
Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 31 | P a g e

Design and Implementation of Home Autonomous System Based

on Machine Learning Algorithms

Basman M. Hasan Alhafidh
1
, Amar I.Daood

2
, Modhar A. Hammoudy

 3

1
Dept. of Comp. Engineering College of Engineering University Mosul, Iraq

2
Dept. of Comp. Engineering College of Engineering University Mosul, Iraq

3
Alhammoudy Dept of Comp. Engineering College of Engineering University Mosul, Iraq

ABSTRACT
Home automation systems are cutting edge tech- nologies to monitor and control a smart home environ- ment to

produce an efficient system that accurately predicts the needs of the human occupants. Past research has focused

on the accuracy of prediction of a users future action. However, a focus on prediction accuracy often comes at

the cost of slower processing time. additionally, a need of hardware implementation is necessary to assure the

consistency of the simulation results. Finally, much of that work uses synthetic datasets which do not always

reflect the real-world interactions that occur between an individual and the home environment. This paper

focuses on the prediction of future human actions in an intelligent environment with the goal of achieving both

high prediction accuracy and response times that are appro- priate for a real-time application environment.

Using several different machine learning algorithms, both the simulation experiments and hardware

implementation were accomplished using the MavPad dataset which was gathered from a fully-instrumented

home environ- ment. In the first stage of this study investigates which machine learning algorithm will satisfy

the conditions of real-time application. The findings show that neural network technique provides a feasible

solution in term of accuracy. Going deeper, the authors use simulation to investigate the performance of a

multilayer neural network that predicts future human actions. In the second stage of this work the authors

present a hardware implementation of the deep learning model on a FPGA. The results showed that the

hardware implementation demonstrated similar accuracy with significantly improved performance compared to

the software- based implementation due to the exploitation of parallel computing and using optimization tech-

niques to map the designed system into the target device. Furethermore, our implementation of FPGA- based

neural network system supports its future uti- lization for other applications.

Keywords: Smart Home System, FPGA, Autonomous Sys- tem, Machine Learning Algorithms, Prediction

System

--- ----------

Date of Submission: 28-10-2020 Date of Acceptance: 09-11-2020

--- ----------

I. INTRODUCTION
Consumers seek home automation systems

that monitor and control a smart home environment

to produce an efficient system that accurately

predicts the needs of the human occupants. Some

recent researches have presented the use of Machine

Learning Algorithms (MLAs) to predict the present

activity of an individual depending on sensors

reading, and other works focused on the accuracy of

prediction of next user action on home appliances.

However, those studies used synthetic datasets that

were generated based on assumptions which may not

reflect the real-world interactions between an

individual and their home environment. Also, there

was often a focus on using MLAs that presented

greater accuracy in prediction without considering

the time constraints of real-time applications.

In this paper, we will not focus on the

creation of models of a user’s current activities or on

generalizing occupant behavior inside the

environment. Instead, we will focus on the

prediction of next human actions on changes to the

state of actuators inside an intelligent environment.

Hence, the prediction process in such an

environment needs a fast response speed from the

designed prediction system with a high level of

accuracy to satisfy the quality of the service based

on real-time application domains. To assist the

mentioned criteria, several simulation experiments

were conducted to compare the average accuracy

and average time of prediction results between

different approaches of Nave Bayes (NB), Support

Vector Machine (SVM), and Neural Network (NN).

The implemented MLAs were applied to the

MavPad dataset. This dataset was collected from

sensors and actuators which distributed across a real-

RESEARCH ARTICLE OPEN ACCESS

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 32 | P a g e

world environment over seven weeks period. The

experiments were divided into two zones, local zone

and global zone. NN showed superior performance

in term of accuracy and speed. On the other hand,

NN showed adequate accuracy and response time in

the global zone. The second stage of this work is

FPGA implementation of our network to improve

the response time. Both the preliminary results of

Matlab simulation and FPGA hardware

implementation show that a neural network classifier

was accepted to meet the constrains of a real time

system for the human prediction of a smart

home system. Based on that observation, we went

deeper by increasing number of layers in our NN

hoping to see if we can enhance the accuracy under

the mentioned constrains. Besides, the paper

presents a performance analysis for the prediction

model via the comparison between Software and

Hardware Implementation. The comparison is an

essential process to assure a real-time response not

only in S.W. implementation experiment but also in

a real hardware implementation experiment when

the configured system predicts the needs of human

occupants in a real-time basis.

