
www.ijera.com

RESEARCH ARTICLE

OPEN ACCESS

Some Allied Semicontinuous Functions in Topology

Govindappa Navalagi¹ And Sujata S. Tallur²

¹Department of Mathematics, KIT, Tiptur-572202, Karnataka, India ²Department of Mathematics, Government First Grade College, Kalaghatagi-582104 Karnataka, India Corresponding author: Govindappa Navalagi

ABSTRACT : In this paper, we define and study the new concepts of allied semicontinuous functions, namely, semi-sg-continuous, semi- α gs-continuous functions in topology. **Mathematics Subject Classification**(2010): 54A05, 54C08, 54D15

Keywords : semi-open sets, semi-pre-open sets, sg-closed sets, gs-closed sets, ags-closed sets, gsp-closed sets, gs-continuity, sg-continuity and semicontinuity.

Date of Submission: 10-07-2018

Date of acceptance: 24-07-2018

I. INTRODUCTION

In 1963, Levine [16] introduced and studied semi-open sets and semi-continuous functions in topology. Later, in 1970 N. Biswas[5], S.G. Crossley et. al [7] and P.Das[9] have studied the concepts of semi-closed sets, semi-closure operators and semi-interior operators, respectively. For the first time, the concept of generalized closed (in brief, g-closed) sets was considered by Levine in 1970[17]. Later, in 1987, 1990 and 1995 respectively, Bhattacharya et. al [4], Arya et.al.[3] and J. Dontchev [12] have defined and studied the concepts of sg-closed sets, gs-closed sets, gspclosed sets. In [6 & 25], P. Sundaram et.al have defined and studied the concepts of sg-continuous functions.In [25] P.Sundaram had defined and studied the concept of gs-continuous functions in topology. In 1995, Dontchev[12] has defined and investigated the notions of gsp-continuity and gspirresoluteness. The aim of this paper is to define and study the new classes of allied semicontinuous functions , namely , semi-sgcontinuous functions , semi-αgs-continuous functions and semi-gs-continuous functions in topology.Also, we study their basic characterizations and decomposition theorems of all these functions with the other type of semicontinuous functions.

II. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or Simply X and Y) respectively, denote topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of (X, τ) , the Closure of A, the Interior of A with respect to τ are denoted by $C\ell(A)$ and Int(A) respectively.

The following definitions and results are useful in this sequel.

DEFINITION 2.1: A subset A of a space X is called

(i) semi-open-set [16] if $A \subset ClInt(A)$.

(ii) semipre-open set [1] if $A \subset ClIntCl(A)$.

(iii) α -open set [20] if $A \subset IntClInt(A)$.

The complement of semi-open (resp., semipreopen, α -open) set is called semi-closed [5] (resp. semipre-closed[1], α -closed [18]) set. The family of all semi-open(resp.semipre-open) sets of a space X is denoted by SO(X) (resp. SPO(X)).

DEFINITION 2.2: Let A be a subset of space X, then the semi-interior [9] (resp. the semi-preinterior [1&19], the α -interior [18]) of A is the union of all semi-open (resp. semi-pre-open, α -open) sets contained in A and is denoted by sInt(A) (resp. spInt(A), α Int (A)).

DEFINITION 2.3: Let A be a subset of a space X, then the intersection of all semi-closed(resp. semipre-closed, α -closed) sets containing A is called the semi-closure[7](resp. semi-pre-closure[1&19], α -closure[18]) of A and is denoted by sCl(A) (*resp. spCl*(A), α Cl(A)).

DEFINITION 2.4: A subset A of a space X is called :

(i) A generalised closed set (in brief , g-closed) [17] if $Cl(A) \subset U$ whenever $A \subset U$ and U is open.

- (ii) semi-generalised closed (in brief , sg-closed) [4] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (iii) generalized semi-closed (in brief, gs-closed) [3] if $sCl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- (iv) generalized semipre-closed (briefly,gspclosed) [12] if $spcl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- (v) α -generalized semiclosed (in brief, α gs-closed) [22] if $\alpha Cl(A) \subset U$ whenever $A \subseteq U$ and U is semiopen in X.

