
Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566256|P a g e

Topic Trees And Chatbot Conversational Context

Peter Waksman

ABSTRACT:This article discusses the relation between topic-specific word trees (“ontologies”) and the

retrieval of information from a chatbot‟s recent conversation – the conversational context. I assume the

conversational context includes the sequence of recently visited nodes of the topic tree. So we caninterpret

context retrieval as a problem of selection from this sequence, in reverse order. We will see that a surprisingly

small set of selection methods support a diversity of indeterminate words and phrasesthat may need to be

handled by a chatbot: like “it”, “them”, “what‟s the difference?”, “the third”, etc.An essential part of the solution

is the way context is filteredto contain only the kinds of items we are expecting to find in the current input but

that are missing. What is expected but missing drives context retrieval. In practice when an input sentence is

encountered that is not understood and contains an indeterminate word, a chatbot may be allowed a second pass

after retrieving and inserting recent context into the input.Theseideas are implemented in Python at:

https://github.com/peterwaksman/Narwhal

--- ----------

Date of Submission: 02-08-2018 Date of acceptance: 17-08-2018

-- ----------------

I. INTRODUCTION
It is interesting that chatbot development

requires more than just language understanding

algorithms. Achatbotneeds to organize and keep

track of a conversation and vary its responses

depending on previous exchangesand the current

“state” of the conversation. Also a chatbot may be

required to understand the context of the most

recent exchanges with its client and may need to

handle indefinite words, like “it” or “both”, that

refer to things that were just said. This article

discusses one way to do that: keeping a list of

recently mentioned concepts and retrieving them as

needed to disambiguate indefinite words in a

current input.

Let me use the word indeterminatefor

words or phrases that get their content dynamically,

by retrieving recently used information. Many of

the indeterminate words are pronouns (e.g. “it”,

“his”). Others are classified as determiners,

predeterminers, and adverbs (e.g.“what” and

“both”). In the case of the indeterminate phrase

“what is the difference” the word “difference” is a

noun. Identifying indeterminate words by their

parts of speechclassification is not

useful;andanalyzing them as a diagrammed

sentence using Natural Language Processing

(NLP) does not tell us that these particular

wordsrequire special handling in a chatbot. For

actual Natural Language Understanding (NLU)one

needs additional operations for seeking the

appropriate words from the context and inserting

them retroactively into the input (or something

comparable). Thus NLU needs more than justa

reformatting of the input into the structure of a

diagrammed sentence –it needs more than what is

available in NLP.

 Indeterminate words have a short

term scope. The word “it” is often abused in real

conversation and hard to follow, even for a person.

Some chatbots are able to disambiguate complex

combinations of indeterminates
1
but my goal here is

consider how to retrieve context successfully in the

simplest situations,that would be easy for a person

to understand; so the discussion is limited to the

simplest kinds of context retrieval. I hope the

outlines are clear but the reader will easily note the

incompleteness of this story.

The following tries to be neutral about

how you implement NLU. A minimum requirement

is to havea metric forwhen an input expression

isunderstood or not
2
. This tells the program when

context may be needed. Simply put, when there is

little or no understanding of the input and

indeterminate words are present in the input, then

retrieving and inserting context mightconvertthe

input into something that is understood. The

chatbot program needs to know when it should try

this and it needs to know when it has succeeded.

In section 1 “Trees” I discuss some basic

ideas about how words can be stored in a tree

structure for the purposes of matching against

incoming text. I introduce a simple tree notation for

1 See Don Patrick’s Winograd Schema
Challenge
2
For example Narwhal, mentioned in the

abstract, implements a GOFor “goodness of

fit”score that measures understanding as a

value between 0.0 and 1.0.

RESEARCH ARTICLE OPEN ACCESS

https://github.com/peterwaksman/Narwhal

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566257|P a g e

the discussion.In section 2 “Chatbot Conversational

Context” I discuss how to save copies of the nodes

as a sequence and how to retrieve from this

sequence and insert into the input. Finally, in

section 3 “When to Use Context” I discuss

detecting when context retrieval may be needed

and when it has succeeded.

We will see that short term context retrieval

depends on three factors:

 the list of recently exchanged tree nodes,

 the indeterminate word that enables retrieval,

and

 what is expected but missing from the current

input, triggering the need for retrieval and

determiningwhat kind of thing to retrieve.