The remainder of this paper is organized as

follows. Section II presents a literature review.

Section III presents our experi- mental design using

the MavPad dataset, which was collected from a

real-world environment [1]. Section IV discusses the

simulation results using Matlab simulation program.

In Section V, presents the results of FPGA

implementation of multilayer NN (Deep Learning)

with a comparison between software and hardware

results. Section VI, discuss the results, and Section

VII, summarizes our conclusions.

II. LITERATURE REVIEW
An environment that possesses ambient

intelligence and automatic control has been

described as a smart home [2][3] which is defined as

the concentrator and disseminator of information and

services and is closely related to IoT synergic

networks and principles [4] [5]. Continuous

improvement for such systems will be necessary to

delegate most of the occupant’s needs to this type of

intelligent system. Therefore, a smart home system

must have the capability to be self- autonomous,

adaptable, and have an optimized interface.

Predicting the user needs and then

implementing an au- tomated action on behalf of the

user is a core thread in such a smart environment

to ensure the quality of services. Many researchers

use MLAs as the basis for prediction of user

behavior. In [6], the researchers propose an Artificial

Neural Networks (ANN) and a priori algorithms that

support user preferences depending on the current

context. Other researchers use time series prediction,

such as evolving the Fuzzy Predictor model [7] [8].

Semi Markov Model as a probabilistic model was by

[9] to predict the user actions inside a real-world

environment that was represented by a 60-day

dataset. The researchers manage appliances through

an energy management system. A pattern matching

and reinforcement learning approaches were used to

predict next user action by applying mathematical

methods on a simple synthetic data. The

researchers showed that their proposed algorithm

improved the accuracy but did not mention the time

of prediction needed to predict next user actions.

Most of these researches were dedicated to

optimizing energy consumption in addition to

enhancing the convenience of the occupant’s daily

life. Accuracy measurements have been used to

compare the performance analysis of different types

of MLAs which are used to predict a user’s future

actions, based on past events.

In this research, the authors investigate the

accuracy and prediction time needed by three types

of MLAs by comparing the performance of a range

of a well-known MLAs. Besides, this research goes

deeper to investigate the use of deep learning not

only by simulation experiment but also with a FPGA

hardware implementation to assess the simulation

result and make sure the applicability of using the

system under real- time constrains. We list several

candidates of machine learning algorithms to be an

essential part of learning phase in the BUTLER

system [10] which plays an important role in

decision making. In this paper, three classifiers were

used: Naive Bayes (NB), Support Vector Machine

(SVM), and Neural Network (NN). The goal of this

work is to determine the best MLA choice between

these types of classifiers. Hence, the selected

algorithm should assure the quality of services

represented by reaching maximum accuracy and fast

response performance in such a real-time application

system.

The Naive Bayes (NB) approach is a

commonly-used probabilistic classifier [11]. Both

the Multinomial (mn) and Multi-Vibrate

Multinomial (mvmn) distributions were used in our

experiments.

A Support Vector Machine (SVM) is a

supervised machine learning algorithm which

classifies data by dividing points by using

hyperplanes [12].

The Neural Network (NN) performs

classification by training neural networks and

determining the optimum weights of the designed

network.

III. EXPERIMENTAL DESIGN
In this section, we describe the experiments

used to determine the optimal machine learning

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 33 | P a g e

technique to be used for building rules during the

learning phase [10]. These experiments used the

MavPad dataset [1] which was collected by

observing an individual living in an apartment; thus,

it consists of observa- tions of human activities in a

real environment. The apartment consists of a

living/dining room combination, a kitchen, a

bathroom, a large bedroom, and a walk-in closet.

