system supports its future uti- lization for other applications. 

Keywords: Smart Home System, FPGA, Autonomous Sys- tem, Machine Learning Algorithms, Prediction 

System 
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I. INTRODUCTION 
Consumers seek home automation systems 

that monitor and control a smart home environment 

to produce an efficient system that accurately 

predicts the needs of the human occupants. Some 

recent researches have presented the use of Machine 

Learning Algorithms (MLAs) to predict the present 

activity of an individual depending on sensors 

reading, and other works focused on the accuracy of 

prediction of next  user action on home appliances. 

However, those studies used synthetic datasets that 

were generated based on assumptions which may not 

reflect the real-world interactions between an 

individual and their home environment. Also, there 

was often a focus on using MLAs that presented 

greater accuracy in prediction without considering 

the time constraints of real-time applications. 

In this paper, we will not focus on the 

creation of models of a user’s current activities or on 

generalizing occupant behavior inside the 

environment. Instead, we will focus on the 

prediction of next human actions on changes to the 

state of actuators inside an intelligent environment. 

Hence, the prediction process in such an 

environment needs a fast response speed from the 

designed prediction system with a high level of 

accuracy to satisfy the quality of the service based 

on real-time application domains. To assist the 

mentioned criteria, several simulation experiments 

were conducted to compare the average accuracy 

and average time of prediction results between 

different approaches of Nave Bayes (NB), Support 

Vector Machine (SVM), and Neural Network (NN). 

The implemented MLAs were applied to the 

MavPad dataset. This dataset was collected from 

sensors and actuators which distributed across a real- 
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world environment over seven weeks period. The 

experiments were divided into two zones, local zone 

and global zone. NN showed superior performance 

in term of accuracy and speed. On the other hand, 

NN showed adequate accuracy and response time in 

the global zone. The second stage of this work is 

FPGA implementation of our network to improve 

the response time. Both the preliminary results of 

Matlab simulation and FPGA hardware 

implementation show that a neural network classifier 

was accepted to meet the constrains of a real time 

system      for the human prediction  of  a  smart  

home  system.  Based on that observation, we went 

deeper by increasing number     of layers in our NN 

hoping to see if we can enhance the accuracy under 

the mentioned constrains. Besides, the paper 

presents a performance analysis for the prediction 

model via the comparison between Software and 

Hardware Implementation. The comparison is an 

essential process to assure a real-time response not 

only in S.W. implementation experiment but also in 

a real hardware implementation experiment when 

the configured system predicts the needs of human 

occupants in a real-time basis. 

The remainder of this paper is organized as 

follows. Section II presents a literature review. 

Section III presents our experi- mental design using 

the MavPad dataset, which was collected from a 

real-world environment [1]. Section IV discusses the 

simulation results using Matlab simulation program. 

In Section V, presents the results of FPGA 

implementation of multilayer NN (Deep Learning) 

with a comparison between software and hardware 

results. Section VI, discuss the results, and Section 

VII, summarizes our conclusions. 

 

II. LITERATURE REVIEW 
An environment that possesses ambient 

intelligence and automatic control has been 

described as a smart home [2][3] which is defined as 

the concentrator and disseminator of information and 

services and is closely related to IoT synergic 

networks and principles [4] [5]. Continuous 

improvement for such systems will be necessary to 

delegate most of the occupant’s needs to this type of 

intelligent system. Therefore, a smart home system 

must have the capability to be self- autonomous, 

adaptable, and have an optimized interface. 

Predicting the user needs and then 

implementing an au- tomated action on behalf of the 

user  is  a  core  thread  in  such a smart environment 

to ensure the quality of services. Many researchers 

use MLAs as the basis for prediction of  user 

behavior. In [6], the researchers propose an Artificial 

Neural Networks (ANN) and a priori algorithms that 

support user preferences depending on the current 

context. Other researchers use time series prediction, 

such as evolving the Fuzzy Predictor model [7] [8]. 

Semi Markov Model as a probabilistic model was by 

[9] to predict the user actions inside a real-world 

environment that was represented by a 60-day 

dataset. The researchers manage appliances through 

an energy management system. A pattern matching 

and reinforcement learning approaches were used  to  

predict  next  user  action by applying mathematical 

methods on a simple  synthetic  data. The 

researchers showed that their proposed algorithm 

improved the accuracy but did not mention the time 

of prediction needed to predict next user actions. 

Most of these researches were dedicated to 

optimizing energy consumption in addition to 

enhancing the convenience of the occupant’s daily 

life. Accuracy measurements have been used to 

compare the performance analysis of different types 

of MLAs which are used to predict a user’s future 

actions, based on past events. 