DEFINITION 2.5: A function $f: X \to Y$ is called :

- (i) semi-continuous [16] if the inverse image of each open set Y is semi-open in X.
- (ii) sg-continuous [6 & 25] if the inverse image of each open set of Y is sg-open in X.
- (iii) gs-continuous [25] if the inverse image of each open set of Y is gs-open in X.
- (iv) gsp-continuous [12] if the inverse image of each open set of Y is gsp-open in X.
- (v) α gs-continuous [23] if the inverse image of each open set of Y is ags-open in X.

DEFINITION 2.6: A function $f: X \to Y$ is called :

- (i) sg-irresolute [6] if the inverse image of every sg-open set of Y sg-open in X.
- (ii) gs-irresolute [25] if the inverse image of every gs-open set of Y is gs-open in X.
- (iii) gsp-irresolute [12] if the inverse image of every gsp-open set of Y is gsp-open in X.
- (iv) α gs-irresolute [23] if the inverse image of every ags-open set of Y is ags-open in X.
- (v) Irresolute [8] if the inverse image of every semiopen set of Y is semiopen in X.

DEFINITION 2.7: A function $f: X \to Y$ is called :

- (i) contra-semi-continuous [13] if the inverse image of each open set of Y is semiclosed in Х.
- (ii) strongly continuous [2] if the inverse image of each subset of Y is clopen in X.

DEFINITION 2.8: A space X is called :

- (i) semi-g-regular [14] if for each sg-closed set A and each point $x \notin A$, there exist disjoint semi-open sets $U, V \subseteq X$ such that $A \subseteq U$ and $x \in V$.
- (ii) α gs-regular [24] if for each α gs-closed set A and each point $x \notin A$, there exist disjoint semiopen sets $U, V \subset X$ such that $A \subset U$ and $x \in V$.
- (iii) semi-connected [10] if X cannot be written as the disjoint union of two non-empty semiopen sets.

(iv) sg-connected [6] if X cannot be written as the disjoint union of two non-empty sg-open sets.

DEFINITION 2.9[15]: Let X be a topological space and $A \subset X$. Then the semi-generalized kernel of A is denoted by sg-ker(A) and is defined be the to set $sg - ker(A) = \cap \{G \in SGO(X) / A \subset G\}$ **THEOREM 2.10[15]**:Let X be a topological space and x in X then $y \in \text{sg-ker}(\{x\})$ iff $x \in \text{sgCl}(\{x\})$. **DEFINITION 2.11[8]:** A function f: $X \rightarrow Y$ is called pre-semi-open if the image of each semiopen set of X is semi-open in Y.

III. PROPERTIES OF SEMI-SG-CONTINUOS FUNCTIONS

In section we define and study the following **DEFINITION 3.1:** A function f: $X \rightarrow Y$ is said to be semi-sg-continuous if the inverse image of every sg-open set in Y is semi-open set in X.

Clearly, every semi-sg-continuous function is sg-irresolute.

DEFINITION 3.2: A function f: $X \rightarrow Y$ is called strongly sg-continuous if the inverse image of every sg-open set in Y is open in X.

THEOREM 3.3: Let $f: X \rightarrow Y$ be a single valued function, where X and Y are topological spaces, then the following statements are equivalent:

(i) The function f is semi-sg-continuous.

(ii) For each point p in X and each sg-open set V in Y with $f(p) \in V$, there is

a semi-open set U in X such that $p \in U$, $f(U) \subseteq V$. **PROOF:** (i) \rightarrow (ii). Let f (p) \in V and V \subset Y an sgopen set then $p \in f^{1}(V)$ is semi-open set in X, since f is with semi-sg-continuous. Let $U = f^{-1}(V)$, then $p \in U$ and $f(U) \subseteq V$.

(ii) \rightarrow (i). Let V be an sg-open set and $p \in f^{-1}(V)$ then f (p) \in V, there exists a semi-open set in U_p in X such that $p \in U_p$ and $f(U_p) \subset V$. Then $p \in U_p \subset U_p$ $f^{1}(V)$ and $f^{1}(V) = \bigcup U_{p} \in SO(X)$. This implies that f is semi-sg-continuous

We define the following

DEFINITION 3.4: A function f: $X \rightarrow Y$ is called sg-gsp-continuous if the inverse image of every sgopen set in Y is gsp-open set in X.

Clearly, every sg-irresolute function is sg-gspcontinuous.

