
Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 89 | P a g e

“Error Analysis and Detection Procedures for a Hardware

Implementation of the Advanced Encryption Standard”

Rupashree Sahu, Subhajit Pasa
Gandhi Institute of Excellent Technocrats, Bhubaneswar,India

Modern Institute of Technology and Management, Bhubaneswar, Odisha, India

ABSTRACT—

In order to prevent the Advanced Encryption Standard (AES) from suffering from differential fault attacks, the

technique of error detection can be adopted to detect the errors during encryption or decryption and then to

provide the information for taking further action, such as interrupting the AES process or redoing the process.

Because errors occur within a function, it is not easy to predict the output. Therefore, general error control codes

are not suited for AES operations. In this work, several error-detection schemes have been proposed. These

schemes are based on the ðn þ1;nÞ cyclic redundancy check (CRC) over GFð2
8
Þ, where n 2 f4;8;16g. Because

of the good algebraic properties of AES, specifically the MixColumns operation, these error detection schemes

are suitable for AES and efficient for the hardware implementation; they may be designed using round-level,

operation-level, or algorithm-level detection. The proposed schemes have high fault coverage. In addition, the

schemes proposed are scalable and symmetrical. The scalability makes these schemes suitable for an AES

circuit implemented in 8-bit, 32-bit, or 128-bit architecture. Symmetry also benefits the implementation of the

proposed schemes to achieve that the encryption process and the decryption process can share the same error

detection hardware. These schemes are also suitable for encryption-only or decryption-only cases. Error

detection for the key schedule in AES is also proposed and is based on the derived results in the data procedure

of AES.

Index Terms—Advanced encryption standard, error control code, CRC, differential fault attacks.

I. INTRODUCTION
HE Advanced Encryption

Standard (AES) [10], the successor to the Data

Encryption Standard (DES), was finalized in October

2000 by the US National Institute of Standards and

Technology (NIST), when the Rijndael algorithm [12]

was adopted. The data block size of AES is 128-bit

and the key size can be 128-bit, 192-bit, or 256-bit. In

AES, although the data block is 128-bit, all operations

are byte-oriented over GFð2Þ or GFð2
8
Þ. Therefore,

several kinds of AES implementations have been

discussed. In general, three main types of AES

implementations have been discussed, 8-bit, 32-bit, or

128-bit architecture. Each architecture has its own

applications. Feldhofer et al. [6] designed an 8-bit

AES chip to provide security for radio frequency

identification (RFID). Satoh et al. [13] introduced a

32-bit implementation of AES. Mangard et al. [9]

proposed a scalable architecture for AES, which could

process 128-bit data or 32-bit data, depending on the

number of Sbox.

The hardware implementation of AES would

be countered by some side-channel attacks, such as

Differential Fault Attacks (DFA) or Differential

Power Analysis (DPA). Differential fault attacks was

originally proposed by Biham and Shamir [4]. Theses

side-channel attacks actually threaten the security of

several cryptosystems because they are practical for a

crypto module. The idea of DFA is to apply the

differential attacks to a crypto module or a crypto

chip. The cryptanalyst injects errors by using

microwave or ionizing techniques during the

encryption or decryption process. These errors cause

the encryption results to differ from the correct results;

hence, the cryptanalyst will receive the difference of

outputs. Therefore, such differential attacks may be

carried out in the real world. Dusart et al. [5] broke the

128-bit AES under the assumption that you can

physically modify the hardware AES device. This

attack required 34 pairs of differential inputs and

outputs to obtain the final round key. Piret and

Quisquater [11] broke AES with two erroneous

ciphertext under the assumption that the errors occur

between the antepenultimate and the penultimate

MixColumns.

To avoid the possibility of suffering such

attacks, error detection can be considered while

implementing a cipher. In 2002, Karri et al. [7]

proposed a general error detection method, called

concurrent error detection (CED), for several

symmetric block ciphers including RC6, MARS,

Serpent, Twofish, and Rijndael. CED requires an

inverse operation to check whether errors have

occurred in calculations or not and has three levels:

the operation level, the round level, and the algorithm

level. Taking an operation-level CED in AES as an

 T

RESEARCH ARTICLE OPEN ACCESS

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 90 | P a g e

example, the InvSubBytes is required to detect the

errors occurring in SubBytes and vice versa. This

method has very high fault coverage, but it is

timeconsuming and high hardware cost because

inverse operations are required. In 2003, Karri et al.

[8] proposed a paritybased detection technique for

general substitution-permutation block ciphers.

However, the size of the table, required by the

substitution box, is enlarged. In addition, the paper did

not address the error detection techniques for some

specific functions, such as MixColumns in AES. In

2004, Wu et al. [14] applied the structure of [8] to

AES and used

Published by the IEEE Computer Society

one-bit parity for a 128-bit data block. The

method of Wu et al. [14] can let the parity pass

through the MixColumns. Bertoni et al. [1] used an

error detection code of 16bit parity for a 128-bit data

block. To be precise, this approach uses one-bit parity

for each byte and, thus, can detect all single errors and

perhaps all odd errors. In [2], Bertoni et al. used the

error detection scheme in [1] not only to detect errors

but also to locate errors. In 2004, Bertoni et al. [3]

implemented the model proposed in [2]. The

introduction of the mode into AES brought the

performance 18 percent overhead of area and 26

percent decreasing of throughput. According to the

results given in [1], their approach was able to detect

most cases of multiple faults. However, this approach

is asymmetrical, between MixColumns and

InvMixColumns, because the parity prediction of

InvMixColumns is more complex than that of

MixColumns. Therefore, two circuits are required to

predict the parity while merging the encryption and

the decryption. Besides, the detection technique for

SubBytes doubled the table size of SubBytes in AES,

from 256 to 512 bytes. In addition, it cannot be easily

applied to an AES implementation of 8-bit

architecture because the parity prediction of

MixColumns (InvMixColumns) requires information

from other bytes and other parities.

This work proposes several error-detection

schemes for AES. They are based on the ðn þ

1;nÞcyclic redundancy check (CRC) over GFð2
8
Þ,

where n 2 f4;8;16g is the number of bytes contained in

the message. The proposed schemes easily predict the

parity of an operation’s output. Because AES is byte-

oriented and its constants are ingeniously designed,

the parity of the output can be predicted from a linear

combination of the parity of the input. In most cases,

the parity is the summation of the input data; also, the

proposed schemes are highly scalable and are suitable

for 8-bit, 32-bit, or 128-bit architecture. This is

important because many AES designs are in an AES

hardware designed as either 8-bit or 32-bit

architecture. Another advantage of the proposed

approaches is that the parity calculation between the

encryption and the decryption is symmetric because

the parity generation in encryption is quite similar to

the one in decryption. This will bring some benefits

while integrating encryption and decryption into one

circuit.