1. Trees – Word and Concept Ontologies

An "ontology" or "taxonomy" is a

classification using a hierarchical tree structure

with branch points, or nodes, corresponding to the

entities being classified. The idea is that similar

entities can be grouped as sub nodes of a single

'parent' node in a useful way. In the field of

language processing, it is typical to organize words

or concepts as an ontology, usually in a way where

parent-child relations are from a more general

„parent‟ to a more particular „child‟. Chatbot

developer may need to spend significant time

organizing ontologies.

Organizing words into a hierarchical

structure is straightforward and one finds that

simple parent-child relations arise naturally. Unlike

the indeterminate words, topic specific words have

well defined, constant, meanings within the chatbot

program. We could call these determinate words.

Because a node represents something in

common to the words that define it, I may

usedescriptions like“concept” or “sub-topic”

instead of “node” for such a word grouping.One

tries to name the node in a way that is consistent

with the conceptand, here, I will write this as a

label, followed by a comma separated list of

defining words,within curly braces „{}‟.

For example:

COLOR {color, tint, hue, shade}

We can represent the parent-child relation between

nodes by indenting the names of children,

underneath the parent. For example:

COLOR {color, tint, hue, shade}

RED {red, scarlet, rose, pink, ruby, vermillion}

BLUE {blue, azure, indigo }

Here there is one COLOR node with two

particular children: RED and BLUE. If, for

example, an input expression contains the word

“azure”, then this is match for the BLUE node. In

some circumstances “azure” may also be

considered a match to the COLOR node,

since“azure” is a match to one its children. Note

that although COLOR will be a constant in the

program, it may be treated like a variable in

expressions that are used to find matches among

the children, as discussed more below.

The word groups that define a node are

not the same thing as the parent child relations

between nodes, these groupings are application

specific. Thewordsin a group defining a node do

not need to be the same kinds of parts of speech or

even single words. For example, here are words

used in hotel reviews to describe extremes of

GOOD and BAD:

GOOD { very pleased,soothing,a gem, love ,home

away from home,

wow,wonderful,bliss,happy,superb,gorgeous,

spotless,

immaculate,phenomenal,fantastic,perfect,relax,exc

ellent,spectacular,peaceful,lovely,beautiful,amazin

g,impressive,

impressed,heaven,magical,fabulous,serene,paradise

,special,cozy,oasis }

BAD { unacceptable,filthy,dump, mildew, lousy,

awful, horrible, horrid, poison, gross, ick, icky,

disgusting, hairs, yuck, ug, ugh , unhelpful,

unpleasant, disappoint, disappoint, terrible, bugs,

spider }

It is important to note that although, for

example, „spider‟ and „hair‟ are not identical

concepts in general English usage, both words

express revulsion in the English used for hotel

reviews – so they can be treated as synonyms for a

hotel review application.

Reasons for grouping words and phrases together

include:

 The words may be synonymous or functionally

equivalent in your chatbot‟s world.In this case

the node label can be chosen to represent the

shared concept.

 The words may be different miss-spellings of

the same word, or variations on a phrase. In

this case the node label can be chosen to

represent the shared word.

 The groupings may be for simple convenience.

For example the „root‟ node of a tree may be a

parent to all the other word groupings –

without being related to a specific concept. In

this case the node creates a formal grouping

but its label is arbitrary.

I use the term topic tree when an ontology

contains terms that are all related to a particular

topic. Typically, a chatbot intended for a narrow

business function will use multiple topic tress

grouped under a single parent for

convenience.When no confusion arises, I will also

use the term “topic tree” for a grouped collection of

related sub trees.

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566258|P a g e

In practice you are never done extending

your word lists. The different ways people express

themselves, the variety of miss-spellings, etc. and it

is hard to see how one could automate the

extension process – say using machine learning

from new examples. The overall question is: how

to generate and extend ontologies using supervised

or unsupervised machine learning?

That is the basic idea of an ontology. A

number of examples can be found in the Narwhal

project on GitHub.

Additional examples of nodes

Some of the nodes will appear to define

„attributes‟ - with word lists that mostly contain

adjectives; while other nodes appear to define

„things‟ - with word lists that mostly contain nouns.