DEFINITION 3.5: A function f: $X \rightarrow Y$ is called semi-gsp-continuous if the inverse image of every gsp-open set of Y is semi-open in X.

DEFINITION 3.6: A function f: $X \rightarrow Y$ is called gsp-sg-continuous if the inverse image of every gsp-open set of Y is sg-open in X.

THEOREM 3.7: Let f: $X \rightarrow Y$ is semi-sgcontinuous surjection and X is semi-connected then Y is sg-connected.

PROOF: Suppose Y is not sg-connected. Let $Y = A \cup B$ where A and B are disjoint nonempty sg-open sets in Y. Since f is semi-sgcontinuous surjection

 $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$

and $f^{-1}(B)$ are disjoint non-empty and semiopen sets in X. This contradicts the fact that X is semi-connected. Hence Y is sg-connected.

We, define the following.

DEFINITION 3.8 : A space X is called gspconnected if X cannot be written as the disjoint union of two non-empty gsp-open sets.

THEOREM 3.9: Let $f: X \rightarrow Y$ is gsp-sgcontinuous surjection and X is sg-connected then Y is gsp-connected.

PROOF: Obvious.

Easy proofs of the following are omitted.

THEOREM 3.10: Let f: $X \rightarrow Y$ is pre-sgcontinuous, onto and X is sg-connected then Y is semi-connected.

THEOREM 3.11: Let $f: X \rightarrow Y$ is strongly-sgcontinuous, onto and X is connected then Y is sgconnected.

THEOREM 3.12: Let f: $X \rightarrow Y$ is sg-gspcontinuous surjection and X is gsp-connected then Y is sg-connected.

We define the following

DEFINITION 3.13: A function f: $X \rightarrow Y$ is called contra-semi-sg-continuous if the inverse image of each sg-open of Y is semi-closed in X.

DEFINITION 3.14: A function f: $X \rightarrow Y$ is called contra-strongly-sg-continuous if the inverse image of each sg-open of Y is closed in X.

The routine proof of the following is omitted.

THEOREM 3.15 : The following are equivalent for a function $f: X \rightarrow Y$

- (i) f is contra-semi-sg-continuous..
- (ii) For each sg-closed subset F of Y, $f^{1}(F) \in SO(X)$
- (iii) For each $p \in X$ and each sg-closed subset F of Y containing f(p), there exists semi-open set U in X containing point p such that $f(U) \subset F$

THEOREM 3.16 : If a function f: $X \rightarrow Y$ is contra-semi-sgs-continuous and Y is semi-gregular, then f is semi-sg-continuous. We define the following

DEFINITION 3.17: A function f: $X \rightarrow Y$ is said to be perfectly semi-sg-continuous if the inverse

image of each sg-open set of Y is both semi-clopen in X.

REMARK 3.18 : Let $f: X \to Y$ be a function , then

(i) If f is perfectly semi-sg-continuous function is semi-sg-continuous function.

(ii) If f is perfectly semi-sg-continuous function is contra semi-sg-continuous function.

THEOREM 3.19 : The following are equivalent for a function f: $X \rightarrow Y$ is

- (i) f is perfectly semi-sg-continuous.
- (ii) The inverse image of every sg-open set in Y is both semi-open and semi-closed in X.
- (iii) The inverse image of every sg-closed set in Y is both semi-open and semi-closed in X.

PROOF: Obvious.

THEOREM 3.20: The following are equivalent for a function f: $X \rightarrow Y$

- (i) f is contra-semi-sg-continuous..
- (ii) The inverse image each sg-closed set in Y is semi-open.

PROOF: Easy.

We, state the following.

LEMMA 3.21 : Suppose that SF(X) is closed under arbitrary intersections then the following are equivalent for a function f: $X \rightarrow Y$.

- (i) f is contra-semi-sg-continuous.
- (ii) the inverse image of each sg-closed set of Y is semi-open in X.
- (iii) For each x in X and each sg-closed set B in Y with $f(x) \in B$, there exists a semi-open set A

in X such that $x \in A$ and $f(A) \subset B$.

- (iv) $f(sCl(A)) \subset sg-ker(f(A))$ for every subset A of X.
- (v) $sCl(f^{1}(B)) \subset f^{1}(sg-ker(B))$ for every subset B of Y.