In this research, the authors investigate the 

accuracy and prediction time needed by three types 

of MLAs by comparing the performance of a range 

of a well-known MLAs. Besides, this research goes 

deeper to investigate the use of deep learning not 

only by simulation experiment but also with a FPGA 

hardware implementation to assess the simulation 

result and make sure the applicability of using the 

system under real- time constrains. We list several 

candidates of machine learning algorithms to be an 

essential part of learning phase in the BUTLER 

system [10] which plays an important role in 

decision making. In this paper, three classifiers were 

used: Naive Bayes (NB), Support Vector Machine 

(SVM), and Neural Network (NN). The goal of this 

work is to determine the best MLA choice between 

these types of classifiers. Hence, the selected 

algorithm should assure the quality of services 

represented by reaching maximum accuracy and fast 

response performance in such a real-time application 

system. 

The Naive Bayes (NB) approach is a 

commonly-used probabilistic classifier [11]. Both 

the Multinomial (mn) and Multi-Vibrate 

Multinomial (mvmn) distributions were used in our 

experiments. 

A Support Vector Machine (SVM) is a 

supervised machine learning algorithm which 

classifies data by dividing points by using 

hyperplanes [12]. 

The Neural Network (NN) performs 

classification by training neural networks and 

determining the optimum weights of the designed 

network. 

 

III. EXPERIMENTAL DESIGN 
In this section, we describe the experiments 

used to determine the optimal machine learning 



Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37 

 

 
www.ijera.com                               DOI: 10.9790/9622-1011013137                                  33 | P a g e  

   

 

 

 

technique to be used for building rules during the 

learning phase [10]. These experiments used the 

MavPad dataset [1] which was collected by 

observing an individual living in an apartment; thus, 

it consists of observa- tions of human activities in a 

real environment. The apartment consists of a 

living/dining room combination, a kitchen, a 

bathroom, a large bedroom, and a walk-in closet. 

There were 127 nodes of sensors and actuators in the 

environment. The complete dataset was collected 

over 49 days in 49 data files sequentially, with a 

total of seven weeks. A separated data file for each 

day was recorded by the system. In each original 

data file, there is one sensor event on each row of the 

data file, and the event syntax is represented by date, 

time, zone number, state, level, and source 

information. 

The MATLAB2017 environment was used 

to convert the source data file from 49 data type files 

(.dat) to one matrix data type file (.mat). After the 

conversion process, all the data will be stored in one 

matrix for instance: the first column in the matrix 

file, consists of the names of each node in the first 

row followed by the status values of that node in the 

other rows. 

The MATLAB was also used to process the 

data by removing unnecessary details. After filtering 

the noise, we transfer the data to one Matlab matrix 

file called (OP49DAYS.mat). This file contains 86 

columns that represent the status of the sensors, 

referred to as predictors. In addition to the 

predictors, there were 41 columns which represent 

the actuator’s values or the output (Vector Y). As a 

result, there were more than (73 10
3
) rows  or  

events  for  the  first  day  alone  and  more than (4 

10
6
) rows of observations during seven weeks. Each 

row has a status value for each node type which 

represents a predictor value or an attribute at a 

specific time. After the  data conversion process, we 

applied the three different types of MLAs, described 

above, to predict the next user action in the 

environment using the MLAs that have been 

discussed in Section II. Two different combinations 

of sensors were used to predict the next 

stakeholder’s action. The first case applies all the 

seven sensors that existed inside the restroom. The 

second case uses all the 86 sensors inside all the 

zones of the environment. The predicted action 

represents an actuator with binary outputs (0/1) 

inside the restroom labeled in (B5). The actuator B5 

is used to turn the light over the mirror ON or  shut it 

OFF. In our experiment, we decide to take the first 

four weeks (28 days) for training dataset and the 

fifth week as the test dataset. 

 

 

 

IV. SOFTWARE RESULTS 
In this section, we evaluate the accuracy 

and performance of each algorithm by comparing 

the performance of the MLAs that have been used in 

our experiments. Initially, the experiments focus on 

the behavior of the occupant at one specific zone 

(Restroom Zone) in the apartment. 

In our restroom zone experiments, we used 

two different constructions of sensors to predict the 

user’s action. The first case uses seven sensors, 

labeled as (V21, V22, V23, S137, S138, S139, 

S140), that represents the predictors and located in 

the restroom zone, and the second case uses all 86 

sensors at all zones in the apartment concurrently. 