There were 127 nodes of sensors and actuators in the

environment. The complete dataset was collected

over 49 days in 49 data files sequentially, with a

total of seven weeks. A separated data file for each

day was recorded by the system. In each original

data file, there is one sensor event on each row of the

data file, and the event syntax is represented by date,

time, zone number, state, level, and source

information.

The MATLAB2017 environment was used

to convert the source data file from 49 data type files

(.dat) to one matrix data type file (.mat). After the

conversion process, all the data will be stored in one

matrix for instance: the first column in the matrix

file, consists of the names of each node in the first

row followed by the status values of that node in the

other rows.

The MATLAB was also used to process the

data by removing unnecessary details. After filtering

the noise, we transfer the data to one Matlab matrix

file called (OP49DAYS.mat). This file contains 86

columns that represent the status of the sensors,

referred to as predictors. In addition to the

predictors, there were 41 columns which represent

the actuator’s values or the output (Vector Y). As a

result, there were more than (73 10
3
) rows or

events for the first day alone and more than (4

10
6
) rows of observations during seven weeks. Each

row has a status value for each node type which

represents a predictor value or an attribute at a

specific time. After the data conversion process, we

applied the three different types of MLAs, described

above, to predict the next user action in the

environment using the MLAs that have been

discussed in Section II. Two different combinations

of sensors were used to predict the next

stakeholder’s action. The first case applies all the

seven sensors that existed inside the restroom. The

second case uses all the 86 sensors inside all the

zones of the environment. The predicted action

represents an actuator with binary outputs (0/1)

inside the restroom labeled in (B5). The actuator B5

is used to turn the light over the mirror ON or shut it

OFF. In our experiment, we decide to take the first

four weeks (28 days) for training dataset and the

fifth week as the test dataset.

IV. SOFTWARE RESULTS
In this section, we evaluate the accuracy

and performance of each algorithm by comparing

the performance of the MLAs that have been used in

our experiments. Initially, the experiments focus on

the behavior of the occupant at one specific zone

(Restroom Zone) in the apartment.

In our restroom zone experiments, we used

two different constructions of sensors to predict the

user’s action. The first case uses seven sensors,

labeled as (V21, V22, V23, S137, S138, S139,

S140), that represents the predictors and located in

the restroom zone, and the second case uses all 86

sensors at all zones in the apartment concurrently.

Moreover, the predicted action is labeled in (B5)

used to turn the light over mirror ON or OFF. So, for

each day, two cases that use a different number of

sensors were taken as input variables to predict the

user’s action. For training and testing data size, we

decide to take one month for a training dataset for

all the MLAs followed by one week as testing data.

In this investigation, we seek to compare

MLAs by determin- ing their accuracy and relative

execution time for the prediction process. We

determine the accuracy and prediction time needed

for the two combinations, one with seven predictors

in the local zone and the second with 86 predictors

in the global zone, as processed by each of the

MLAs. Tables I and II, the three accuracy results for

each type of classifier were presented for each

grouping of sensors. The best results of classifier are

presented in bold font.

1) Local Zone Experiment: This experiment

uses seven input sensors to predict the occupant’s

use of the B5 actuator. By comparing the

experimental results in Table I, we can see that the

SVM approach produces the highest accuracy. Since

the goal of a real-time prediction system is to predict

user actions with maximum accuracy and minimum

delay, we can assure that SVM provides the best

performance for accuracy but with slow response

time (0.896 sec) comparing with NN. Meanwhile,

the NN approach produced about 95% accuracy but

with a fastest response time 0.244 sec comparing

with SVM algorithm. Therefore, we decide to

determine whether a Neural Network-based deep

learning approach might deliver the best overall

performance in such a real-time application

environment.