Easy proofs of the followings are omitted

THEOREM 3.22 : If f: $X \rightarrow Y$ is a contra-semi-sgcontinuous from a semi-connected space X onto any space Y, then Y is not a discrete space.

THEOREM 3.23 : If f: $X \rightarrow Y$ is a contra-semi-sgcontinuous surjection and X is semi-connected space, then Y is connected.

Next, we state some decomposition on semisg-continuos functions :

THEOREM 3.24 : If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions then

- (i) gof: $X \rightarrow Z$ is semi-sg-continuous function, if g is sg-irresolute and f is semi-sg-continuous.
- gof: X → Z is semi-sg-continuous function, if g is sg-gsp-continuous and f is semi-sgcontinuous.
- (iii) gof: $X \rightarrow Z$ is semi-sg-continuous function, if g is strongly-gsp-continuous and f is semi-continuous.

THEOREM 3.25 : If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions then

(i) gof: $X \rightarrow Z$ is semi-continuous function, if f is semi-sg-continuous and g is sg-continuous.

(ii) gof: $X \rightarrow Z$ is semi-continuous function, if f is semi-strongly-sg-continuous and g is sg-continuous.

(iii) gof: $X \rightarrow Z$ is continuous function, if f is strongly-sg-continuous and g is sg-continuous.

We define the following.

DEFINITION 3.26 : A function $f : X \rightarrow Y$ is called strongly-semi-open if the image of each semi-open set of X is open in Y.

LEMMA 3.27: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions such that gof $: X \rightarrow Z$ is semi-sg-continuous, then

(i)If f: $X \rightarrow Y$ is strongly-semi-open surjective , then g is strongly-sg-continuous.

(ii) If f: $X \rightarrow Y$ is surjective, pre-semi-open , then g is semi-sg-continuous.

Easy proof of the theorem is omitted.

LEMMA 3.28 : Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then,

(i) If f is irresolute and g is semi-sg-continuous then gof: $X \rightarrow Z$ semi-sg-continuous.

(ii) If f is irresolute and g is contra-semi-sgcontinuous then gof: $X \rightarrow Z$ contra-semi-sgcontinuous.

(iii) If f is contra-semi-continuous and g is sgcontinuous then gof is contra-semi-continuous.

(iv) If f is strongly-semi-continuous and g is contra-semi-sg-continuous then gof is contra-strongly-sg-continuous.

PROOF: Obvious .

IV. PROPERTIES OF SEMI-GS-CONTINUOUS FUNCTIONS

DEFINITION 4.1 : A function f: $X \rightarrow Y$ is said to be semi-gs-continuous if the inverse image of every gs-open set in Y is semi-open set in X.

Clearly, every semi-gs-continuous function is gsirresolute.

The routine proof of the following is omitted.

THEOREM 4.2: Let f: $X \rightarrow Y$ be a single valued function, where X and Y are topological spaces, then the following statements are equivalent:

(i) The function f is semi-gs-continuous.

(ii) For each point p in X and each gs-open set V in Y with $f(p) \in V$, there is

a semi-open set U in X such that $p \in U$, $f(U) \subseteq V$. We define the following.

Definition 4.3: A function f: $X \rightarrow Y$ is said to be gs-gsp-continuous if the inverse image of every gs-open set in Y is gsp-open set in X.

Clearly, every gs-irresolute is gs-gsp-continuous.

Definition 4.4: A function f: $X \rightarrow Y$ is called strongly-gs-continuous if the inverse image of every gs-open set in Y is open in X.

We, prove the following.

THEOREM 4.5: Let f: $X \rightarrow Y$ is semi-gscontinuous surjection and X is semi-connected then Y is gs-connected.

PROOF: Suppose Y is not gs-connected. Let $Y = A \cup B$ where A and B are disjoint nonempty gs-open sets in Y. Since f is semi-gscontinuous surjection $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$

and $f^{-1}(B)$ are disjoint non-empty and semiopen sets in X. This contradicts the fact that X is semi-connected. Hence Y is gs-connected.

We define the following.

Definition 4.6 : A function f: $X \rightarrow Y$ is called gspgs-continuous if the inverse image of every gspopen set in Y is gs-open in X.

The routine proof of the following is omitted.

THEOREM 4.7 : Let f: $X \rightarrow Y$ is gsp-gscontinuous surjection and X is gs-connected then Y is gsp-connected.