You may also want to define concepts that define

an action or relation – with word lists that mostly

contain verbs. It should be emphasized that the

part of speech classifications for the words used in

these lists is irrelevant. Some other examplesfrom

hotel reviews are:

Attribute-type nodes:
OPEN { open, thin, paper thin }

NEAR { near to , in the heart of, over , outside,

next to,…}

Thing-type nodes:
WINDOW { window, balcony, balcony door }

EQUIPMENTSOURCES { ac, a/c, air con, tv,

hvac, clanking, …}

QUESTION { ? , ask about, question, question

about , questions about , need to know , want to

know, want to find out, help with , is there, info,

information, information, tell me about }

CROWN { crown, full contour, cut back,

temporary, temp }

ABUTMENT
3
 {abutment, abut, abutmen }

For example one might have several different

Thing-types as children of a more general thing-

type parent:

OPENING {…}

WINDOW{…}

DOOR { …. }

3In dentistry, an „abutment‟ is a short post

screwed into a patient‟s jawbone, as a

substitute for tooth material, intended to

support a crown. A given tooth location could

have an abutment, a crown, or both.

Action-type nodes:
KEEPOUT { keep out, filter, cut down on, shut

out, cut out, block, keep out, escape from… }

REQUEST {use, build, ask for, sell me, fabricate,

produce, provide,….}

Parent- or Category-type nodes:

Often, natural concept nodes are

categories that group sub categories or singular

entities as their children. For example the COLOR

node above refers to the category of colors, it is not

a thing or an attribute but a parent of such entities.

One observes somewhat arbitrary or

abstract categories can have other categories as

children. For example if COLOR and SHAPE were

to define different dimensions of an item, they

could be grouped, somewhat arbitrarily, under a

node like this:

DIMENSION { dimension, attributes }

COLOR {…}

SHAPE {…}

A more complicated example (from dental product

description):

 PRODUCT { … }

 RESTORATION { … }

 ABUTMENT {…}

 CROWN { … }

 MATERIAL { … }

 TITANIUM { … }

 ZIRCONIA { … }

 TOOTH { #, tooth }

 TYPE { anterior, posterior,

canine, premolar, …. }

 TOOTHNUMBER { }

 ONE {1, one}

TWO { 2, two }

…etc.

THIRTY_TWO { 32,

thirty two, thirty-two }

These trees are application specific. It is

worth observing that the hierarchical structure of a

word tree is analogous to the hierarchical definition

of a floating point numbers. For our current

purposes, the word trees can be thought of as an

application-specific numbering system, with text

matching considered an act of measurement.

Node formulas

Node combinations are elements of simple

meaning. Consider the difference between asking a

question about a window versus making a request

for a window. Let me use the „*‟ symbol to

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566259|P a g e

represent a combination
4
, so we can consider two

combinations:

 QUESTION*WINDOW

versusREQUEST*WINDOW.

Or, we could have a combination with several

terms, like a request for a restoration on a particular

tooth:

REQUEST*RESTORATION * TOOTHNUMBER

Such simple combinations of nodesbegin

to behave like the meanings of expressions, such as

“please open the window” versus “is there a

window?” One concludes that a simple form of

NLU is possible just by keeping track of node

combination, matching them to an input

expressions, and providing a metric of

understanding
5
.

If the nodes of a node combination match

the input, they are said to be filled. It gets

interesting when all but one node is filled. In that

case the context can be searched, looking for

instances of the missing node or its children.

Parent Nodes Act as Variables when matching a

Combination

Suppose one expresses a combination using a

parent node like „COLOR‟, for example:

DRESS * COLOR

This is a match for “dress with color” but

it can also serve to match more particular

expressions like “the dress is blue”, or “scarlet

skirt”. For those purposes, the parent node

functions as a variable in the combination

“formula”, with a range of values equal to the

children nodes of the parent.

The Expected but Missing – Pattern Completion

I assume context retrieval is triggered

when one part of a node combination is missing:

instead of what is expected, an indeterminate word

occurs. In this case the context may contain diverse

nodes but only the ones that are children of what

was expected are of interest.

For example the chatbot may be

programmed to recognize when a client asks for

crowns on tooth #3 and #4”. It can do this by trying

to fill in the combination:

REQUEST * RESTORATION *

TOOTHNUMBER

4The ‘*’ is deliberately vague, intended to
represent more than one type of
combination.
5A good NLU library will also provide
sentiment (good/bad value) parsing. So node
combinations may behave like signed
quantities.

However, when those two numbers are already in

the recent context, the client might simply say “I

want crowns on both teeth”.In this case the chatbot

finds and incomplete match to the combination,

indicated by „?‟:

REQUEST*RESTORATION*OOTHNUMBER(?

)

In this case, the only part of the context

worth retrieving is the partcontaining tooth

numbers. When the tooth numbers are expected but

missing, this tells us to filter the context to only

contain tooth numbers.Choosing two items from a

list (after filtering) is straightforward.

