
Peter WaksmanJournal of Engineering Research and Application                 www.ijera.com            

ISSN : 2248-9622, Vol. 8, Issue 8 (Part -I) Aug 2018, pp 56-62 

 
www.ijera.com                       DOI: 10.9790/9622-080801566256|P a g e  

 

 

 

 

Topic Trees And Chatbot Conversational Context 
 

Peter Waksman 
 

ABSTRACT:This article discusses the relation between topic-specific word trees (“ontologies”) and the 

retrieval of information from a chatbot‟s recent conversation – the conversational context. I assume the 

conversational context includes the sequence of recently visited nodes of the topic tree. So we caninterpret 

context retrieval as a problem of selection from this sequence, in reverse order. We will see that a surprisingly 

small set of selection methods support a diversity of indeterminate words and phrasesthat may need to be 

handled by a chatbot: like “it”, “them”, “what‟s the difference?”, “the third”, etc.An essential part of the solution 

is the way context is filteredto contain only the kinds of items we are expecting to find in the current input but 

that are missing. What is expected but missing drives context retrieval. In practice when an input sentence is 

encountered that is not understood and contains an indeterminate word, a chatbot may be allowed a second pass 

after retrieving and inserting recent context into the input.Theseideas are implemented in Python at: 

https://github.com/peterwaksman/Narwhal 
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I. INTRODUCTION 
It is interesting that chatbot development 

requires more than just language understanding 

algorithms. Achatbotneeds to organize and keep 

track of a conversation and vary its responses 

depending on previous exchangesand the current 

“state” of the conversation. Also a chatbot may be 

required to understand the context of the most 

recent exchanges with its client and may need to 

handle indefinite words,  like “it” or “both”, that 

refer to things that were just said. This article 

discusses one way to do that: keeping a list of 

recently mentioned concepts and retrieving them as 

needed to disambiguate indefinite words in a 

current input. 

Let me use the word indeterminatefor 

words or phrases that get their content dynamically, 

by retrieving recently used information. Many of 

the indeterminate words are pronouns (e.g. “it”, 

“his”). Others are classified as determiners, 

predeterminers, and adverbs (e.g.“what” and 

“both”). In the case of the indeterminate phrase 

“what is the difference” the word “difference” is a 

noun. Identifying indeterminate words by their 

parts of speechclassification is not 

useful;andanalyzing them as a diagrammed 

sentence using Natural Language Processing 

(NLP) does not tell us that these particular 

wordsrequire special handling in a chatbot. For 

actual Natural Language Understanding (NLU)one 

needs additional operations for seeking the 

appropriate words from the context and inserting 

them retroactively into the input (or something 

comparable). Thus NLU needs more than justa 

reformatting of the input into the structure of a 

diagrammed sentence –it needs more than what is 

available in NLP. 

 Indeterminate words have a short 

term scope. The word “it” is often abused in real 

conversation and hard to follow, even for a person. 

Some chatbots are able to disambiguate complex 

combinations of indeterminates
1
but my goal here is 

consider how to retrieve context successfully in the 

simplest situations,that would be easy for a person 

to understand; so the discussion is limited to the 

simplest kinds of context retrieval. I hope the 

outlines are clear but the reader will easily note the 

incompleteness of this story. 

The following tries to be neutral about 

how you implement NLU. A minimum requirement 

is to havea metric forwhen an input expression 

isunderstood or not
2
. This tells the program when 

context may be needed. Simply put, when there is 

little or no understanding of the input and 

indeterminate words are present in the input, then 

retrieving and inserting context mightconvertthe 

input into something that is understood. The 

chatbot program needs to know when it should try 

this and it needs to know when it has succeeded. 