This paper is organized as follows: In Section

2, the AES algorithm is briefly described and the

notations used throughout are defined. In Section 3,

our proposed error detection schemes for AES are

described. Derivation of error detection for each

operation, including SubBytes, ShiftRows,

MixColumns, and AddRoundKey, is explained, as

well as the design of the key schedule. The

undetectable errors of each proposed method are

theoretically analyzed in Section 4, while, in Section

5, the realization issues of three levels, operation level,

round level, and algorithm level, are described. In

Section 6, advantages and comparisons between this

work and other research studies are discussed and, in

Section 7, the detection capability of each scheme is

simulated. Finally, our conclusions are offered in

Section 8.

AES ALGORITHM

 The AES [10] consists of two parts, the data

procedure and the key schedule. The data procedure is

the main body of the encryption (decryption) and

consists of four operations, (Inv)SubBytes,

(Inv)ShiftRows, (Inv)MixColumns, and

(Inv)AddRoundKey. During encryption, these four

operations are executed in a specific order—

AddRoundKey, a number of rounds, and then the final

round. The number of rounds is 10, 12, or 14,

respectively, for a key size of 128 bits, 192 bits, or

256 bits. Each round is comprised of the four

operations and the final round has SubBytes,

ShiftRows, and AddRoundKey. The decryption flow

is simply the reverse of the encryption, and each

operation is the inverse of the corresponding one in

encryption. In the data procedure, the 16-byte (128-

bit) data block is rearranged as a 4 4 matrix, called

state S,

2 s0 6

S ¼
6
4

ss12

s3
s4 s5

s6 s7

s8 s9

s10

s11

3

s12 s13 775; s14 s15

ð1Þ

wheresidenotes the ith byte of the data block. In this

context, S denotes the input of an operation and T

denotes the output. AES is operated in two fields,

GFð2Þ and GFð2
8
Þ. In GFð2Þ, addition is denoted by

, and multiplication is denoted by . Similarly, the two

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 91 | P a g e

symbols, þ and , denote addition and multiplication in

GFð2
8
Þ.

2.1 SubBytes

Two calculations, the GFð2
8
Þ inversion and the affine

transformation, are involved in this operation.

SubBytes substitutes each byte siof the data block by

 ti¼ Asi
1
þ 63; ð2Þ

wheresi
1

is the inverse of the input byte, si2 GFð2
8
Þ, A

is an 8 8 circulant matrix of a constant row vector

½1 0 0 0 1 1 1 1over GFð2Þ, and 63 (the Courier font

number representing a hexadecimal value in this

paper) belongs to GFð2
8
Þ. Asi

1
is a matrix-vector

multiplication over GFð2Þ.

2.2 ShiftRows

The ShiftRows operation only changes the byte

position in the state. It rotates each row with different

offsets to obtain a new state as follows:

 2 s0 s4s8 s12 3 2 s0 s4 s8 s12 3

664 ss12ss56ss109ss1314 775ShiftRows!664ss105

 ss149ss132ss16 775: ð3Þ

 s3 s7s11 s15 s15 s3 s7 s11

The first row is unchanged, the second row is left

circular shifted by one, the third row is by two, and the

last row is by three.

2.3 MixColumns

The MixColumns operation mixes every consecutive

four bytes of the state to obtain four new bytes as

follows:

Fig. 1.The block diagram of key expansion in AES.

2 s0

6
6
4

ss12

s3 s4 s5

s6 s7

s8 s9

s10

s11

 3 2

s12 t0
s
s
13

14

775MixColumns
!
664

t
t
1
2

s15 t3

t4 t5

t6 t7

t8 t9

t10

t11

3

t12 t13

775:

t14 t15

ð4Þ

Let si, siþ1, siþ2, and siþ3 represent every consecutive four bytes, where i 2 f0;4;8;12g. Then, the four bytes are

transformed by

 3 2 32 3

Each entry of the constant matrix in (5) belongs to

GFð2
8
Þ, hence (5) is a matrix-vector multiplication

over GFð2
8
Þ.

2.4 AddRoundKeyand Key Expansion Each round has

a 128-bit round key which is segmented into 16 bytes

kias (1); the AddRoundKey operation is simply an

addition,

 ti¼ siþ ki;where 0 i 15:ð6Þ

The key expansion expands a unique private key as a

key stream of ð4r þ 4Þ 32-bit words, where r is 10, 12,

 ti 02 03 01 01 si

664 ttiiþþ12 775 ¼ 664 01 02 03 0101 01 02

03 757466 ssiiþþ12 775:

tiþ3 03 01 01 02 siþ3

ð5Þ

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 92 | P a g e

or 14. The private key is segmented into Nk words

according to the key length, where NK is 4, 6, or 8 for

a 128-bit, 192-bit, or 256-bit

cipherkey,respectively.AsFig.1shows,then,itgeneratest

heith word (32 bits) by EXORing the ðiNkÞth word

with either the ði1Þth word or the conditionally

transformed ði1Þth word, where NK i ð4r þ 3Þ. The

ði1Þth word is conditionally transformed by RotWord,

SubBytes and EXORing with Rcon½i=Nk ¼

f02
bi=Nkc

;00;00;00g, where the polynomial presentation

of 02
bi=Nkc

is x
bi=Nkc

over GFð2
8
Þ. Finally, the key

stream is segmented into several round keys which are

involved in the AddRoundKey operation.

Fig. 2.The error model assumed in this work. The solid line part appears in every operation and the dotted line

part appears in some operations.

ERROR DETECTION TECHNIQUES

 The parts in decryption can be yielded in a

similar way; hence, the following context only

addresses the error detection in encryption. The

differential faults attacks need differential inputs and

outputs to attack a cryptosystem; hence, it is assumed

that the states and round keys are polluted by additive

errors, as shown in Fig. 2. In this work, one operation

is the smallest granule for designing error detection. In

Fig. 2, the errors are assumed to be induced between

the previous operation and the current operation. If the

errors occur in the output of the previous operation,

the erroneous input of the current operation will be

treated as a different state. Actually, this situation only

exists in the first round or in the first operation. The

assumed error model is logical, even in the case where

the errors occur during the operation. Because each

operation of AES is invertible, one unique error block

e would exist for an erroneous output T such that T ¼

fðS þ eÞ, where f denotes any operation in AES.

This paper adopts a systematic ðn þ 1;nÞcyclic

redundancy check (CRC) over GFð2
8
Þ to detect errors

occurring duringencryption,wheren 2

f4;8;16gisthenumberofbytes contained in the message.