Borrowing a metaphor from computer

science, the indeterminate words, together with the

„expected-but-missing‟ behave likedynamic casting

operations that act upon the sequence of past nodes,

filtered by what was expected.

2. Chatbot Conversational Context

Text Processing and Segmented Text

Conversation processing requires

matching of input language to program entities. For

developers focused on Natural Language

Processing, text matching is done using “regular

expression” pattern matching; and the necessary

regular expression patterns are defined by the chat

program. Another approach is to break the text up

into separate words or tokens and subject the

tokens to matching against some other kind of

patterns that are defined by the program. I find

great efficiency and simplification in replacing

words of text with tokens,followed by replacing

tokens, one-for-one, with tree node copies. When

an unknown token occurs, one can use a “null

node” placeholder. I call this process segmenting

the text and the result segmented text. To repeat:

The process of segmenting text is this: Text is

converted to tokens, tokens are matched to nodes of

the topic tree, the sequence of nodes is copied into

memory. The result is called segmented text.A

typical processing sequence, leading to application

specific code is illustrated in Figure 1.

Figure 1A processing sequence converts text to

segmented text, with two levels of pattern

matching, followed by applications specific

actions.

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566260|P a g e

Saving segmented input and output as context

In a chatbot dialog, the context needs to include

both the client‟s input and the chatbot‟s output. For

example to handle this dialog:

CLIENT: I want an abutment on tooth #8

CHATBOT: Do you want titanium or zirconia?

CLIENT: What is the difference?

Here the client‟s last sentence is an

abbreviated form of “What is the difference

between titanium and zirconia?” In this case, the

previous chatbotresponsecontains the relevant

contextto interpret the question.

In another example, the context comes from the

client :

CLIENT: I want abutments on tooth #8 and 9

CHATBOT: Is there anything else?

CLIENT: I want crowns on both.

Here the first line of client inputcontains the

relevant context for interpreting the word “both” as

“both #8 and #9”.

Hence the context should include input

from the client and also response from the chatbot.

One can segment the input as a sequence of tree

nodes and one can also segment the outputthat is

passed back as a response to chatbot client.

However it is easier to decouple the response text

from the underlying segmented version of the

response; and save a segmented version of the

response directly without re-processing the

response text. It is simpler to just generate

segmented text in parallel with the response text,

and store that as an additional segment in the

context.

Thus we can create context for a chatbot by saving

an extended sequence of segmented texts,

following steps like this:

 input text tokenized text segmented text

(and save the segmented text in the „context‟)

 process and generate response output (and

generate a segmented version of the response

to store in the „context‟)

Although there is more to “context” than

this, for now we consider context to be the and

array of segmented texts, alternating between the

clients input and the chatbots output, as illustrated

in Figure 2.

Figure 2–Here a topic tree is represented with

circles for nodes and line segments for the parent-

child relationships. Nodes from the tree are visited

during input (1,2,3) and the sequence (the

segmented text) is combined with another

sequence, corresponding to the chatbot response

(A,B). Segments for both input and response are

saved as part of the context.

How much context to save

The question arises as to how much

context should be saved? I find that the last three or

so exchanges between client and chatbot, are

enough for short term context. However there are

other aspects to context - such as the current topic

and who the client is. Such longer term aspects of

context may not be part of the linguistic history of

client-chatbot exchanges. Some developers treat

context as including hundreds of previous client-

chatbot exchanges
6
.

Filtering context to contain nodes that are

missing from a current combination

In the example where the client says

“what is the difference”, we need only retrieve the

most recent alternatives found in the context. But in

the example where the client says “I want crowns

on both” the word “crown” tells us what kind of

thing to retrieve with the „both‟, specifically

whatever we expect to see in combination with

crowns.

Words like „difference‟ can retrieve

directly from context, while ignoring the other

words in input. But words like “both‟ need to

retrieve from a context that has been filtered to

contain only sub nodes of the missing but expected

sub tree node (in this case tooth numbers) to be

combined with „crown‟ in an expression.

In one application, a dental ordering

system, the set of allowed actions is constant and

finite, and each action is triggered by

understanding a specific combination of nodes.

Thus for example nodes like REQUEST or

QUESTION, are combined with product specific

nodes, like ABUTMENT or CROWN, and might

be used in combinations like:

QUESTION * MATERIAL (e.g. “what material

do you want?”)