In section 1 “Trees” I discuss some basic 

ideas about how words can be stored in a tree 

structure for the purposes of matching against 

incoming text. I introduce a simple tree notation for 

                                                           
1 See Don Patrick’s Winograd Schema 
Challenge 
2
For example Narwhal, mentioned in the 

abstract, implements a GOFor “goodness of 

fit”score that measures understanding as a 

value between 0.0 and 1.0.  
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the discussion.In section 2 “Chatbot Conversational 

Context” I discuss how to save copies of the nodes 

as a sequence and how to retrieve from this 

sequence and insert into the input. Finally, in 

section 3 “When to Use Context” I discuss 

detecting when context retrieval may be needed 

and when it has succeeded. 

 

We will see that short term context retrieval 

depends on three factors:  

 the list of recently exchanged tree nodes,  

 the indeterminate word that enables retrieval, 

and  

 what is expected but missing from the current 

input, triggering the need for retrieval and 

determiningwhat kind of thing to retrieve. 

 

1. Trees – Word and Concept Ontologies 

An "ontology" or "taxonomy" is a 

classification using a hierarchical tree structure 

with branch points, or nodes, corresponding to the 

entities being classified. The idea is that similar 

entities can be grouped as sub nodes of a single 

'parent' node in a useful way. In the field of 

language processing, it is typical to organize words 

or concepts as an ontology, usually in a way where 

parent-child relations are from a more general 

„parent‟ to a more particular „child‟. Chatbot 

developer may need to spend significant time 

organizing ontologies. 

Organizing words into a hierarchical 

structure is straightforward and one finds that 

simple parent-child relations arise naturally. Unlike 

the indeterminate words, topic specific words have 

well defined, constant, meanings within the chatbot 

program. We could call these determinate words. 

Because a node represents something in 

common to the words that define it, I may 

usedescriptions like“concept” or “sub-topic” 

instead of “node” for such a word grouping.One 

tries to name the node in a way that is consistent 

with the conceptand, here, I will write this as a 

label, followed by a comma separated list of 

defining words,within curly braces „{}‟.  

For example: 

COLOR {color, tint, hue, shade}  

We can represent the parent-child relation between 

nodes by indenting the names of children, 

underneath the parent. For example: 

COLOR {color, tint, hue, shade}  

RED {red, scarlet, rose, pink, ruby, vermillion} 

BLUE {blue, azure, indigo } 

Here there is one COLOR node with two 

particular children: RED and BLUE. If, for 

example, an input expression contains the word 

“azure”, then this is match for the BLUE node. In 

some circumstances “azure” may also be 

considered a match to the COLOR node, 

since“azure” is a match to one its children. Note 

that although COLOR will be a constant in the 

program, it may be treated like a variable in 

expressions that are used to find matches among 

the children, as discussed more below.  

The word groups that define a node are 

not the same thing as the parent child relations 

between nodes, these groupings are application 

specific. Thewordsin a group defining a node do 

not need to be the same kinds of parts of speech or 

even single words. For example, here are words 

used in hotel reviews to describe extremes of 

GOOD and BAD: 

GOOD { very pleased,soothing,a gem, love ,home 

away from home, 

wow,wonderful,bliss,happy,superb,gorgeous, 

spotless, 

immaculate,phenomenal,fantastic,perfect,relax,exc

ellent,spectacular,peaceful,lovely,beautiful,amazin

g,impressive, 

impressed,heaven,magical,fabulous,serene,paradise

,special,cozy,oasis } 

BAD { unacceptable,filthy,dump, mildew, lousy, 

awful, horrible, horrid, poison, gross,  ick,  icky, 

disgusting,  hairs, yuck, ug, ugh , unhelpful, 

unpleasant, disappoint, disappoint, terrible, bugs, 

spider } 

It is important to note that although, for 

example, „spider‟ and „hair‟ are not identical 

concepts in general English usage, both words 

express revulsion in the English used for hotel 

reviews – so they can be treated as synonyms for a 

hotel review application. 

 

Reasons for grouping words and phrases together 

include: 

 The words may be synonymous or functionally 

equivalent in your chatbot‟s world.In this case 

the node label can be chosen to represent the 

shared concept. 

 The words may be different miss-spellings of 

the same word, or variations on a phrase. In 

this case the node label can be chosen to 

represent the shared word. 