The generator polynomial is

 gðxÞ ¼ 1 þ x; ð7Þ

where the coefficients of (7) are over GFð2
8
Þ. Giving

a message sðxÞof degree n1, a systematic codeword,

generated by gðxÞ, can be obtained from the

following two steps:

1. Obtain the remainder pðxÞfrom dividing

xsðxÞby the generator polynomial gðxÞ. The

remainder pðxÞis a scalar p here because the degree of

gðxÞis one.

2. Combine pðxÞand xsðxÞto obtain the

codeword polynomial,

pðxÞ þ xsðxÞ ¼ p þ s0x þ s1x
2
þ þ sn1x

n
; ð8Þ 8

wherep;si2 GFð2 Þ:

In Step 1, while gðxÞis 1 þ x, the remaining pðxÞis

the summation of all coefficients of the message,

Xn

 pðxÞ ¼ si: ð9Þ

i¼0

Fig. 3.The block diagram of the error detection in this paper.

Therefore, the parity of a message may be obtained by

calculating the summation of the input message over

GFð2
8
Þ. Assume that the received polynomial tðxÞis

tðxÞ ¼ t0 þ t1x þ t2x
2
þ þtnx

n
;ti2 GFð2

8
Þ: ð10Þ

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 93 | P a g e

The detection scheme checks whether the syndrome

equals zero or not, where syndrome u is

Xn

 u ¼ ti: ð11Þ

i¼0

 If the syndrome equals zero, then it is assumed

that no errors have occurred; otherwise, errors did

occur.

In the channel coding field, it is assumed that the

message sðxÞis transmitted over a noisy channel. The

channel does not modify the message if no errors

occur. Therefore, it is easy to predict that t0 is identical

to p, with t0 being used to detect the errors. However,

as shown in Fig. 3, the message, S ¼ fs0;s1;...;sn1g, is

transformed into another message, ft1;t2;...;tng, by an

AES operation; hence, t0 cannot be obtained

instinctively. Therefore, this paper investigates the

function, predicting t0 from p as shown in Fig. 3, for

each operation to make error detection possible in

AES.

 This work applies an ðn þ 1;nÞCRC to AES,

where n 2 f4;8;16g. In the case where, n ¼ 16, a 128-

bit AES state is treated as a message; hence, only one

parity is generated for a 128-bit data block. When n ¼

4, the error detection is designed to check each

column of the output state. In other words, four 4-byte

column vectors in an AES state,

ft4jþ1;t4jþ2;t4jþ3;t4jþ4g, 0 j 3, are checked separately.

Therefore, four parities are required for a 128-bit data

block when n ¼ 4. For n ¼ 8, two parities are required

for a

128-bit data block. The following context addresses

the two cases, n ¼ 16 and n ¼ 4, because the

ð9;8ÞCRC for the AES algorithm can be constructed

under similar conditions to the ð17;16Þ or ð5;4Þ CRC

for AES.

3.1 In SubBytes

In this paper, two implementation types of SubBytes

are considered. The first type uses one table instead of

the GFð2
8
Þ inversion and the affine transformation.

The second type separately calculates the GFð2
8
Þ

inversion and the affine transformation and the

implementation of the GFð2
8
Þ inversion is not limited

to the look-up-table method or the combinational

logical circuit. In this paper, the first

Fig. 4.The error detection for united SubBytes.

type is named united SubBytesand the second type is

separated SubBytes.

For united SubBytes, it is assumed that both the Sub

Bytes circuit and the InvSubBytes circuit are

implemented in a chip. Error detection is achieved by

feeding the output of SubBytes into InvSubBytes, then

comparing the input of SubBytes and the output of

InvSubBytes, and vice versa, as Fig. 4 shows. If both

are identical, then it is concluded that no errors have

occurred. Otherwise, the errors did occur. This error

detection method may be time-consuming, if only the

SubBytes operation is considered. However, in

practical terms, normal encryption could be further

processed, without waiting for the error detection

result, because SubBytes is either the first operation or

the second operation in each round. In other words,

the operation after SubBytes, such as ShiftRows,

MixColumns, or AddRoundKey, may continue, when

the output of the round would be intercepted if errors

are detected in SubBytes.

 If separated SubBytesis adopted, error detection

must be applied separately to the GFð2
8
Þ inversion

and the affine transformation. Considering the error

detection for the GFð2
8
Þ inversion first, there are two

schemes proposed herein. Similarly to Fig. 4, the first

scheme detects errors by using the relationship of the

mutual inverse. However, the computation of the

GFð2
8
Þ inversion is identical for both SubBytes and

InvSubBytes; hence, this scheme does not require the

encryption and decryption circuits to simultaneously

exist in one chip. It can be used with the encryption-

only or decryption-only hardware.

 The second scheme is the ðn þ 1;nÞCRC and

assumes that the GFð2
8
Þ inversion is implemented in

look-up-table approach. Instead of the inverse value of

a giving input, the exclusive value of the giving input

and its inverse is stored in the table. Therefore, giving

an input 2 GFð2
8
Þ, the value, ¼ þ

1
, is obtained from

the table and then the input is added to to yield
1
, as

the marked block in Fig. 5. The error is detected by

the syndrome obtained by the dashed line in Fig. 5. In

this diagram, no errors are introduced, hence the

syndrome is zero.

For one GFð2
8
Þ inversion, according to Fig. 3 and the

error model given in Fig. 2, the errors induce a fault at

the input of the GFð2
8
Þ inversion, as shown in Fig. 6.

Suppose that the byte siis changed into another byte s
0

i

by adding the error e0. Then, the syndrome used to

detect errors is calculated as ðsiþ e1Þ þ tiþ1 þ ðtiþ1 þ

tiþ11Þ ¼ e0 þ e1: ð12Þ

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 94 | P a g e

 The one-byte structure of Fig. 5 could be

extended to the 4-byte, 8-byte, or 16-byte structure.

Taking the 16-byte

Fig. 5.The block diagram of one GFð2

8
Þ inversion with the error detection.

structure into consideration, the input state is denoted as

P

S ¼ fs0;s1;...;s15g and then the parity p is
15

i¼0 sifrom (9). According to (12) and Fig. 3, the parity of the output

parity t0 could be predicted by

 X15 X15

In this paper, all ShiftRows, MixColumns, and

AddRoundKey are protected by error detection code.

However, the detection technique of SubBytes is

varied with its implementation. According to the error

detection scheme for SubBytes, three proposed

architectures for AES are denoted by united-SubBytes

detection (USBD, hybridSubBytes detection (HSBD),

and parity-based-SubBytesdetection(PbSBD), as

shown in Fig. 7.

Fig. 6. An error is injected into the input state after entering the GFð2

8
Þ inversion.

 siþ ðtiþ1 þ tiþ11Þ;

 i¼0 i¼0

and the syndrome is

ð13Þ

X15

 t0 þ tiþ1;

i¼0

 X15 X15

) tiþ1 þ p þðtiþ1 þ tiþ11Þ:

 i¼0 i¼0

ð14Þ

If no errors have occurred, the value tiþ
1
1 will equal si.

