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ABSTRACT— 

In order to prevent the Advanced Encryption Standard (AES) from suffering from differential fault attacks, the 

technique of error detection can be adopted to detect the errors during encryption or decryption and then to 

provide the information for taking further action, such as interrupting the AES process or redoing the process. 

Because errors occur within a function, it is not easy to predict the output. Therefore, general error control codes 

are not suited for AES operations. In this work, several error-detection schemes have been proposed. These 

schemes are based on the ðn þ1;nÞ cyclic redundancy check (CRC) over GFð2
8
Þ, where n 2 f4;8;16g. Because 

of the good algebraic properties of AES, specifically the MixColumns operation, these error detection schemes 

are suitable for AES and efficient for the hardware implementation; they may be designed using round-level, 

operation-level, or algorithm-level detection. The proposed schemes have high fault coverage. In addition, the 

schemes proposed are scalable and symmetrical. The scalability makes these schemes suitable for an AES 

circuit implemented in 8-bit, 32-bit, or 128-bit architecture. Symmetry also benefits the implementation of the 

proposed schemes to achieve that the encryption process and the decryption process can share the same error 

detection hardware. These schemes are also suitable for encryption-only or decryption-only cases. Error 

detection for the key schedule in AES is also proposed and is based on the derived results in the data procedure 

of AES. 

Index Terms—Advanced encryption standard, error control code, CRC, differential fault attacks. 

 

I. INTRODUCTION 
HE Advanced Encryption 

Standard (AES) [10], the successor to the Data 

Encryption Standard (DES), was finalized in October 

2000 by the US National Institute of Standards and 

Technology (NIST), when the Rijndael algorithm [12] 

was adopted. The data block size of AES is 128-bit 

and the key size can be 128-bit, 192-bit, or 256-bit. In 

AES, although the data block is 128-bit, all operations 

are byte-oriented over GFð2Þ or GFð2
8
Þ. Therefore, 

several kinds of AES implementations have been 

discussed. In general, three main types of AES 

implementations have been discussed, 8-bit, 32-bit, or 

128-bit architecture. Each architecture has its own 

applications. Feldhofer et al. [6] designed an 8-bit 

AES chip to provide security for radio frequency 

identification (RFID). Satoh et al. [13] introduced a 

32-bit implementation of AES. Mangard et al. [9] 

proposed a scalable architecture for AES, which could 

process 128-bit data or 32-bit data, depending on the 

number of Sbox. 

The hardware implementation of AES would 

be countered by some side-channel attacks, such as 

Differential Fault Attacks (DFA) or Differential 

Power Analysis (DPA). Differential fault attacks was 

originally proposed by Biham and Shamir [4]. Theses 

side-channel attacks actually threaten the security of 

several cryptosystems because they are practical for a 

crypto module. The idea of DFA is to apply the 

differential attacks to a crypto module or a crypto 

chip. The cryptanalyst injects errors by using 

microwave or ionizing techniques during the 

encryption or decryption process. These errors cause 

the encryption results to differ from the correct results; 

hence, the cryptanalyst will receive the difference of 

outputs. Therefore, such differential attacks may be 

carried out in the real world. Dusart et al. [5] broke the 

128-bit AES under the assumption that you can 

physically modify the hardware AES device. This 

attack required 34 pairs of differential inputs and 

outputs to obtain the final round key. Piret and 

Quisquater [11] broke AES with two erroneous 

ciphertext under the assumption that the errors occur 

between the antepenultimate and the penultimate 

MixColumns. 

To avoid the possibility of suffering such 

attacks, error detection can be considered while 

implementing a cipher. In 2002, Karri et al. [7] 

proposed a general error detection method, called 

concurrent error detection (CED), for several 

symmetric block ciphers including RC6, MARS, 

Serpent, Twofish, and Rijndael. CED requires an 

inverse operation to check whether errors have 

occurred in calculations or not and has three levels: 

the operation level, the round level, and the algorithm 

level. Taking an operation-level CED in AES as an 
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example, the InvSubBytes is required to detect the 

errors occurring in SubBytes and vice versa. This 

method has very high fault coverage, but it is 

timeconsuming and high hardware cost because 

inverse operations are required. In 2003, Karri et al. 