2) Global Zone Experiment: In this

experiment, we use all of the sensors in the

environment (86 sensors) to predict the operation of

the B5 actuator. The results were different compared

with the first experiments’ results that use only the

local seven sensors. The best accuracy result was

produced

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 34 | P a g e

TABLE I: Accuracy and execution time results for

the local zone (7 sensors)

TABLE II: Accuracy and execution time results for

the global zone (all 86 sensors)

by the Neural Network, but with a higher

time (6.5 sec) of prediction process comparing

with the first case which is too slow to be

accepted for real-time applications. In this

configuration, the accuracy of the binary classifier of

SVM dropped down to 54% which is not applicable

for a fast predicting process. That result is due to

the nature of SVM’s algorithm. Predicting

hyperplanes of seven inputs is a relatively easy task

when estimating only eight parameters to define the

hyperplane’s equation. On the other hand, when

processing 86 inputs, estimating the hyperplane’s

equation requires the process to accommodate all

sensors, which makes the calculation far more

complicated. As a result, the system is more

vulnerable to over-fitting, which degrades the

performance. Regularization and feature selection

could be used to improve the performance of SVM

since not all the sensors have high correlations with

the current B5 output.

V. NEURAL NETWORK-BASED DEEP

LEARNING APPROACH
The results mentioned in IV-1 encourage

the authors to a deep investigate the use of

multilayer NN or Neural Network- based deep

learning approach which might deliver a best overall

performance as discussed previously. Therefore, the

following subsections introduce NN-based deep

learning and discuss the results in both software

and hardware implementation experiments ending

with a clear comparison using the two methods.

The strength of the neural network comes

from the mathemat- ical model representation. As a

matter of fact, NN is inspired by the biological

nervous system of the human brain. It tries to mimic

the way of the human brain processes and learns

patterns. A Neural Network consists of

interconnected nodes (neurons) that process the

input data in a certain way to perform a specific task.

Theoretically, the NN can represent many different

kinds of complex function. Recently, data

revolution, parallel architectures, and GPU designs

have been developed drastically. Therefore, the

neural network has become an efficient tool in the

machine learning discipline. Neural network’s nature

offers

TABLE III: The accuracy and prediction time

results using local zone’s sensors for multilayer

neural network

very beneficial characteristics such as learning

adaptation, self- organization, real-time output, and

implementation ease.

1) NN Software Implementation Results: In

this section, we describe the software

implementation of our network. Network

configuration, such as network depth (i.e., number of

layers) and the number of neurons of each layer

determine computational speed. Although increasing

the depth of NN improves the recognition rate (in

case of having enough data), it consumes more CPU

and memory resources. In this work, network depth,

the number of neurons for each layer, and the

training window size (i.e., the number of samples

used in the training process of each step to update

networks parameters) were determined

experimentally by maximizing the classification

performance using the available resources.

First, we started our implementation with

one hidden layer. Then, we increased the number of

neurons in the hidden layer to find the best

representation experimentally. After that, we

increased the depth of the network by adding a

second layer. By fixing the number of neurons for

the first layer, we increased the number of neurons

for the second layer to come up with the best

representation. We repeated this approach for the

third layer in our network to optimize the number of

nodes. Additionally, we used drop-out layers to

reduce the effect of the overfitting problem. We

added a drop-out layer between every two fully

connected layers by a factor of 0.5. Removing some

units of a network during training prevented

excessive parameter updating. This drop-out

technique may help reduce overfitting effect. The

results of NN experiments are shown in Tables III

and IV concurrently.

A Deep Learning technique was used to

facilitate the power of neural network via the

implementation of the multilayer approach. As

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 35 | P a g e

shown in Table IV, the use of the local sensors with

only one layer will produce an accuracy of 95.85%

with 245 milliseconds needed for the prediction

process. Supporting the first layer with a second one

can significantly enhance the accuracy performance

to be 99.11% with an acceptable time of 387

milliseconds in the scope of real-time application.