Therefore, the syndrome (14) is zero.

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 95 | P a g e

Fig. 7. The three proposed architectures for AES.

For the affine transformation, error detection is

achieved by the ðn þ 1;nÞCRC, where n 2 f4;8;16g.

Considering n ¼ 16 first, and according to (9), the

parity p of an input state, S ¼ fs0;s1;...;s15g, where si2

GFð2
8
Þ, is generated by

X15

 p ¼ si: ð15Þ

i¼0

The output state is denoted as T ¼ ft0;t1;...;t16g. From

(2) and Fig. 3, tiþ1 is Asiþ 63, where 0 i15. The

hexadecimal constant 63 will be eliminated after

taking summation of the output state Tnt0, i.e.,

 Xn1Xn1 X15

 tiþ1 ¼ðAsiþ 63Þ ¼ A si¼ Ap: ð16Þ

 i¼0i¼0 i¼0

Therefore, t0 can be predicted by (16) with input parity

p. If no errors occur, the syndrome u must be zero,

X16

 u ¼ ti¼ 0: ð17Þ

i¼0

In the case of ð5;4ÞCRC or ð9;8Þ CRC, (16) also

holds.

3.2 In ShiftRows

From (3), the ShiftRows operation simply rotates the

input state S, but does not alter the value of si.

Therefore, t0 may be directly predicted by P
n
i¼0 siin the

case of n ¼ 16. Similarly, the ShiftRows operation is

error free if the syndrome is zero

X16

 ti¼ 0: ð18Þ

i¼0

When n ¼ 4, because each column of the output state

would be detected, the four parities pj, where 0 j3, are

p0 ¼ s0 þ s5 þ s10 þ s15; p1 ¼ s4 þ s9 þ s14 þ s3; p2

¼ s8 þ s13 þ s2 þ s7; p3 ¼ s12 þ s1 þ s6 þ s11;

hence,thetj;0 foreachoutputmessageft4jþ1;t4jþ2;t4jþ3;t4jþ4g

is pj. The case of n ¼ 8 is analogous to the case of n ¼

4.

3.3 In MixColumns

The behavior of the MixColumns operation is more

complex because each byte in the input state S

influences four bytes in the output state T. However,

because of the ingenious design of the matrix

coefficients, it is also possible to apply the ðn þ

1;nÞCRC directly, where n 2 f4;8;16g. The

MixColumns operation works as follows:

2 t4jþ1 3 2 02 03 01 01 3 2 s4j 3

664 tt44jjþþ23 775 ¼ 466 01 02 03 0101 01 02 03 577

664 ss44jjþþ12 577;where 0 j 3:

|fflfflffltffl{zfflfflffl4jþ0 4 ffl} 03 01 01 02

|fflfflfflfflffl{zfflfflfflfflffl}s4jþ0 3

 T S

ð19Þ

From (19), it is yielded that the summation of vector

T
0
equals that of vector S

0
.

X3

t4jþkþ1 ¼ ð02 þ 01 þ 01 þ 03Þs4jþ

k¼0

ð03 þ 02 þ 01 þ 01Þs4jþ1þ ð01 þ 03 þ 02 þ 01Þs4jþ2þ

ð20Þ

ð01 þ 01 þ 03 þ 02Þs4jþ3;

¼ s4j þ s4jþ1 þ s4jþ2 þ s4jþ3;

X3

 ¼ s4jþk:

k¼0

Therefore, when the ð5;4ÞCRC is applied, the output

parity tj;0 of the jth column vector may be directly

predicted from the jth column vector of the input state

by P
3
k¼0 s4jþk.

Similarly, in the case n ¼ 16, t0 is predicted by

 X3 X3

t0 ¼ t4jþkþ1; j¼0 k¼0

 X3 X3

 ¼ s4jþk;

j¼0 k¼0 X15

 ¼ si:

i¼0

Because the summation of 02, 01, 01, and 03 is 01,

(20) can be satisfied for the ð17;16Þ, ð9;8Þ, or ð5;4Þ

CRC. The coefficients of InvMixColumns display an

identical phenomenon. The summation of the four

coefficients used in decryption, 0B, 0D, 09, 0E, is also

01. Therefore, t0 or tj;0can be predicted in the same

way as that of MixColumns.

3.4 In AddRoundKey

Discussing the case n ¼ 16 first, it is assumed that

each round key already has a parity; hence, the round

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 96 | P a g e

key is represented as fk0;k1;...;k16g, where k0 ¼ P
15

i¼0

kiþ1 is the parity and fk1;...;k16g is the normal round

key. The AddRoundKey operation only adds the input

state with a normal key K ¼ fk1;k2;...;k16g to yield the

output state as follows:

 T ¼ S þ K: ð21Þ

Fig. 8.The error detection scheme for key expansion.

We apply the summation operation to (21) to obtain

X15 X15X15tiþ1 ¼ siþ kiþ1 ¼ p þ k0: ð22Þ i¼0

i¼0i¼0

Accordingly, t0 may be obtained from p þ k0. The

parities for n ¼ 4 or n ¼ 8, pj, are calculated in the

same way; however, the round key must also have

four or two parities.

3.5 In the Key Expansion

 The ðn þ 1;nÞCRC is also adopted in key

expansion, where n 2 f4;8;16g. However, the

ð5;4ÞCRC is always used in the interior of the key

expansion. The key expansion and the error detection

scheme are jointly depicted in Fig. 8, where the

decision blocks are removed from Fig. 1 for a simple

description of error detection, as the conditions only

determine where the error detection is applied, not

how it is designed.

In this key expansion, with error detection, one word

contains five bytes and the symbol of a word is

denoted by W
0
½i ¼ ½W½i k parity, where k is a

catenation symbol. At first, the parities of the first Nk

words, where Nk 2 f4;6;8g, are obtained by the

generator 1 þ x, i.e., the parity pi of

W½i ¼ ½wi;0wi;1 wi;2 wi;3is

 pi ¼ wi;0 þ wi;1 þ wi;2 þ wi;3: ð23Þ

 Then, the Nk-pair parities and messages form

new Nk words, W
0
½0;W

0
½1;... , and W

0
½Nk 1. The

new words are successively put into the Nk shift

blocks, from W
0
½i Nkto W

0
½i 1, at the top of Fig. 8,

after which, the key expansion starts. A 128-bit round

key and its one-byte parities are collected after each

period of four shifts. If ð17;16Þ CRC is chosen for

AES, the one-byte parity of a round key is obtained by

summing the four parities of output words. If

ð5;4ÞCRC is chosen, then the four parities are kept.