Moreover, the predicted action is labeled in (B5) 

used to turn the light over mirror ON or OFF. So, for 

each day, two cases that use a different number of 

sensors were taken as input variables to predict the 

user’s action. For training and testing data size, we 

decide to take  one month for a training dataset for 

all the MLAs followed by one week as testing data. 

In this investigation, we seek to compare 

MLAs by determin- ing their accuracy and relative 

execution time for the prediction process. We 

determine the accuracy and prediction time needed 

for the two combinations, one with seven predictors 

in the local zone and the second with 86 predictors 

in the global zone, as processed by each of the 

MLAs. Tables I and II, the three accuracy results for 

each type of classifier were presented for each 

grouping of sensors. The best results of classifier are 

presented in bold font. 

1) Local Zone Experiment: This experiment 

uses seven input sensors to predict the occupant’s 

use of the B5 actuator. By comparing the 

experimental results in Table I,  we  can  see that the 

SVM approach produces the highest accuracy. Since 

the goal of a real-time prediction system is to predict 

user actions with maximum accuracy and minimum 

delay, we can assure that SVM provides the best 

performance for accuracy but with slow response 

time (0.896 sec) comparing with NN. Meanwhile, 

the NN approach produced about 95% accuracy but 

with a fastest response time 0.244 sec comparing 

with SVM algorithm. Therefore, we decide to 

determine whether a Neural Network-based deep 

learning approach might deliver the best overall 

performance in such a real-time application 

environment. 

2) Global Zone Experiment: In this  

experiment,  we  use all of the sensors in the 

environment (86 sensors) to predict the operation of 

the B5 actuator. The results were different compared 

with the first experiments’ results that use only the 

local seven sensors. The best accuracy result was 

produced 
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TABLE I: Accuracy and execution time results for 

the local zone (7 sensors) 

 
 

TABLE II: Accuracy and execution time results for 

the global zone (all 86 sensors) 

 
 

by the Neural Network, but  with  a  higher  

time  (  6.5 sec) of prediction process  comparing  

with  the  first  case  which is too slow to  be  

accepted  for  real-time  applications.  In  this 

configuration, the accuracy of the binary classifier of 

SVM dropped down to 54% which is not applicable 

for a    fast predicting process. That result is due to 

the nature of SVM’s  algorithm. Predicting 

hyperplanes of seven inputs is   a relatively easy task 

when estimating only eight parameters  to define the 

hyperplane’s equation. On the other hand, when 

processing 86 inputs, estimating the hyperplane’s 

equation requires the process to accommodate all 

sensors, which  makes the calculation far more 

complicated. As a result, the system is more 

vulnerable to over-fitting, which degrades the 

performance. Regularization and feature selection 

could be used to improve the performance of SVM 

since not all the sensors have high correlations with 

the current B5 output. 

 

V. NEURAL NETWORK-BASED DEEP 

LEARNING APPROACH 
The results mentioned in IV-1 encourage 

the authors to a deep investigate the use of 

multilayer NN or Neural Network- based deep 

learning approach which might deliver a best overall 

performance as discussed previously. Therefore, the 

following subsections introduce NN-based deep 

learning  and  discuss the results in both software 

and hardware implementation experiments ending 

with a clear comparison using the two methods. 

The strength of the neural network comes 

from the mathemat- ical model representation. As a 

matter of fact, NN is inspired by the biological 

nervous system of the human brain. It tries to mimic 

the way of the human brain processes and learns 

patterns. A Neural Network consists of 

interconnected nodes (neurons) that process the 

input data in a certain way to perform a specific task. 

Theoretically, the NN can represent many different 

kinds of complex function. Recently, data 

revolution, parallel architectures, and GPU designs 

have been developed drastically. Therefore, the 

neural network has become an efficient tool in the 

machine learning discipline. Neural network’s nature 

offers 

 

TABLE III: The accuracy and prediction time 

results using local zone’s sensors for multilayer 

neural network 

 
 

very beneficial characteristics such as learning 

adaptation, self- organization, real-time output, and 

implementation ease. 

1) NN Software Implementation Results: In 

this section, we describe the software 

implementation of our network. Network 

configuration, such as network depth (i.e., number of 

layers) and the number of neurons of each layer 

determine computational speed. Although increasing 

the depth of NN improves the recognition rate (in 

case of having enough data), it consumes more CPU 

and memory resources. In this work, network depth, 

the number of neurons for each layer, and the 

training window size (i.e., the number of samples 

used in the training process  of each step to update 

networks parameters) were determined 

experimentally by maximizing the classification 

performance using the available resources. 