[8] proposed a paritybased detection technique for 

general substitution-permutation block ciphers. 

However, the size of the table, required by the 

substitution box, is enlarged. In addition, the paper did 

not address the error detection techniques for some 

specific functions, such as MixColumns in AES. In 

2004, Wu et al. [14] applied the structure of [8] to 

AES and used 

Published by the IEEE Computer Society 

one-bit parity for a 128-bit data block. The 

method of Wu et al. [14] can let the parity pass 

through the MixColumns. Bertoni et al. [1] used an 

error detection code of 16bit parity for a 128-bit data 

block. To be precise, this approach uses one-bit parity 

for each byte and, thus, can detect all single errors and 

perhaps all odd errors. In [2], Bertoni et al. used the 

error detection scheme in [1] not only to detect errors 

but also to locate errors. In 2004, Bertoni et al. [3] 

implemented the model proposed in [2]. The 

introduction of the mode into AES brought the 

performance 18 percent overhead of area and 26 

percent decreasing of throughput. According to the 

results given in [1], their approach was able to detect 

most cases of multiple faults. However, this approach 

is asymmetrical, between MixColumns and 

InvMixColumns, because the parity prediction of 

InvMixColumns is more complex than that of 

MixColumns. Therefore, two circuits are required to 

predict the parity while merging the encryption and 

the decryption. Besides, the detection technique for 

SubBytes doubled the table size of SubBytes in AES, 

from 256 to 512 bytes. In addition, it cannot be easily 

applied to an AES implementation of 8-bit 

architecture because the parity prediction of 

MixColumns (InvMixColumns) requires information 

from other bytes and other parities. 

This work proposes several error-detection 

schemes for AES. They are based on the ðn þ 

1;nÞcyclic redundancy check (CRC) over GFð2
8
Þ, 

where n 2 f4;8;16g is the number of bytes contained in 

the message. The proposed schemes easily predict the 

parity of an operation’s output. Because AES is byte-

oriented and its constants are ingeniously designed, 

the parity of the output can be predicted from a linear 

combination of the parity of the input. In most cases, 

the parity is the summation of the input data; also, the 

proposed schemes are highly scalable and are suitable 

for 8-bit, 32-bit, or 128-bit architecture. This is 

important because many AES designs are in an AES 

hardware designed as either 8-bit or 32-bit 

architecture. Another advantage of the proposed 

approaches is that the parity calculation between the 

encryption and the decryption is symmetric because 

the parity generation in encryption is quite similar to 

the one in decryption. This will bring some benefits 

while integrating encryption and decryption into one 

circuit. 

This paper is organized as follows: In Section 

2, the AES algorithm is briefly described and the 

notations used throughout are defined. In Section 3, 

our proposed error detection schemes for AES are 

described. Derivation of error detection for each 

operation, including SubBytes, ShiftRows, 

MixColumns, and AddRoundKey, is explained, as 

well as the design of the key schedule. The 

undetectable errors of each proposed method are 

theoretically analyzed in Section 4, while, in Section 

5, the realization issues of three levels, operation level, 

round level, and algorithm level, are described. In 

Section 6, advantages and comparisons between this 

work and other research studies are discussed and, in 

Section 7, the detection capability of each scheme is 

simulated. Finally, our conclusions are offered in 

Section 8. 