We, define the following.

Definition 4.8 : A function f: $X \rightarrow Y$ is called pregs-continuous if the inverse image of every semiopen set of Y is gs-open in X.

Easy proofs are omitted of the following.

THEOREM 4.9: Let f: $X \rightarrow Y$ is pre-gscontinuous, onto and X is gs-connected then Y is semi-connected.

THEOREM 4.10: Let f: $X \rightarrow Y$ is strongly-gscontinuous, onto and X is connected then Y is gsconnected.

THEOREM 4.11: Let f: $X \rightarrow Y$ is gsp-gscontinuous surjection and X is gsp-connected then Y is gs-connected.

Next, we give some decompositions on semi-gs-continuity:

Theorem 4.12: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions then

- (i) gof: $X \rightarrow Z$ is semi-gs-continuous function, if g is gs-irresolute and f is semi-sg-continuous.
- gof: X → Z is semi-gs-continuous function, if g is gs-gsp-continuous and f is semi-sgcontinuous.
- (iii) gof: $X \rightarrow Z$ is semi-gs-continuous function, if g is strongly-gs-continuous and f is semi-continuous.
- (iv) gof: $X \rightarrow Z$ is gs-gsp-continuous function, if g is gs-gsp-continuous and f is gs-irresolute.

Theorem 4.13: If f: $X \to Y$ and g: $Y \to Z$ be two functions then

- (i) gof is semi-continuous, if f is semi-sgcontinuous and g is gs-continuous.
- (ii) gof is irresolute, if f is semi-gs-continuous and if g pre-gs-continuous.

(iii) gof is semi-continuous, if f is irresolute and g is semi-continuous.

LEMMA 4.14: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions such that gof $:X \rightarrow Z$ is semi-gs-continuous . Then,

- (i) If f is strongly-semi-open surjective, then g is strongly-gs-continuous.
- (ii) If f is surjectiv pre-semi-open, then g is semi-gs-continuous.Easy proof of the theorem is omitted.We, state the following :
- **LEMMA 4.15:** If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two functions. Then,
- (i) If f is irresolute and g is semi-gs-continuous then gof: $X \rightarrow Z$ semi-gs-continuous.
- (ii) If f is irresolute and g is contra-semi-gscontinuous then gof is contra-semigs-continuous.
- (iii) If f is contra-semi-gs-continuous and g is gscontinuous then gof is contra-semicontinuous.
- (iv) If f is strongly-semi-continuous and g is contra-semi-gs-continuous then gof: $X \rightarrow Z$ is contra-strongly-gs-continuous.

V. PROPERTIES OF SEMI-αGS-CONTINUOUS FUNCTIONS

DEFINITION 5.1 : A function f: $X \rightarrow Y$ is said to be semi- α gs-continuous if the inverse image of every α gs-open set in Y is semi-open in X.

Clearly , every semi- $\alpha gs\mbox{-}continuous$ function is $\alpha gs\mbox{-}irresolute.$

Proof of the following is similar to Th.3.3.

THEOREM 5.2: Let f: $X \rightarrow Y$ be a single valued function, where X and Y are topological spaces, then the following statements are equivalent:

(i) The function f is semi- αgs -continuous.

(ii) For each point p in X and each αgs -open set V in Y with $f(p) \in V$, there is

a semi-open set U in X such that $p\in U,$ f (U) $\subseteq V.$ We , define the following.

DEFINITION 5.3: A function f: $X \rightarrow Y$ is said to be α gs-gsp-continuous if the inverse image of every α gs-open set of Y is gsp-open set in X.

THEOREM 5.4 Let $f: X \rightarrow Y$ is ags-irresolute then f is ags-gsp-continuous.

PROOF: Let V be a α gs-closed subset of Y. Then $f^{1}(V)$ is α gs-closed set in X, as f is α gs-irresolute. We have, every α gs-closed set is gsp-closed set, then $f^{1}(V)$ is gsp-closed set in X. Therefore, f is α gs-gsp-continuous.

DEFINITION 5.5: A function f: $X \rightarrow Y$ is called strongly- α gs-continuous if the inverse image of every α gs-open set in Y is open in X.

We recall the definition.

DEFINITION 5.6[23]: A topological space X is said to be α gs-connected if X cannot be written as the disjoint union of two non-empty α gs-open sets.