In the key expansion, the RotWord rotates the byte

order of W½i 1; hence, the parity is the same as that

of W
0
½i 1. For the SubWord operation because it is a

function which executes SubBytes on each byte of

input, the error detection scheme is the same as that in

SubBytes, described in Section 3.1. However, in the

case of united SubBytesbeing used, the parity must be

calculated separately.

For the EXOR operation with Rcon½i=Nk, the error

detection is achieved by EXORing the parity of temp

and that of Rcon½i=Nk, where Rcon½i=Nk ¼

f02
bi=Nkc

;00;00;00g. The parity of Rcon½i=Nkequals

02
bi=Nkc

due to the three bytes of zero value in

Rcon½i=Nk. At the end of the key expansion, the

parity t0 is the EXOR of the parity of current data and

the parity of W
0
½Nk 1.

3.6 More Details for ð5;4Þ CRC

Although the ð5;4ÞCRC has four parities, it is

possible for only one parity to be used in realization of

this scheme. AES can be implemented in a 32-bit

structure, i.e., one column of a state is processed once

in every round. In this structure, the position of

ShiftRows must be shifted above the SubBytes

operation. After ShiftRows, each column passes

through the identical calculations, SubBytes,

MixColumns, and AddRoundKey; the parity

generation, or the syndrome calculation for each

column, are also identical, so only one circuit is

required.

UNDETECTABLE ERRORS

 Even though the AES algorithm propagates the

errors during encryption, the error coverage can be

also analyzed mathematically. Actually, only the

MixColumns and SubBytes operations cause

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 97 | P a g e

numerous erroneous bits when a single-bit error is

injected, when ShiftRows or AddRoundKey do not

change the bit number of the errors. Several

assumptions are made, as follows:

1. The error model is considered as Fig. 2.

2. All nonzero error block over GFð2
8ðnþ1Þ

Þ have

the same probability, where n 2 f4;8;16g.

3. Each operation has the

 same error injection probability.

4.1 The Undetectable Errors in SubBytes

Because SubBytes is invertible, all errors injected into

input can be detected by InvSubBytes and vice versa.

Therefore, the united SubBytes, has 100 percent fault

coverage. In separated SubBytes, both operations, the

GFð2
8
Þ inversion and the affine transformation, have

their own error detection. The GFð2
8
Þ inversion is

also invertible, so it has 100 percent fault coverage in

hybrid SubBytes.

In parity-based SubBytes, the error detection

capability of the GFð2
8
Þ inversion is analyzed.

According to (14), the scheme only uses XOR

operations, so all the codewords are the undetectable

errors in parity-based SubBytes. Therefore, while

applying the ð17;16ÞCRC to a 128-bit data block, the

number of undetectable nonzero errors is

ð2
8
Þ

16
1 and the percentage of

undetectable errors is
ð

8
16

17 ffi0:4%. When ð2 Þ

theð5;4Þ CRC is applied to a 128-bit data block, the

total number of undetectable nonzero errors is ðð2
8
Þ

4

1Þ
4

and the percentage is ð
ð

8
4

5 Þ
4

100% ffi2:56 10
8
%. Simið2 Þ larly, the percentage of

undetectable errors for the ð9;8ÞCRC is 0:16 10
2
%.

The affine transformation is detected by ðn þ

1;nÞCRC. Although five erroneous bits were caused,

while injecting a single-bit error, the error coverage

can still be analyzed. Theorem 1.Given an input state

S ¼ fp;s0;s1;...;sn1g,

P

where parity p is
n
i¼0

1
si, and n 2 f4;8;16g, the output

state is T ¼ ft0;t1;...;tng, where t0 is Ap from (16), and

tiþ1, 0 i n 1, is obtained from (2). Introducing an error

E ¼ fe0;e1;...;eng into the state S ¼ fp;s0;s1;...;sn1g, the

summation of the output T
0

will equal to zero if and

only if P
n
i¼0 ei¼ 0.

Proof. Because n is even, the value 63 will be

cancelled. Therefore, the summation of the erroneous

output T
0

is

Xnt0i ¼ Ap þ e0 þ A Xn1ðsi þ eiþ1Þ;

 i¼0 i¼0

Xn1 Xn¼ Ap þ A siþA ei;

 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl
i¼0

ffl}
i¼0

0

Xn

 ¼ A ei:

i¼0

 ATherefore,gular overPni¼0 ei¼GF0Pis held.

Because the matrixð
n
i2¼Þ0,tA

0
iPequalsneiis zero if and

only ifto zero ifandAis

nonsin-onlyPin¼0 eifi

i¼0

 is zero. tu

In the ðn þ 1;nÞCRC, the nonzero errors are

undetected, when the equation P
n
i¼0 ei¼ 0 is held, i.e.,

errors are also the codewords. According to Theorem

1, all undetectable errors are also undetected after the

affine transformation. Therefore, while applying the

ðn þ 1;nÞCRC to a 128-bit data block, the percentages

of the undetectable errors are 0.4 percent, 0:16 10
2
%,

and 2:56 10
8
%, respectively, for n ¼ 16, n ¼ 8, and n

¼ 4.

4.2 The Undetectable Errors in MixColumns

MixColumns also has a diffusion property. It causes

five or 11 erroneous bits while injecting a single-bit

error in one column vector of the input state.

However, the coefficients eliminate the diffusion of

errors after summing the erroneous

columnvectoroftheoutputstate.TheMixColumns is

shown again below, and it is supposed that each byte

of the input vector is polluted by an error.

 2 3 2 32 3

k¼0

 tiþ1 02 03 01 01 siþ ei

664 ttiiþþ23 775 ¼ 646 01 02 03 0101 01 02 03 577664

ssiiþþ12 þþ eeiiþþ12 775:

 tiþ4 03 01 01 02 siþ3 þ eiþ3

Then, the summation of the column vector tiþ1 is

X3

tiþkþ1 ¼ ð02 þ 01 þ 01 þ 03Þðsi þ eiÞþ

k¼0 ð03 þ 02 þ 01 þ 01Þðsiþ1 þ eiþ1Þþ

ð24Þ

ð01 þ 03 þ 02 þ 01Þðsiþ2 þ eiþ2Þþ ð01 þ 01 þ 03 þ 02Þðsiþ3

þ eiþ3Þ; X3

 ¼ ðsiþkþ eiþkÞ:

ð25Þ

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 98 | P a g e

The equation also holds for two or four columns

vectors.

Theorem 2.Giving an input state S ¼ fp;s0;s1;...;sn1g, P

where p ¼
n
i¼0

1
siis the checksum of the input state and

n 2 f4;8;16g. After MixColumnsand the parity

prediction (20), the output state is T ¼ ft0;t1;...;tng,

where t0 ¼ p, and the rest is the output of

MixColumns. Introducing an error

E ¼ fe0;e1;...;eng into the state S ¼ fp;s0;s1;...;sn1g, then

the errors of the ðn þ 1;nÞ CRC in MixColumnsare P

 undetectable if and only if the summation
n
i¼0

eiis zero.