 

AES ALGORITHM 

 The AES [10] consists of two parts, the data 

procedure and the key schedule. The data procedure is 

the main body of the encryption (decryption) and 

consists of four operations, (Inv)SubBytes, 

(Inv)ShiftRows, (Inv)MixColumns, and 

(Inv)AddRoundKey. During encryption, these four 

operations are executed in a specific order—

AddRoundKey, a number of rounds, and then the final 

round. The number of rounds is 10, 12, or 14, 

respectively, for a key size of 128 bits, 192 bits, or 

256 bits. Each round is comprised of the four 

operations and the final round has SubBytes, 

ShiftRows, and AddRoundKey. The decryption flow 

is simply the reverse of the encryption, and each 

operation is the inverse of the corresponding one in 

encryption. In the data procedure, the 16-byte (128-

bit) data block is rearranged as a 4 4 matrix, called 

state S, 

2 s0 6 

S ¼ 
6
4 

ss12 

s3 
s4 s5 

s6 s7 

s8 s9 

s10 

s11 

3 

s12 s13 775; s14 s15 

ð1Þ 

  

wheresidenotes the ith byte of the data block. In this 

context, S denotes the input of an operation and T 

denotes the output. AES is operated in two fields, 

GFð2Þ and GFð2
8
Þ. In GFð2Þ, addition is denoted by 

, and multiplication is denoted by . Similarly, the two 
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symbols, þ and , denote addition and multiplication in 

GFð2
8
Þ. 

2.1 SubBytes 

Two calculations, the GFð2
8
Þ inversion and the affine 

transformation, are involved in this operation. 

SubBytes substitutes each byte siof the data block by 

 ti¼ Asi
1 
þ 63; ð2Þ 

wheresi
1 

is the inverse of the input byte, si2 GFð2
8
Þ, A 

is an 8 8 circulant matrix of a constant row vector 

½1 0 0 0 1 1 1 1over GFð2Þ, and 63 (the Courier font 

number representing a hexadecimal value in this 

paper) belongs to GFð2
8
Þ. Asi

1 
is a matrix-vector 

multiplication over GFð2Þ. 

2.2 ShiftRows 

The ShiftRows operation only changes the byte 

position in the state. It rotates each row with different 

offsets to obtain a new state as follows: 

 2 s0 s4s8 s12 3 2 s0 s4 s8 s12 3 

664 ss12ss56ss109ss1314 775ShiftRows!664ss105

 ss149ss132ss16 775: ð3Þ 

 s3 s7s11 s15 s15 s3 s7 s11 

The first row is unchanged, the second row is left 

circular shifted by one, the third row is by two, and the 

last row is by three. 

2.3 MixColumns 

The MixColumns operation mixes every consecutive 

four bytes of the state to obtain four new bytes as 

follows: 

 
Fig. 1.The block diagram of key expansion in AES. 

2 s0 

6
6
4 

ss12 

s3 s4 s5 

s6 s7 

s8 s9 

s10 

s11 

 3 2 

s12 t0 
s
s
13

14 

775MixColumns
!
664 

t
t
1
2 

s15 t3 

t4 t5 

t6 t7 

t8 t9 

t10 

t11 

3 

t12 t13 

775: 

t14 t15 

ð4Þ 

 

Let si, siþ1, siþ2, and siþ3 represent every consecutive four bytes, where i 2 f0;4;8;12g. Then, the four bytes are 

transformed by 

  3 2 32 3 

 

 

 

 

 

 

Each entry of the constant matrix in (5) belongs to 

GFð2
8
Þ, hence (5) is a matrix-vector multiplication 

over GFð2
8
Þ. 

2.4 AddRoundKeyand Key Expansion Each round has 

a 128-bit round key which is segmented into 16 bytes 

kias (1); the AddRoundKey operation is simply an 

addition, 

 ti¼ siþ ki;where 0  i  15:ð6Þ 

The key expansion expands a unique private key as a 

key stream of ð4r þ 4Þ 32-bit words, where r is 10, 12, 

 ti 02 03 01 01 si 

664 ttiiþþ12 775 ¼ 664 01 02 03 0101 01 02 

03 757466 ssiiþþ12 775: 

tiþ3 03 01 01 02 siþ3 

ð5Þ 
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or 14. The private key is segmented into Nk words 