First, we started our implementation with 

one hidden layer. Then, we increased the number of 

neurons in the hidden layer to find the best 

representation experimentally. After that, we 

increased the depth of the network by adding a 

second layer. By fixing the number of neurons for 

the first layer, we increased the number of neurons 

for the second layer to come up with the best 

representation. We repeated this approach  for  the 

third layer in our network to optimize the number of 

nodes. Additionally, we used drop-out layers to 

reduce the effect of the overfitting problem. We 

added a drop-out layer between every two fully 

connected layers by a factor of 0.5. Removing some 

units of a network during training prevented 

excessive parameter updating. This drop-out 

technique may help reduce overfitting effect. The 

results of NN experiments are shown in Tables III 

and IV concurrently. 

A Deep Learning technique was used to 

facilitate the power of neural network via the 

implementation of the multilayer approach. As 



Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37 

 

 
www.ijera.com                               DOI: 10.9790/9622-1011013137                                  35 | P a g e  

   

 

 

 

shown in Table IV, the use of the local sensors with 

only one layer will produce an accuracy of 95.85% 

with 245 milliseconds needed for the prediction 

process. Supporting the first layer with a second one 

can significantly enhance the accuracy performance 

to be 99.11% with an acceptable time of 387 

milliseconds in the scope of real-time application. 

While adding a third layer to the designed model, 

doesn’t enhance the accuracy. Also, the response 

time of prediction process using three layers is about 

the double of what we possess using two layers. The 

mentioned results using local sensors proves that 

adding more layers in deep learning model doesn’t 

always assure the best performance: Therefore, 

layers optimization process needs to be considered 

when adding further layers to the system 

architecture. 

Similarly, Table IV discusses the performance of 

adding 

 

TABLE IV: The accuracy and prediction time 

results using global zone sensors for multilayer 

neural network 

 
 

a second and a third layer to the prediction system. 

Since     this experiment use 86 sensors, which 

distributed in the entire environment, we can see that 

the response time is much higher than what we have 

in the first experiment that uses only seven sensors. 

A significant enhancement in accuracy can be 

noticed when adding a second layer to the deep 

learning model with 9.1 seconds of prediction time. 

A similar result of accuracy values have been seen 

when adding a third layer. In other words, support 

the model with a third layer doesn’t facilitate better 

performance in the model; Therefore, the authors 

decided to consider designing the deep learning 

model to have the first two layers only which 

possess a maximum average accuracy and minimum 

average prediction time. 

2) NN Hardware Implementation Result Using 

FPGA: The mathematical operations of neural 

network models are simple. However, the massive 

number of operations needs intensive computing 

resources. Therefore, a fast and efficient realization 

is required to achieve the benefits of neural models. 

The FPGA based system allows designers to create 

digital designs, test them, make modification very 

quickly, and reduce development time significantly 

[13]. Also, the Hardware implementation of 

nonlinear activations, e.g., the sigmoid function, is 

one of the challenges due to the complexity of 

implementing division and exponential regarding 

time and hardware resources. Therefore, the 

approximate-based approach has been presented to 

realize sigmoid function efficiently and maintain an 

acceptable level of accuracy, such as using Lookup 

Table LUT [14]. 

In this paper, we utilize an FPGA platform to realize 

reconfigurable hardware-based neural networks for 

smart home systems. Digital designs are usually 

modeled using hardware description languages like 

Very high speed integrated circuit Hardware 

Description Language (VHDL) and verified by 

simulation. In this paper, instead of using low-level 

coding, such as VHDL, we used a high-level 

programming language, LabVIEW, to realize the 

neural network. National Instruments LabVIEW 

FPGA module uses LabVIEW embedded technology 

to extend LabVIEW graphical development to target 

FPGAs on NI reconfigurable I/O (RIO) hardware or 

some Xilinx boards. This module enables users to 

create custom hardware without low-level hardware 

description language coding or board design 

experience. Moreover, it allows a user to executes 

multiple tasks simultaneously and deterministically, 

and also expands the functionality of LabVIEW 

solutions, including unique timing and triggering 

routines,  ultrahigh-speed  control,  interfacing to 

digital protocols, digital signal processing (DSP) 

virtual instruments (VIs). 

The implementation of the trained weight 

data, the synaptic coefficients which are determined 

offline in a computing environment, is done using 

signed fixed-point representation 16-bit total length. 

Fixed point arithmetic is used for NNs realization, 

which is implemented as one of the available data 

types in LabVIEW FPGA module. Therefore, NN 

coefficients are used in the hardware design without 

additional pre- calculation. Also, LabVIEW FPGA 

module provides nonlinear functions, which are used 

to implement the nonlinear activation functions of 

each neuron. The other important feature in using 

LabVIEW software is the ability to import weight 

coefficients of NNs from Matlab  to  the  NN  

structure  implemented  in the FPGA, specifically to 

the block RAMs that store these coefficients. 