THEOREM 5.7: Let f: $X \rightarrow Y$ is semi- α gs-continuous surjection and X is semi-connected then Y is α gs-connected.

Proof is similar to Th.4.5.

DEFINITION 5.8 : A function f: $X \rightarrow Y$ is called gsp- α gs-continuous if the inverse image of every gsp-open set in Y is α gs-open in X.

DEFINITION 5.9 : A function f: $X \rightarrow Y$ is called pre- α gs-continuous if the inverse image of every semi-open set of Y is α gs-open in X.

The routine proofs of the followings are omitted.

THEOREM 5.10 : If f: $X \rightarrow Y$ is gsp- α gs-continuous, surjection and X is α gs-connected then Y is gsp-connected.

THEOREM 5.11: Let f: $X \rightarrow Y$ is pre-agscontinuous, onto and X is ags-connected then Y is semi-connected.

THEOREM 5.12: Let f: $X \rightarrow Y$ is strongly- α gscontinuous, onto and X is connected then Y is α gsconnected.

We define the following

DEFINITION 5.13 : A function f: $X \rightarrow Y$ is called contra-semi- α gs-continuous if the inverse image of each α gs-open of Y is semi-closed in X.

DEFINITION 5.14 : A function f: $X \rightarrow Y$ is called contra-strongly- α gs-continuous if the inverse image of each α gs-open of Y is closed in X.

REMARK 5.15 : Since every open set is ags-open and every closed set is semi-closed set and hence we have the following

- (i) Every contra-strongly-αgs-continuous function is contra-semi-αgs-continuous function.
- (ii) Every contra-semi-ags-continuous function is contra-semi-continuous function .

THEOREM 5.16: The following are equivalent for a function f: $X \rightarrow Y$ is

- (i) f is contra-semi-αgs-continuous..
- (ii)For each ags-closed subset F of Y, $f^{-1}(F) \in SO(X)$
- (iii) For each $x \in X$ and each α gs-closed subset F of Y containing f(x), there exists

semi-open set U in X containing point x such that $f(U) \subset F$.

Easy proof of the theorem is omitted.

THEOREM 5.17 : If a function f: $X \rightarrow Y$ is contra-semi- α gs-continuous and Y is α gs-regular, then f is semi- α gs-continuous. **PROOF:** Obvious. **DEFINITION 5.18**: A space X is called locally α gs-indiscrete if every semi-open set is α gs-closed in X.

Easy proofs of the following are omitted.

THEOREM 5.19 : If a function f: $X \rightarrow Y$ is contrasemi- α gs-continuous and X is locally α gs-indiscrete space, then f is α gs-irresolute.

THEOREM 5.21: Let f: $X \rightarrow Y$ be a function and let g: $X \rightarrow X \times Y$ be the graph function of f defined by g(x) = (x, f(x)) for every $x \in X$. If g is contrasemi- α gs-continuous, then f is contra-semi- α gs-continuous.

THEOREM 5.22: If f: $X \rightarrow Y$ is a contra-semi- α gscontinuous from a semi-connected space X onto any space Y, then Y is not a discrete space.

THEOREM 5.23: If f: $X \rightarrow Y$ is a contra-semi- α gscontinuous surjection and X is semi-connected space, then Y is α gs-connected.

We, define the following.

DEFINITION 5.24: A function f: $X \rightarrow Y$ is said to be perfectly semi- α gs-continuous if the inverse image of each α gs-open set of Y is both semi-clopen in X.

We, state the followings.

THEOREM 5.25: A function f: $X \rightarrow Y$ is perfectly semi- α gs-continuous if and only if the inverse image of every α gs-closed set in Y is both semi-open and semi-closed in X.

THEOREM 5.26: Every perfectly semi- α gs-continuous function is irresolute function.

REMARK 5.27: Let f: $X \rightarrow Y$ be a function, then

- (i) If f is perfectly semi-ags-continuous function is semi-ags-continuous function.
- (ii) If f is perfectly semi-αgs-continuous function is contra semi-αgs-continuous function.

THEOREM 5.28: The following are equivalent for a function $f: X \rightarrow Y$ is

- (i) f is perfectly semi-αgs-continuous.
- (ii)The inverse image of every αgs-open set in Y is both semi-open and semi-closed in X.