 The groupings may be for simple convenience. 

For example the „root‟ node of a tree may be a 

parent to all the other word groupings – 

without being related to a specific concept. In 

this case the node creates a formal grouping 

but its label is arbitrary.  

I use the term topic tree when an ontology 

contains terms that are all related to a particular 

topic. Typically, a chatbot intended for a narrow 

business function will use multiple topic tress 

grouped under a single parent for 

convenience.When no confusion arises, I will also 

use the term “topic tree” for a grouped collection of 

related sub trees. 
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In practice you are never done extending 

your word lists. The different ways people express 

themselves, the variety of miss-spellings, etc. and it 

is hard to see how one could automate the 

extension process – say using machine learning 

from new examples. The overall question is: how 

to generate and extend ontologies using supervised 

or unsupervised machine learning?  

That is the basic idea of an ontology. A 

number of examples can be found in the Narwhal 

project on GitHub. 

 

Additional examples of nodes 

Some of the nodes will appear to define 

„attributes‟ - with word lists that mostly contain 

adjectives; while other nodes appear to define 

„things‟ - with word lists that mostly contain nouns. 

You may also want to define concepts that define 

an action or relation – with word lists that mostly 

contain verbs.  It should be emphasized that the 

part of speech classifications for the words used in 

these lists is irrelevant. Some other examplesfrom 

hotel reviews are: 

 

Attribute-type nodes: 
OPEN { open, thin, paper thin } 

NEAR { near to , in the heart of, over , outside, 

next to,…}  

 

Thing-type nodes: 
WINDOW {  window, balcony, balcony door } 

EQUIPMENTSOURCES { ac, a/c, air con, tv, 

hvac, clanking, …} 

QUESTION { ? , ask about, question, question 

about , questions about , need to know , want to 

know, want to find out, help with , is there, info, 

information, information, tell me about } 

CROWN { crown, full contour, cut back, 

temporary, temp } 

ABUTMENT
3
 {abutment, abut, abutmen } 

 

For example one might have several different 

Thing-types as children of a more general thing-

type parent: 

OPENING {…} 

WINDOW{…} 

DOOR { …. } 

                                                           
3In dentistry, an „abutment‟ is a short post 

screwed into a patient‟s jawbone, as a 

substitute for tooth material, intended to 

support a crown. A given tooth location could 

have an abutment, a crown, or both. 

Action-type nodes: 
KEEPOUT { keep out, filter, cut down on, shut 

out, cut out, block, keep out, escape from… } 

REQUEST {use, build, ask for, sell me, fabricate, 

produce, provide,….} 

 

Parent- or Category-type nodes: 

Often, natural concept nodes are 

categories that group sub categories or singular 

entities as their children. For example the COLOR 

node above refers to the category of colors, it is not 

a thing or an attribute but a parent of such entities. 

One observes somewhat arbitrary or 

abstract categories can have other categories as 

children. For example if COLOR and SHAPE were 

to define different dimensions of an item, they 

could be grouped, somewhat arbitrarily, under a 

node like this: 

DIMENSION { dimension, attributes } 

COLOR {…} 

SHAPE {…} 

A more complicated example (from dental product 

description): 

 PRODUCT { … } 

  RESTORATION { … } 

   ABUTMENT {…} 

   CROWN { … } 

  MATERIAL { … } 

   TITANIUM { … } 

   ZIRCONIA { … } 

 TOOTH { #, tooth } 

  TYPE { anterior, posterior, 

canine, premolar, …. } 

  TOOTHNUMBER { } 

   ONE {1, one} 

TWO { 2, two } 

…etc. 

THIRTY_TWO { 32, 

thirty two, thirty-two } 

 

These trees are application specific. It is 

worth observing that the hierarchical structure of a 

word tree is analogous to the hierarchical definition 

of a floating point numbers. For our current 

purposes, the word trees can be thought of as an 

application-specific numbering system, with text 

matching considered an act of measurement. 