Three optimization techniques are used in 

this paper to optimize and improve the performance 

of the FPGA-based neural network. The first one is 

loop pipelining to achieve high throughput by 

organizing the overlap in the sequence of operation 

of neural network systems. Single Cycle Timed 

Loop (SCTL) was used to reduce the required 

hardware resources and improve the execution speed 

of our proposed neural network circuit. SCTL is an 

optimization technique available in LabVIEW 

FPGA module to eliminate the unnecessary 

resources exploited by the standard while loop 
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function. Due to limited computation resources in 

FPGA platforms and the massive computation 

required in realizing neural network models, loop 

unrolling has been exploited to efficiently utilize the 

resources and avoid complex hardware connections. 

We used this strategy to unroll the independent data 

and avoid complex connection topologies. 

 

VI. DISCUSSION 
The hardware implementation of the neural 

network has been done by LabVIEW FPGA module 

and downloaded to Xilinx XC3S500E FPGA. The 

whole neural network system fits in    a low-cost 

Xilinx Spartan-3E FPGA platform and uses block 

RAMs as on-chip buffers and a DRAM as external 

storage. The Spartan-3E family of field-

programmable gate arrays is specifically designed to 

meet the needs of high volume, and cost-sensitive 

consumer hardware digital systems, where the cost 

must be lower than the general purpose processors. 

The five-member family offers densities ranging 

from 100,000 to 1.6 million system gates. The 

XC3S500E FPGA has 4,656 slices, almost 10,476 

logic cells, twenty 18x18 hardware multipliers, as 

well as twenty 18 Kbits modules of dedicated dual-

port RAM. In this section, we report the 

performance of our proposed reconfigurable FPGA-

based neural network architecture and compare it 

with the software implementation. Then, we provide 

the hardware efficiency compared with the existing 

FPGA implementations. 

Our proposed FPGA realization of neural 

network has the same accuracy results as what we 

have in Matlab imple- mentation, and the accuracy is 

not compromised due to the usage of fixed-point 

computing units. The characteristic feature of using 

hardware platforms is performing the mathematical 

calculations of neural networks in parallel. This 

feature cannot 

 

TABLE V: The prediction time results using local 

and global zone’s sensors for hardware-based 

multilayer neural network 

 
 

be achieved with the software-based 

implementation of neural networks because of the 

sequential execution of the code. Table V illustrates 

the prediction time results for local and global 

zone’s sensors with different network structures. The 

results show that the hardware implementation 

significantly improves the prediction time on 

average by factors of two times and thirteen times 

compared with simulation results in the local and 

global zone respectively. The significant 

improvement in average prediction time commits 

substantial evidence that our designed autonomous 

system applies to be used in such a real-time 

application paradigm. 

The hardware utilization summary is shown 

in Table  VI  and compared with other FPGA 

realization approaches [15], [14], [16]. The proposed 

architecture consumes 2,828 slices out of the 

available 4,656  slices,  which  is  about  60%  of  

the total number of slices. Specifically, the re-

configurable hardware realization utilizes 3,938 slice 

LUTs or 42% and 2,862 slice registers or 30%. 

Connections per second (CPS) metric, the number of 

operations to be performed in a second, is used to 

compare hardware-based neural network 

architectures due to using different FPGA platforms 

for realization. The second metric is connection 

primitives per second per LUT (CPPSL), which 

takes the hardware resource utilization into account. 

CPPS can be  calculated  by  multiplying  CPS  by  

the bit width of inputs and weights. Table VI shows 

the performance comparison between our proposed 

architecture and other implementations using CPS 

and CPPSL  metrics. Our proposed architecture 

achieves three times more CPPSL compared to the 

best of existing FPGA implementations. 

 

TABLE VI: FPGA-based neural network resource utilization and a comparison with other FPGA 

implementations 
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VII. CONCLUSION 
This  paper  presents  the  design  and  

implementation  of   a reconfigurable hardware-based 

neural network for smart home systems. The 

proposed architecture outperformed the performance 

of software-based implementation regarding speed 

due to exploiting parallel computing and some 

optimization techniques. LabVIEW software enables 

developers to imple- ment digital systems without the 

need for low-level HDL language knowledge and 

reduces the usage of FPGA hardware resources. It 

also eliminates the need for pre-processing the neural 

network weights and maps them to FPGAs storage 

units. The implementation of FPGA-based neural 

network system allows its future utilization for other 

applications. 
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