Proof. The syndrome P
n
i¼0 tiis used to check whether

errors occurred or not. It is assumed that no errors

occurred, if and only if the syndrome is zero. The

summation of the erroneous output state is

Xnt0i ¼ ðt0 þ e0Þ þ Xnt0i:

 i¼0 i¼1

From (25), because n is the multiple of four, the above

equation is represented as

Xnt0i ¼ ðt0 þ e0Þ þ Xnðsi1 þ eiÞ;

 i¼0 i¼1

Xn1 Xn¼ t0 þ siþ ei;

 |fflfflfflfflfflffl{zfflfflfflfflffl
i¼0

ffl}
i¼0

0

Xn

 ¼ ei:

i¼0

Therefore, the error is undetectable if and only if P
n
i¼0

eiis zero. tu

From Theorem 2, there are ðð2
8
Þ

16
1Þ nonzero errors

that are undetectable, when the ð17;16ÞCRC is

applied to a 128-bit data block. This result is the same

as those in the affine transformation described above.

Similarly, the total number of the undetectable errors

for the ð9;8Þor ð5;4Þ CRC is ðð2
8
Þ

4
1Þ

4
or ðð2

8
Þ

8

1Þ
2
, respectively.

4.3 The Undetectable Errors in ShiftRowsor

AddRoundKey

ShiftRows does not change the value of the input

state, and AddRoundKey only EXORs the input state

with a round key. Therefore, the undetectable errors

are the same as those analyzed in the affine

transformation or MixColumns.

DETECTION LEVELS

 The proposed scheme may be used in

operation-level, roundlevel, or algorithm-level error

detection. In operation-level detection, the syndrome

is checked at the end of each operation. Similarly, if

the syndrome is obtained at the end of each round, it is

round-level detection. The implementation of

operation-level error detection is easy to figure out.

The syndrome is calculated at the end of each

operation according to the equations derived in

Section 3. However, the implementation of a round-

level detection needs more ingenuity, when the

SubBytes is protected by united SubBytes. The parity

is generated at the end of the SubBytes or the

beginning of the ShiftRows. Then, the parity directly

passes through ShiftRows, and MixColumns because

its value will not be changed after the two operations.

Finally,

Fig. 9.The proposed scheme under round-level error detection.

the parity is EXORed with the key parity. The total

path is shown in Fig. 9. Obviously, the syndrome

could then be checked at the end of the round. In

hybrid SubBytes, the structure for round-level error

detection is similar to Fig. 9, but the parity is

generated after the GFð2
8
Þ inversion. Because the

parity of the state, in the ith round, cannot pass

through the inversion of GFð2
8
Þ in i þ 1 round, the

parity must be regenerated in each round. Therefore,

unitedSubBytes detection or hybrid-SubBytes

detection cannot be implemented as algorithm-level

detection.

However, each operation of parity-based SubBytesis

protected by ðn þ 1;nÞCRC, hence the parity could

pass through a round. Therefore, parity-based

SubBytescould be applied as an operation-level,

round-level, or algorithmlevel error detection.

FEATURES AND COSTS

6.1 Scalability

 In Section 3, it was found that the three error

detections, ðn þ 1;nÞCRC, where n 2 f4;8;16g, had

similar structures. The calculations of parities or

syndromes were all based on Byte-EXOR (B-EXOR)

operation and the length of the message was a multiple

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 99 | P a g e

of four bytes. Therefore, the proposed approach is

scalable with practical hardware design; in other

words, the three CRCs can be applied to an AES

implementation of an 8-bit, 32-bit, or 128-bit

structure. In general, the portable devices are more

probable to encounter DFA than a nonportable device.

Therefore, the scalability of error scheme is good for

practical purposes because 8-bit and 32-bit

architectures are most commonly used in portable

applications, such as cell phones, SmartCard, or RFID

tag.

 The approach proposed by Bertoni et al. [1]

cannot be easily scaled down into the 8-bit

architecture because the parity of sirequires the

information from siþ1 and siþ2. However, this work can

easily be applied to an 8-bit, 32-bit, or 128-bit AES

architecture. The syndrome generation is similar to

parity generation. Fig. 10 shows a block diagram of

(17) and (16) for 8-bit AES architecture. While 16

bytes tiare obtained, the syndrome u is obtained

immediately, where the initial value of parity registers

as a zero byte. The ShiftRows, MixColumns, or

AddRoundKey have similar structures to Fig. 10, but

the matrix transformation, A, is not required. The 32-

bit or 128-bit AES can also be implemented, based on

the concept in Fig. 10.

The 32-bit architecture is the most flexible structure

from the point of error detection because it could use

ð17;16Þ,

Fig. 10.The block diagram of error detection for 8-bit AES architecture.

ð9;8Þ, or ð5;4Þ CRC to achieve the error detection

objective. No matter which one is selected, it is

possible that only a one-byte register is required to

store the parities. However, the input must be a one-

column vector, defined in AES; thus, (20) may be

used to detect faults for a one-column calculation.

6.2 Symmetry

 From Fig. 10, it can be seen that the proposed

scheme is symmetric in both encryption and

decryption. This has the advantage of the encryption

and decryption being integrated into one chip.

However, the scheme proposed by Bertoni et al. [1] is

asymmetrical in MixColumns and InvMixColumns.

As shown in Table 1, the output parity prediction of

InvMixColumns is more complex than that of

MixColumns.

6.3 Costs

 While introducing proposed error detection

schemes into AES, the hardware cost required by

those schemes is evaluated through their

computational complexity. Error detection consists of

two parts—the parity and syndrome generation.

Discussing the cost in parity generation first, in our

proposed schemes, the parity requires only the EXOR

operation. A total of ðn1Þ
16

n Byte-XORs (B-EXOR) is

required to calculate the parity of the input for the

proposed approach. Taking the ð5;4ÞCRC for a 128-

bit data block as an example, one checksum of an

input message is generated by three B-EXORs and a

total of 12 B-EXORs for four parities. However,

united SubBytesuses InvSubBytes to check error, so

no parity generation is required. In hybrid SubBytes,

the ðn þ 1;nÞCRC is applied to the affine

transformation; 15, 14, or 12 B-XORs are required to

produce the parities for n of 16, 8, or 4, respectively.