6Don Patrick at chatbots.org

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566261|P a g e

REQUEST*RESTORATION* TOOTHNUMBER

(“I want a crown on #8”)

These explicit forms are anticipated and

they lead to specific actions. If the client says

“What is the difference between titanium and

zirconia?” then that input is a good match for the

QUESTION * MATERIAL combination. So

MATERIAL is expected but missing and should be

what is retrieved from context when the client says

only “What is the difference?”.

Similarly if the client says “I want a crown

on both” this is a reasonable but incomplete match

to

REQUEST*RESTORATION*TOOTHNUMBER.

So the indeterminate combination:

REQUEST*RESTORATION*BOTH needs to

resolve the „BOTH‟ against the expected but

missing TOOTHNUMBER of the desired

combination. Hence the handler function for the

indeterminate node „BOTH‟ could take the

expected but missing information of

TOOTHNUMBER as an argument.

In general, handler functions should be

able to take arguments defining the missing type of

information, depending on what node combination

we are trying to resolve.

Methods for extracting information from the

context

We now have most of what is needed to

describe a version of context retrieval. The context

itself will be a sequence of tree nodes, arising from

either segmented input or from a segmentedversion

of response.

So we consider the problem of going back

through the context to find the last occurrences of a

particular type of node. We want these sorts of

“get” functions, which we will call context

handlers.

 getAttribute() - get one, a pair, or severalrecent

„attribute‟ nodes

 getCategory() - get most recent „category‟

node

 getThing() - get one, a pair, or several recent

„thing‟ nodes

In each case, the „get‟ method can iterate

through the nodes of the segments, saved in the

context in reverse order, until the item, pair, or

group is found (or not). It may make sense to limit

how far apart the occurrences are allowed to be

and, as mentioned to limit how far back in the past

to look within the current conversation.

It also may make sense for the context

handlers to retrieve only from nodes within a

subtree of a given topic tree. In other words, when

a context handler is applied to past context, the

context can first be filtered through a subtree, by

replacingany non-subtree node with a null node so,

later, the context handler can be applied to a

filtered version of the context. Below, sub tree

filtering is done when a particular concept node is

expected but missing from a client‟s input. In that

case the context can be filtered to only contain

children or self nodes in the subtree of the expected

but missing node.

Nodes that “take”

The indeterminate words can be put into their own

topic tree or at least treated as nodes, in the same

way that topic keywords are. For example:

IT {it , the one , that}

BOTH {both, the pair, the two}

DIFF {difference, compare }

Rather than labeling these as „thing‟, „category‟, or

„attribute‟, we can specialize them by assigning a

context handler to each. For example:

IT is assigned the getThing() handler, looking for

one „thing‟ node in the context.

BOTH is assigned the getPair() handler, looking

for a pair of thing nodes.

DIFF is assigned the getAttribute() handler,

looking for a pair of attributes.

Nodes, corresponding to indeterminate

words and assigned a context handler might be

called nodes that take because of their

correspondence with nodes that give, found in the

context. In Python, for example, a node class can

contain a „self.contextFn‟ to act as a handler which

is set to „None‟ except when it is one of these

special nodes that take.

Thus we have two coordinated ways of adding

information to a tree of nodes:

 Nodes that “give” are labeled as „thing‟,

„category‟, or „attribute‟

 Nodes that “take” are assigned a non-trivial

context handler method.

3. When to use Context

The presence of an indeterminate should

not always trigger context retrieval. For example

„both‟ can occur in an explicit request like “I want

crowns on both#8 and 9” without triggeringcontext

retrieval. Only when the node combination

REQUEST*RESTORATION*TOOTHNUMBER

occurs and TOOTHNUMBER is missing do we try

to replace the empty spot with what can be

retrieved using the handler assigned to BOTH.

Specifically the getPair() is applied to the context,

filtered to contain only sub nodes of

TOOTHNUMBER.

The whole question of when to try context retrieval

depends on the chatbot program knowing when an

input is incomplete. As mentioned in the

introduction, I assume your NLU has a metric that

gives a score per desired node combination. Each

Peter WaksmanJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62

www.ijera.com DOI: 10.9790/9622-080801566262|P a g e

such combination will receive its own version of

the score and each may be incomplete in a different

way. So the same indeterminate word might be

retrieve differently for each one. For example,

“both” could mean “both #8 and #9”. Or, in another

node combination, it could mean “both a crown and

an abutment.”

Peter Waksman "Topic Trees And Chatbot Conversational Context "International Journal of

Engineering Research and Applications (IJERA) , vol. 8, no.8, 2018, pp. 56-62