 

Node formulas 

Node combinations are elements of simple 

meaning. Consider the difference between asking a 

question about a window versus making a request 

for a window. Let me use the „*‟ symbol to 
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represent a combination
4
, so we can consider two 

combinations: 

 QUESTION*WINDOW 

versusREQUEST*WINDOW.  

Or, we could have a combination with several 

terms, like a request for a restoration on a particular 

tooth:  

REQUEST*RESTORATION * TOOTHNUMBER 

Such simple combinations of nodesbegin 

to behave like the meanings of expressions, such as 

“please open the window” versus “is there a 

window?” One concludes that a simple form of 

NLU is possible just by keeping track of node 

combination, matching them to an input 

expressions, and providing a metric of 

understanding
5
. 

If the nodes of a node combination match 

the input, they are said to be filled. It gets 

interesting when all but one node is filled. In that 

case the context can be searched, looking for 

instances of the missing node or its children. 

 

Parent Nodes Act as Variables when matching a 

Combination 

Suppose one expresses a combination using a 

parent node like „COLOR‟, for example: 

DRESS * COLOR 

This is a match for “dress with color” but 

it can also serve to match more particular 

expressions like “the dress is blue”, or “scarlet 

skirt”. For those purposes, the parent node 

functions as a variable in the combination 

“formula”, with a range of values equal to the 

children nodes of the parent.  

 

The Expected but Missing – Pattern Completion 

I assume context retrieval is triggered 

when one part of a node combination is missing: 

instead of what is expected, an indeterminate word 

occurs. In this case the context may contain diverse 

nodes but only the ones that are children of what 

was expected are of interest.  

For example the chatbot may be 

programmed to recognize when a client asks for 

crowns on tooth #3 and #4”. It can do this by trying 

to fill in the combination:  

REQUEST * RESTORATION * 

TOOTHNUMBER  

                                                           
4The ‘*’ is deliberately vague, intended to 
represent more than one type of 
combination. 
5A good NLU library will also provide 
sentiment (good/bad value) parsing. So node 
combinations may behave like signed 
quantities.  

However, when those two numbers are already in 

the recent context, the client might simply say “I 

want crowns on both teeth”.In this case the chatbot 

finds and incomplete match to the combination, 

indicated by „?‟: 

REQUEST*RESTORATION*OOTHNUMBER( ? 

) 

 

In this case, the only part of the context 

worth retrieving is the partcontaining tooth 

numbers. When the tooth numbers are expected but 

missing, this tells us to filter the context to only 

contain tooth numbers.Choosing two items from a 

list (after filtering) is straightforward. 

Borrowing a metaphor from computer 

science, the indeterminate words, together with the 

„expected-but-missing‟ behave likedynamic casting 

operations that act upon the sequence of past nodes, 

filtered by what was expected.  

 

2. Chatbot Conversational Context 

Text Processing and Segmented Text 

Conversation processing requires 

matching of input language to program entities. For 

developers focused on Natural Language 

Processing, text matching is done using “regular 

expression” pattern matching; and the necessary 

regular expression patterns are defined by the chat 

program. Another approach is to break the text up 

into separate words or tokens and subject the 

tokens to matching against some other kind of 

patterns that are defined by the program. I find 

great efficiency and simplification in replacing 

words of text with tokens,followed by replacing 

tokens, one-for-one, with tree node copies. When 

an unknown token occurs, one can use a “null 

node” placeholder. I call this process segmenting 

the text and the result segmented text. To repeat: 

The process of segmenting text is this: Text is 

converted to tokens, tokens are matched to nodes of 

the topic tree, the sequence of nodes is copied into 

memory. The result is called segmented text.A 

typical processing sequence, leading to application 

specific code is illustrated in Figure 1. 

 

 
Figure 1A processing sequence converts text to 

segmented text, with two levels of pattern 

matching, followed by applications specific 

actions. 
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Saving segmented input and output as context 

In a chatbot dialog, the context needs to include 

both the client‟s input and the chatbot‟s output. For 

example to handle this dialog: 

CLIENT: I want an abutment on tooth #8 

CHATBOT: Do you want titanium or zirconia? 