In the method proposed by Bertoni et al. [1], 16 7 bit-

EXORs (b-EXOR) were required to obtain 16 one-bit

parities for an AES state. In [7], they used the

inversion operation to detect the errors; hence, no

parities were paid for. However, the hardware of

parity generation is minor because the parity

generation is required to perform at the beginning of

the parity-based detection is applied. In PbSBD,

because the parity can pass through each operation

along with predicting the parity, the parity generation

only performs once. In USBD and HSBD, the parity

must be regenerated in SubBytes of each round;

nevertheless, only one circuit of parity generation is

required when one round is implemented to achieve

AES computing. In the approach of Bertoni et al. [1],

the parity can also pass through the round; hence, one

circuit of parity generation is required.

 As regards the cost of the syndrome generation

and parity prediction, it varies from operation to

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 100 | P a g e

operation. United SubBytesuses the InvSubBytesto

detect errors. In hybrid SubBytes, the GFð2
8
Þ

inversion is used to self-check errors; the ðn þ

1;nÞCRC is used to detect errors of affine

transformation. According to (17), 16 B-EXORs are

required to obtain the syndrome for every ðn þ

1;nÞCRCs. However, the execution number of affine

multiplication to predict parity, (16), depends on n; the

number is one, two, or four when n is 16, 8, or 4,

respectively. For parity-based SubBytes, the cost in

affine transformation is the same as that in hybrid

SubBytes. However, the GFð2
8
Þ inversion also uses

ðn þ 1;nÞCRC; according to (14), 32 B-EXORs are

required (note that the ðtiþ1 þ tiþ
1
1Þ in (14) is obtained

from a table, not requiring EXOR calculation). In

ShiftRows and MixColumns, no prediction functions

are necessary and the syndrome is obtained by

summing all output byte and the parity. Therefore, in

the two operations, 16 B-EXORs are required. In

AddRoundKey, the one, two, or four one-byte parities

of a round key are involved in the parity prediction,

requiring extra B-EXORs to be paid for. The results

summarized in Table 1 are the cost of the operation-

level detection, i.e., the error detection is at the end of

every operation. If round-level or algorithm-level are

chose, only

TABLE 2

The Possible Combinations of Our Proposed Schemes

the cost of parity prediction is required in every

operation and the cost of syndrome generation is only

paid at the end of each round or of the AES algorithm,

respectively.

The costs of Bertoni et al.’s [1] approach are also

varied in each operation. The SubBytes requires extra

m 256-byte memory spaces to predict the parity,

where m is dependent on the implementation of the

AES. Taking an

AES implemented in a 32-bit structure as an example,

four bytes are calculated in parallel, thus four tables

are required. The size of a table with error detection,

in [1], is a double of that in AES, so a total of 512

bytes is for one table, i.e., 256 extra bytes are caused

for one table. The 256 extra bytes are constants with

odd parity, e.g., 00000000 1; therefore, one

comparisoncircuitorsyndromegenerationcircuitisrequir

ed to detect the error. This detection method has been

modified by Bertonietal. [3] andthe extra memory

sizeis reduced from m 256 bytes to m 256 bits.

Additionally, m 9 b-EXORs are introduced. The error

detection of one byte, appended with one-bit parity,

requires eight b-EXORs (bit EXOR operation) or a

total of 16 8 b-EXORs for a 128-bit data block.

However, Bertoni et al.’s scheme must predict the

output parity in MixColumns, therefore, the extra

calculations of 16 4 b-EXORs are required in the

encryption process. In decryption, the error-detection

hardware for InvMixColumns is more complicated

than in encryption. Because the prediction of

InvMixColumn is not derived in [1], the cost is not

specified in Table 1. The costs of Karri et al.’s scheme

required the inversion of each operation and it was

TABLE 1

The Cost of Syndrome Generation and Parity Prediction in Each AES Operation in

 the Operation-Level Detection

B-EXOR = 8 b-EXORs, b-EXOR = bit EXOR operation, EN = encryption,

DE = decryption, and AM = affine multiplication.

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 101 | P a g e

also time-consuming. The operations in the key

expansion are similar to the four major operations of

AES; thus, the detailed comparisons of the key

expansion are not discussed. Although most

operations require 16 B-EXORs to compute the

syndrome, it is possible to achieve the computation

with less B-EXORs.

ERROR DETECTION CAPABILITY

 In Karri et al. [7], because the four operations

of AES are bijective, their error detection capability is

very high. If it is assumed that only one 128-bit error

occurs during encryption or decryption, then all

nonzero error patterns can be detected in the

operation-level, round-level, or algorithmlevel

detection. In Bertoni et al. [1], they used the

paritybased technique and the undetectable errors do

exist. Bertoni et al. [1] did a lot of tests to obtain the

results about error detection capability and the results

will be compared to ours in Fig. 14.

All simulations and statements of our proposed

schemes, addressed here, are also under the three

assumptions given in Section 4. Three architectures,

USBD, HSBD, and PbSBD, were proposed herein;

each architecture has three types of CRC, ð17;16Þ,

ð9;8Þ, and ð5;4Þ CRCs, as shown in Table 2.

Fig. 11.The simulation model. Each data block has 64 ones and the position of ones uniformly distributed in a

data block. The error bits uniformly distribute in an error block. The assignment of error blocks uniform

distributes in both rounds and operations.

Thus, nine methods were simulated. In PbBSD, the

data procedure is thoroughly protected by the ðn þ

1;nÞCRC; thus, each operation has undetectable

errors. However, in USBD, the fault coverage in

SubBytes is 100 percent, so the amount of overall

undetectable errors is 80 percent of that in USBD.

Similarly, in HSBD, the amount is reduced to 75

percent of that in USBD.

 The simulation model is shown in Fig. 11. Each

method is simulated by 26 tests distinguished by the

bit number of the injected errors. The last test in Fig.

12, Fig. 13, and Fig. 14, labeled as random, used error

patterns with random erroneous bit number. Each

error pattern has 10
7

blocks and

thebitlengthofeveryblockis136ð128 þ 8Þ, 144ð2 ð64þ

8ÞÞ, or 160ð4 ð32 þ 8ÞÞ, respectively, for the

ð17;16Þ, ð9;8Þ, or ð5;4Þ CRC. The all-one error

block was considered as a totally different state;

hence, the maximum number of erroneous bits was

135, 143, or 159 in a random test. Each test used one

data pattern of 10
7
data blocks, and every

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 102 | P a g e

Fig. 12. Percentage of undetectable errors of the ð17;16Þ CRC over GFð2

8
Þ.

Fig. 13. Percentage of undetectable errors of the ð9;8Þ CRC over GFð2
8
Þ. Their percentage is 4.14 percent for

2-bit errors and 0.067 percent for 4-bit errors.

Fig. 14. Percentage of undectable errors of the ð5;4Þ CRC over GFð2
8
Þ. The percentage is 1.8 percent for 2-bit

errors and 0.13 percent for

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 103 | P a g e

4-bit errors.

block has 64-bit ones of normal distribution. The

erroneous rounds and erroneous operation were also

randomly chosen.