While adding a third layer to the designed model,

doesn’t enhance the accuracy. Also, the response

time of prediction process using three layers is about

the double of what we possess using two layers. The

mentioned results using local sensors proves that

adding more layers in deep learning model doesn’t

always assure the best performance: Therefore,

layers optimization process needs to be considered

when adding further layers to the system

architecture.

Similarly, Table IV discusses the performance of

adding

TABLE IV: The accuracy and prediction time

results using global zone sensors for multilayer

neural network

a second and a third layer to the prediction system.

Since this experiment use 86 sensors, which

distributed in the entire environment, we can see that

the response time is much higher than what we have

in the first experiment that uses only seven sensors.

A significant enhancement in accuracy can be

noticed when adding a second layer to the deep

learning model with 9.1 seconds of prediction time.

A similar result of accuracy values have been seen

when adding a third layer. In other words, support

the model with a third layer doesn’t facilitate better

performance in the model; Therefore, the authors

decided to consider designing the deep learning

model to have the first two layers only which

possess a maximum average accuracy and minimum

average prediction time.

2) NN Hardware Implementation Result Using

FPGA: The mathematical operations of neural

network models are simple. However, the massive

number of operations needs intensive computing

resources. Therefore, a fast and efficient realization

is required to achieve the benefits of neural models.

The FPGA based system allows designers to create

digital designs, test them, make modification very

quickly, and reduce development time significantly

[13]. Also, the Hardware implementation of

nonlinear activations, e.g., the sigmoid function, is

one of the challenges due to the complexity of

implementing division and exponential regarding

time and hardware resources. Therefore, the

approximate-based approach has been presented to

realize sigmoid function efficiently and maintain an

acceptable level of accuracy, such as using Lookup

Table LUT [14].

In this paper, we utilize an FPGA platform to realize

reconfigurable hardware-based neural networks for

smart home systems. Digital designs are usually

modeled using hardware description languages like

Very high speed integrated circuit Hardware

Description Language (VHDL) and verified by

simulation. In this paper, instead of using low-level

coding, such as VHDL, we used a high-level

programming language, LabVIEW, to realize the

neural network. National Instruments LabVIEW

FPGA module uses LabVIEW embedded technology

to extend LabVIEW graphical development to target

FPGAs on NI reconfigurable I/O (RIO) hardware or

some Xilinx boards. This module enables users to

create custom hardware without low-level hardware

description language coding or board design

experience. Moreover, it allows a user to executes

multiple tasks simultaneously and deterministically,

and also expands the functionality of LabVIEW

solutions, including unique timing and triggering

routines, ultrahigh-speed control, interfacing to

digital protocols, digital signal processing (DSP)

virtual instruments (VIs).

The implementation of the trained weight

data, the synaptic coefficients which are determined

offline in a computing environment, is done using

signed fixed-point representation 16-bit total length.

Fixed point arithmetic is used for NNs realization,

which is implemented as one of the available data

types in LabVIEW FPGA module. Therefore, NN

coefficients are used in the hardware design without

additional pre- calculation. Also, LabVIEW FPGA

module provides nonlinear functions, which are used

to implement the nonlinear activation functions of

each neuron. The other important feature in using

LabVIEW software is the ability to import weight

coefficients of NNs from Matlab to the NN

structure implemented in the FPGA, specifically to

the block RAMs that store these coefficients.

Three optimization techniques are used in

this paper to optimize and improve the performance

of the FPGA-based neural network. The first one is

loop pipelining to achieve high throughput by

organizing the overlap in the sequence of operation

of neural network systems. Single Cycle Timed

Loop (SCTL) was used to reduce the required

hardware resources and improve the execution speed

of our proposed neural network circuit. SCTL is an

optimization technique available in LabVIEW

FPGA module to eliminate the unnecessary

resources exploited by the standard while loop

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 36 | P a g e

function. Due to limited computation resources in

FPGA platforms and the massive computation

required in realizing neural network models, loop

unrolling has been exploited to efficiently utilize the

resources and avoid complex hardware connections.