CLIENT: What is the difference? 

Here the client‟s last sentence is an 

abbreviated form of “What is the difference 

between titanium and zirconia?” In this case, the 

previous chatbotresponsecontains the relevant 

contextto interpret the question.  

 

In another example, the context comes from the 

client : 

CLIENT: I want abutments on tooth #8 and 9 

CHATBOT: Is there anything else? 

CLIENT: I want crowns on both. 

 

Here the first line of client inputcontains the 

relevant context for interpreting the word “both” as 

“both #8 and #9”. 

Hence the context should include input 

from the client and also response from the chatbot. 

One can segment the input as a sequence of tree 

nodes and one can also segment the outputthat is 

passed back as a response to chatbot client. 

However it is easier to decouple the response text 

from the underlying segmented version of the 

response; and save a segmented version of the 

response directly without re-processing the 

response text. It is simpler to just generate 

segmented text in parallel with the response text, 

and store that as an additional segment in the 

context.  

Thus we can create context for a chatbot by saving 

an extended sequence of segmented texts, 

following steps like this: 

 input text  tokenized text  segmented text  

(and save the segmented text in the „context‟) 

 process and generate response output (and 

generate a segmented version of the response 

to store in the „context‟) 

 

Although there is more to “context” than 

this, for now we consider context to be the and 

array of segmented texts, alternating between the 

clients input and the chatbots output, as illustrated 

in Figure 2. 

 
Figure 2–Here a topic tree is represented with 

circles for nodes and line segments for the parent-

child relationships. Nodes from the tree are visited 

during input (1,2,3) and the sequence (the 

segmented text) is combined with another 

sequence, corresponding to the chatbot response 

(A,B). Segments for both input and response are 

saved as part of the context. 

 

How much context to save 

The question arises as to how much 

context should be saved? I find that the last three or 

so exchanges between client and chatbot, are 

enough for short term context. However there are 

other aspects to context - such as the current topic 

and who the client is. Such longer term aspects of 

context may not be part of the linguistic history of 

client-chatbot exchanges. Some developers treat 

context as including hundreds of previous client-

chatbot exchanges
6
. 

 

Filtering context to contain nodes that are 

missing from a current combination 

In the example where the client says 

“what is the difference”, we need only retrieve the 

most recent alternatives found in the context. But in 

the example where the client says “I want crowns 

on both” the word “crown” tells us what kind of 

thing to retrieve with the „both‟, specifically 

whatever we expect to see in combination with 

crowns.  

Words like „difference‟ can retrieve 

directly from context, while ignoring the other 

words in input. But words like “both‟ need to 

retrieve from a context that has been filtered to 

contain only sub nodes of the missing but expected 

sub tree node (in this case tooth numbers) to be 

combined with „crown‟ in an expression.  

In one application, a dental ordering 

system, the set of allowed actions is constant and 

finite, and each action is triggered by 

understanding a specific combination of nodes.  

Thus for example nodes like REQUEST or 

QUESTION, are combined with product specific 

nodes, like ABUTMENT or CROWN, and might 

be used in combinations like: 

QUESTION *  MATERIAL (e.g. “what material 

do you want?”) 

                                                           
6Don Patrick at chatbots.org 
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REQUEST*RESTORATION* TOOTHNUMBER 

(“I want a crown on #8”) 

These explicit forms are anticipated and 

they lead to specific actions. If the client says 

“What is the difference between titanium and 

zirconia?” then that input is a good match for the 

QUESTION * MATERIAL combination. So 

MATERIAL is expected but missing and should be 

what is retrieved from context when the client says 

only “What is the difference?”.  

Similarly if the client says “I want a crown 

on both” this is a reasonable but incomplete match 

to 

REQUEST*RESTORATION*TOOTHNUMBER. 