 As seen in Fig. 12, all the simulated odd-bit

errors were detected. The percentage of the

undetectable errors dropped dramatically as the

erroneous bit number increased. When the number of

erroneous bits was greater than eight, the percentage

was below 1 percent and stable. The test using random

erroneous bits is about 0.3 percent and it was close to

the theoretic value obtained in Section 4, 0.4 percent.

Obviously, all the experimental results followed the

curves of ideal values.

 The same data patterns used in the above tests

were also used for the ð9;8ÞCRC and the ð5;4Þ CRC;

all test conditions, except for the error patterns, were

identical to those used to test the ð17;16Þ CRC. The

ð9;8ÞCRC generated two parities for a 128-bit data

block. Because the values in the two tests, 2-bit and 4-

bit erroneous bits, are too large, they were

dependently shown in Fig. 13. All odd-bit errors were

also detected. The percentage also dropped

dramatically when the erroneous bits increased, as

shown in Fig. 13. For the random test, the percentage

is about 0:14 10
2
%, very close to the theoretical value

of 0:16 10
2
%.

 In Fig. 14, the results of the ð5;4ÞCRC and

Bertoni et al. [1] are shown. Obviously, this

percentage is very small in contrast to the

ð17;16ÞCRC or the ð9;8Þ CRC. When the number of

erroneous bits was larger than 16, the percentages of

undetectable errors dropped to zero. The percentage in

the random test was 0 percent, very close to the

theoretic value of 2:56 10
8
%. Of course, all odd-bit

errors could be detected.

 Fig. 14 also shows the results in Bertoni et al. [1]. The

test models of Bertoni et al. [1] are different from

ours. They have injected multiple bit errors (between

2 to 16) at the beginning of the round. From Fig. 14,

their scheme has better error detection than ours, when

the errors are between 2 and 6, and the cases of 8-bit

errors are close. When the number of erroneous bits is

above 10, the performance of the proposed scheme is

better than that of Bertoni et al. [1].

II. CONCLUSIONS
 This work has proposed a simple, symmetric,

and highfault-coverage error detection scheme for

AES. Although the erroneous bits are diffused in AES,

this work used the linear behavior of each operation in

AES to design a detection scheme. This scheme only

uses an ðn þ 1;nÞCRC to detect the errors, where n 2

f4;8;16g, and the parity of the output of each operation

is predicted in a simple fashion. Even though the

number of parities is two or four, respectively, for n ¼

8 or n ¼ 4, it is possible to use only one 8-bit register

for storing the parities during hardware

implementation. This error detection may also be used

in encryption-only or decryption-only designs.

Because of the symmetry of the proposed detection

scheme, the encryption and decryption circuit can

share the same error detection hardware. The proposed

schemes can be applied in the implementation of AES

against differential fault attacks and can be easily

implemented in a variety of structures, such as 8-bit,

32-bit, or 128-bit structures.

REFERENCES
[1] G. Bertoni, L. Brevegelieri, I. Koren, P.

Maistri, and V. Piuri, “Error Analysis and

Detection Procedures for a Hardware

Implementation of the Advanced Encryption

Standard,” IEEE Trans. Computers, vol. 52, no.

4, pp. 492-505, Apr. 2003.

[2] G. Bertoni, L. Brevegelieri, I. Koren, P.

Maistri, and V. Piuri, “Detecting and Locating

Faults in VLSI Implementations of the

Advanced Encryption Standards,” Proc. 18th

IEEE Int’l Symp. Defect and Fault Tolerance in

VLSI Systems, pp. 105-113, Nov. 2003.

[3] G. Bertoni, L. Brevegelieri, I. Koren, and P.

Maistri, “An Efficient Hardware-based Fault

Diagnosis Scheme for AES: Performances and

Cost,” Proc. 19th IEEE Int’l Symp. Defect and

Fault Tolerance in VLSI Systems, pp. 130-138,

Oct. 2004.

[4] E. Biham and A. Shamir, “Differential Fault

Analysis of Secret Key Cryptosystems,”

Advances in Cryptology—Proc. CRYPTO ’97,

pp. 513-525, 1997.

[5] P. Dusart, G. Letourneux, and O. Vivolo,

“Differential Fault Analysis on A.E.S,” Applied

Cryptography and Network Security, pp. 293-

306, 2003.

[6] M. Feldhofer, S. Dominikus, and J.

Wolkerstorfer, “Strong Authentication for

RFID Systems Using the AES Algorithm,”

Proc. Cryptographic Hardware and Embedded

Systems (CHES ’04), pp. 357-370, 2004.

[7] R. Karri, K. Wu, P. Mishra, and Y. Kim,

“Concurrent Error Detection Schemes for

Fault-Based Side-Channel Cryptanalysis of

Symmetric Block Ciphers,” IEEE Trans.

Computer-Aided Design of Integrated Circuits

and Systems, vol. 21, no. 12, pp. 1509-1517,

Dec. 2002.

[8] R. Karri, G. Kuznetsov, and M. Goessel,

“Parity-Based Concurrent Error Detection of

Subsititution-Permutation Network Block

Ciphers,” Proc. Cryptographic Hardware and

Embedded Systems (CHES ’03), pp. 113-124.

2003.

Rupashree Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 7, (Part -III) July 2018, pp.89-104

www.ijera.com DOI: 10.9790/9622-08070389104 104 | P a g e

[9] S. Mangard, M. Aigner, and S. Dominikus, “A

Highly Regular and Scalable AES Hardware

Architecture,” IEEE Trans. Computers, vol. 52,

no. 4, pp. 483-491, Apr. 2003.

[10] US Nat’l Inst. of Standards and Technology,

“Federal Information Processing Standards

Publication 197—Announcing the

ADVANCED ENCRYPTION STANDARD

(AES),” 2001, http://

csrc.nist.gov/publications/fips/fips197/fips-

197.pdf.

[11] G. Piret and J.J. Quisquater, “A Differential

Fault Attack Technique against SPN Structures,

with Application to the AES and KHAZAD,”

Proc. Cryptographic Hardware and Embedded

Systems (CHES ’03), pp. 77-88, 2003.

[12] J. Daemen and V. Rijmen, “AES

 Proposal: Rijndael,” AESAlgorithm

Submission, Sept. 1999.

[13] A. Satoh, S. Morioka, K. Takano, and S.

Munetoh, “A Compact Rijndael Hardware

Architecture with S-Box Optimization,” Proc.

Advances in Cryptology (ASIACRYPT ’01),

pp. 171-184, 2001.

[14] K. Wu, R. Karri, G. Kuznetsov, and M.

Goessel, “Low Cost Concurrent Error Detection

for the Advanced Encryption Standard,” Proc.

Int’l Test Conf. (ITC ’04), pp. 1242-1248,

2004.