We used this strategy to unroll the independent data

and avoid complex connection topologies.

VI. DISCUSSION
The hardware implementation of the neural

network has been done by LabVIEW FPGA module

and downloaded to Xilinx XC3S500E FPGA. The

whole neural network system fits in a low-cost

Xilinx Spartan-3E FPGA platform and uses block

RAMs as on-chip buffers and a DRAM as external

storage. The Spartan-3E family of field-

programmable gate arrays is specifically designed to

meet the needs of high volume, and cost-sensitive

consumer hardware digital systems, where the cost

must be lower than the general purpose processors.

The five-member family offers densities ranging

from 100,000 to 1.6 million system gates. The

XC3S500E FPGA has 4,656 slices, almost 10,476

logic cells, twenty 18x18 hardware multipliers, as

well as twenty 18 Kbits modules of dedicated dual-

port RAM. In this section, we report the

performance of our proposed reconfigurable FPGA-

based neural network architecture and compare it

with the software implementation. Then, we provide

the hardware efficiency compared with the existing

FPGA implementations.

Our proposed FPGA realization of neural

network has the same accuracy results as what we

have in Matlab imple- mentation, and the accuracy is

not compromised due to the usage of fixed-point

computing units. The characteristic feature of using

hardware platforms is performing the mathematical

calculations of neural networks in parallel. This

feature cannot

TABLE V: The prediction time results using local

and global zone’s sensors for hardware-based

multilayer neural network

be achieved with the software-based

implementation of neural networks because of the

sequential execution of the code. Table V illustrates

the prediction time results for local and global

zone’s sensors with different network structures. The

results show that the hardware implementation

significantly improves the prediction time on

average by factors of two times and thirteen times

compared with simulation results in the local and

global zone respectively. The significant

improvement in average prediction time commits

substantial evidence that our designed autonomous

system applies to be used in such a real-time

application paradigm.

The hardware utilization summary is shown

in Table VI and compared with other FPGA

realization approaches [15], [14], [16]. The proposed

architecture consumes 2,828 slices out of the

available 4,656 slices, which is about 60% of

the total number of slices. Specifically, the re-

configurable hardware realization utilizes 3,938 slice

LUTs or 42% and 2,862 slice registers or 30%.

Connections per second (CPS) metric, the number of

operations to be performed in a second, is used to

compare hardware-based neural network

architectures due to using different FPGA platforms

for realization. The second metric is connection

primitives per second per LUT (CPPSL), which

takes the hardware resource utilization into account.

CPPS can be calculated by multiplying CPS by

the bit width of inputs and weights. Table VI shows

the performance comparison between our proposed

architecture and other implementations using CPS

and CPPSL metrics. Our proposed architecture

achieves three times more CPPSL compared to the

best of existing FPGA implementations.

TABLE VI: FPGA-based neural network resource utilization and a comparison with other FPGA

implementations

Basman M. Hasan Alhafidh, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 11, (Series-I) November 2020, pp. 31-37

www.ijera.com DOI: 10.9790/9622-1011013137 37 | P a g e

VII. CONCLUSION
This paper presents the design and

implementation of a reconfigurable hardware-based

neural network for smart home systems. The

proposed architecture outperformed the performance

of software-based implementation regarding speed

due to exploiting parallel computing and some

optimization techniques. LabVIEW software enables

developers to imple- ment digital systems without the

need for low-level HDL language knowledge and

reduces the usage of FPGA hardware resources. It

also eliminates the need for pre-processing the neural

network weights and maps them to FPGAs storage

units. The implementation of FPGA-based neural

network system allows its future utilization for other

applications.

REFERENCES
[1]. M. Youngblood, D. J. Cook, and L. B. Holder,

“Seamlessly engineering a smart

environment,” in Systems, Man and

Cybernetics, 2005 IEEE International

Conference on, vol. 1. IEEE, 2005, pp. 548–

553.