So the indeterminate combination: 

REQUEST*RESTORATION*BOTH needs to 

resolve the „BOTH‟ against the expected but 

missing TOOTHNUMBER of the desired 

combination. Hence the handler function for the 

indeterminate node „BOTH‟ could take the 

expected but missing information of 

TOOTHNUMBER as an argument.  

In general, handler functions should be 

able to take arguments defining the missing type of 

information, depending on what node combination 

we are trying to resolve. 

 

Methods for extracting information from the 

context 

We now have most of what is needed to 

describe a version of context retrieval. The context 

itself will be a sequence of tree nodes, arising from 

either segmented input or from a segmentedversion 

of response.  

So we consider the problem of going back 

through the context to find the last occurrences of a 

particular type of node. We want these sorts of 

“get” functions, which we will call context 

handlers. 

 getAttribute() - get one, a pair, or severalrecent 

„attribute‟ nodes 

 getCategory() - get most recent „category‟ 

node 

 getThing() - get one, a pair, or several recent 

„thing‟ nodes 

 

In each case, the „get‟ method can iterate 

through the nodes of the segments, saved in the 

context in reverse order, until the item, pair, or 

group is found (or not). It may make sense to limit 

how far apart the occurrences are allowed to be 

and, as mentioned to limit how far back in the past 

to look within the current conversation. 

It also may make sense for the context 

handlers to retrieve only from nodes within a 

subtree of a given topic tree. In other words, when 

a context handler is applied to past context, the 

context can first be filtered through a subtree, by 

replacingany non-subtree node with a null node so, 

later, the context handler can be applied to a 

filtered version of the context. Below, sub tree 

filtering is done when a particular concept node is 

expected but missing from a client‟s input. In that 

case the context can be filtered to only contain 

children or self nodes in the subtree of the expected 

but missing node. 

 

Nodes that “take” 

The indeterminate words can be put into their own 

topic tree or at least treated as nodes, in the same 

way that topic keywords are. For example: 

IT {it , the one , that} 

BOTH {both, the pair, the two} 

DIFF {difference, compare } 

Rather than labeling these as „thing‟, „category‟, or 

„attribute‟, we can specialize them by assigning a 

context handler to each. For example: 

IT is assigned the getThing( ) handler, looking for 

one „thing‟ node in the context. 

BOTH is assigned the getPair( ) handler, looking 

for a pair of thing nodes. 

DIFF is assigned the getAttribute( ) handler, 

looking for a pair of attributes.  

Nodes, corresponding to indeterminate 

words and assigned a context handler might be 

called nodes that take because of their 

correspondence with nodes that give, found in the 

context. In Python, for example, a node class can 

contain a „self.contextFn‟ to act as a handler which 

is set to „None‟ except when it is one of these 

special nodes that take. 

Thus we have two coordinated ways of adding 

information to a tree of nodes:  

 Nodes that “give” are labeled as „thing‟, 

„category‟, or „attribute‟ 

 Nodes that “take” are assigned a non-trivial 

context handler method. 

 

3. When to use Context 

The presence of an indeterminate should 

not always trigger context retrieval. For example 

„both‟ can occur in an explicit request like “I want 

crowns on both#8 and 9” without triggeringcontext 

retrieval. Only when the node combination 

REQUEST*RESTORATION*TOOTHNUMBER 

occurs and TOOTHNUMBER is missing do we try 

to replace the empty spot with what can be 

retrieved using the handler assigned to BOTH. 

Specifically the getPair() is applied to the context, 

filtered to contain only sub nodes of 

TOOTHNUMBER. 

The whole question of when to try context retrieval 

depends on the chatbot program knowing when an 

input is incomplete. As mentioned in the 

introduction, I assume your NLU has a metric that 

gives a score per desired node combination. Each 
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such combination will receive its own version of 

the score and each may be incomplete in a different 

way. So the same indeterminate word might be 

retrieve differently for each one. For example, 

“both” could mean “both #8 and #9”. Or, in another 

node combination, it could mean “both a crown and 

an abutment.”  
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