(iii)The inverse image of every αgs-closed set in Y is both semi-open and semi-closed in X.**PROOF:** Obvious .

REFERENCES:

- [1]. D. Andrijevic, Semi-preopen sets, Mat.Venik,38(1986),No.1, 24-32.
- [2]. S.P.Arya and R.Gupta,On strongly continuous mappings,Kyungpook Math.J. (1974).131-143.
- [3]. S.P.Arya and T.Nour, Characterizations of s-Normal spaces, Indian J.Pure & Appl. Math. 21(1990), N0.8,717-719.
- [4]. P.Bhattacharya and B.K. Lahiri, Semigeneralized closed sets in topology, Indian

J.Pure & Appl. Math. 29(1987), N0.3,375-382. MR 909;54004,Zbl 687,54002.

- [5]. N.Biswas, "On characterization of semicontinuous functions", Rendiconti, Accademia Nazionale Dei Lincei, April 1970.
- [6]. M.Caldas, Semi generalized continuous maps in topological spaces, Portug. Math., 52(4),(1995), 399-407.
- [7]. S.G.Crossley and S.K.Hildebrand, "Semi-Closure", Texas J. Soci., 22,No.2-3(1970), 99-112.
- [8]. S.G.Crossley and S.K.Hildebrand, Semiclosed sets and smi-continuity in topological spaces, Texas J.Sci.22(1971), 125-126.
- [9]. P.Das "Note on some applications of semiopen sets", Progre. Math. Soc., Allahabad.
- [10]. P.Das, Semi-connected spaces ,IJ.M.12(1974),31-34.
- [11]. R.Devi, H.Maki and K.Balachandran, "Semi-generalized closed and generalizedclosed maps", Mem.Fac.Sci.Kochi. Univ(Math), 14(1993), 41-54.
- [12]. Julian. Dontchev, "On generalized semipreopen sets, Fac. Sci. Kochi Univ. Ser. A, Math., 16(1995), 35-48.
- [13]. Julian Dontchev and Takashi Noiri , Contra – semicontinuous functions, Mathematica Pannonica 10/2(1999),159-168.
- [14]. M.Ganster,S.Jafari and G.B.Navalagi, "On semi –g-regular and semi-g-normal spaces", Demonstration Mathematica.vol-25 Nr.2(2002)67-73.
- [15]. S.Jafari,G.Navalagi and MD.Hanif Page, On alays sg-R_o spaces ,The Global journal of Applied Mathemetics and Mathematical sciences (GJ-AMMS) ,Vol.1,No.2, (July-Dec. 2008),pp.219-226.
- [16]. N.Levine, "Semi-open and semi-continuity in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.
- [17]. N.Levine, "Generalized closed sets in topology", Rend. Circ. Math.Palermo, 19(2) (1970), 89-96.
- [18]. A. S. Mashhhour, I. A. Hasanein and S. N. El- Deeb, "On α-Continuous and α-Open Mapping", Acta. Math. Hungar : 41(1983), 213-218.
- [19]. G.B.Navalagi and Mallamma Shankrikop, "Some more properties of Semi- pre neighbourhoods in topology", J.Tri.Math.Soc. 9(2007), 71-78.
- [20]. O.Njstad , On some classes of nearly open sets ,Pacific J.Math., 15(1965),961-970.
- [21]. T.Noiri ,Supercontinuity and some strong forms of continuity ,Indian J.Pure Appl.Math.,15(3)(1984),241-250.

- [22]. M. Rajamani and K. Viswanathan, On αgsclosed sets in topological spaces. Acta Ciencia Indica, vol.30 No.3 (2004), 521-526.
- [23]. M. Rajamani and K. Viswanathan, On αgscontinuous maps in topological spaces. Acta Ciencia Indica, vol.31 No. 1(2005), 293-303.
- [24]. M. Rajamani and K. Viswanathan, On αgsnormal spaces and some functions, Proc.

92nd Session of the Indian Science Congress, Ahmadabad, 2005, p-26.

[25]. P.Sundaram, H. Maki and K. Balachandran, "Semi-generalized continuous maps and semi- $T_{1/2}$ spaces", Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.

Govindappa Navalagi "Some Allied Semicontinuous Functions in Topology " International Journal of Engineering Research and Applications (IJERA), vol. 8, no.7, 2018, pp.14-20