[2]. L. C. De Silva, C. Morikawa, and I. M. Petra,

“State of the art of smart homes,” Engineering

Applications of Artificial Intelligence, vol. 25,

no. 7, pp. 1313–1321, 2012.

[3]. B. M. Alhafidh and W. Allen, “Smart homes

based on smart cities design patterns,” in

Internet of Things and Big Data Analysis:

Recent Trends and Analysis. United Scholar,

2016, ch. 7.

[4]. M. B. I. Reaz and M. Marufuzzaman, “Pattern

matching and reinforce- ment learning to

predict the user next action of smart home

device usage,” Acta Technica Corviniensis-

Bulletin of Engineering, vol. 6, no. 3, p. 37,

2013.

[5]. B. M. Alhafidh and W. Allen, “Design and

simulation of a smart home managed by an

intelligent self-adaptive system,” International

Journal of Engineering Research and

Applications, vol. 6, no. 8, pp. 64–90, 2016.

[6]. B. Naouar, G. Nesrine, S. A. Adil, and M.

Bouchaib, “Proactive intelligent home system

using contextual information and neural

network approach,” 2016.

[7]. M. J. Akhlaghinia, a. Lotfi, C. Langensiepen,

and N. Sherkat, “Occupant behaviour

prediction in ambient intelligence computing

environment,” Journal of Uncertain Systems,

vol. 2, no. 2, pp. 85–100, 2008.

[8]. A.-M. Vainio, M. Valtonen, and J. Vanhala,

“Proactive fuzzy control and adaptation

methods for smart homes,” IEEE Intelligent

Systems, vol. 23, no. 2, 2008.

[9]. K. Bao, F. Allerding, and H. Schmeck, “User

behavior prediction for energy management in

smart homes,” in Fuzzy Systems and

Knowledge Discovery (FSKD), 2011 Eighth

International Conference on, vol. 2. IEEE,

2011, pp. 1335–1339.

[10]. B. M. H. Alhafidh and W. H. Allen, “High

level design of a home autonomous system

based on cyber physical system modeling,” in

Distributed Computing Systems Workshops

(ICDCSW), 2017 IEEE 37th International

Conference on. IEEE, 2017, pp. 45–52.

[11]. T. L. van Kasteren, G. Englebienne, and B. J.

Kro¨ se, “Human activity recognition from

wireless sensor network data: Benchmark and

software,” in Activity recognition in pervasive

intelligent environments. Springer, 2011, pp.

165–186.

[12]. Y. Li, S. Gong, and H. Liddell, “Support

vector regression and classifica- tion based

multi-view face detection and recognition,” in

Automatic Face and Gesture Recognition,

2000. Proceedings. Fourth IEEE International

Conference on. IEEE, 2000, pp. 300–305.

[13]. F. H. Ali, H. M. Mahmood, and S. M. B.

Ismael, “Labview fpga implementation of a

pid controller for d.c. motor speed control,” in

2010 1st International Conference on Energy,

Power and Control (EPC- IQ), Nov 2010, pp.

139–144.

[14]. X. Zhai, F. Bensaali, and R. Sotudeh, “Real-

time optical character recognition on field

programmable gate array for automatic

number plate recognition system,” IET

Circuits, Devices & Systems, vol. 7, no. 6, pp.

337–344, 2013.

[15]. A. Gomperts, A. Ukil, and F. Zurfluh,

“Development and implementation of

parameterized fpga-based general purpose

neural networks for online applications,” IEEE

Transactions on Industrial Informatics, vol. 7,

no. 1, pp. 78–89, Feb 2011.

[16]. X. Zhai, A. A. S. Ali, A. Amira, and F.

Bensaali, “Mlp neural network based gas

classification system on zynq soc,” IEEE

Access, vol. 4, pp. 8138–8146, 2016.