according to the key length, where NK is 4, 6, or 8 for 

a 128-bit, 192-bit, or 256-bit 

cipherkey,respectively.AsFig.1shows,then,itgeneratest

heith word (32 bits) by EXORing the ðiNkÞth word 

with either the ði1Þth word or the conditionally 

transformed ði1Þth word, where NK  i  ð4r þ 3Þ. The 

ði1Þth word is conditionally transformed by RotWord, 

SubBytes and EXORing with Rcon½i=Nk ¼ 

f02
bi=Nkc

;00;00;00g, where the polynomial presentation 

of 02
bi=Nkc

is x
bi=Nkc

over GFð2
8
Þ. Finally, the key 

stream is segmented into several round keys which are 

involved in the AddRoundKey operation. 

 
Fig. 2.The error model assumed in this work. The solid line part appears in every operation and the dotted line 

part appears in some operations. 

 

ERROR DETECTION TECHNIQUES 

 The parts in decryption can be yielded in a 

similar way; hence, the following context only 

addresses the error detection in encryption. The 

differential faults attacks need differential inputs and 

outputs to attack a cryptosystem; hence, it is assumed 

that the states and round keys are polluted by additive 

errors, as shown in Fig. 2. In this work, one operation 

is the smallest granule for designing error detection. In 

Fig. 2, the errors are assumed to be induced between 

the previous operation and the current operation. If the 

errors occur in the output of the previous operation, 

the erroneous input of the current operation will be 

treated as a different state. Actually, this situation only 

exists in the first round or in the first operation. The 

assumed error model is logical, even in the case where 

the errors occur during the operation. Because each 

operation of AES is invertible, one unique error block 

e would exist for an erroneous output T such that T ¼ 

fðS þ eÞ, where f denotes any operation in AES. 

This paper adopts a systematic ðn þ 1;nÞcyclic 

redundancy check (CRC) over GFð2
8
Þ to detect errors 

occurring duringencryption,wheren 2 

f4;8;16gisthenumberofbytes contained in the message. 

The generator polynomial is 

 gðxÞ ¼ 1 þ x; ð7Þ 

where the coefficients of (7) are over GFð2
8
Þ. Giving 

a message sðxÞof degree n1, a systematic codeword, 

generated by gðxÞ, can be obtained from the 

following two steps: 

1. Obtain the remainder pðxÞfrom dividing 

xsðxÞby the generator polynomial gðxÞ. The 

remainder pðxÞis a scalar p here because the degree of 

gðxÞis one. 

2. Combine pðxÞand xsðxÞto obtain the 

codeword polynomial, 

pðxÞ þ xsðxÞ ¼ p þ s0x þ s1x
2 
þ  þ sn1x

n
; ð8Þ 8 

wherep;si2 GFð2 Þ: 

In Step 1, while gðxÞis 1 þ x, the remaining pðxÞis 

the summation of all coefficients of the message, 

Xn 

 pðxÞ ¼ si: ð9Þ 

i¼0 

 
Fig. 3.The block diagram of the error detection in this paper. 

 

Therefore, the parity of a message may be obtained by 

calculating the summation of the input message over 

GFð2
8
Þ. Assume that the received polynomial tðxÞis 

tðxÞ ¼ t0 þ t1x þ t2x
2 
þ  þtnx

n
;ti2 GFð2

8
Þ: ð10Þ 
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The detection scheme checks whether the syndrome 

equals zero or not, where syndrome u is 

Xn 

 u ¼ ti: ð11Þ 

i¼0 

 If the syndrome equals zero, then it is assumed 

that no errors have occurred; otherwise, errors did 

occur. 

In the channel coding field, it is assumed that the 

message sðxÞis transmitted over a noisy channel. The 

channel does not modify the message if no errors 

occur. Therefore, it is easy to predict that t0 is identical 

to p, with t0 being used to detect the errors. However, 

as shown in Fig. 3, the message, S ¼ fs0;s1;...;sn1g, is 

transformed into another message, ft1;t2;...;tng, by an 

AES operation; hence, t0 cannot be obtained 

instinctively. Therefore, this paper investigates the 

function, predicting t0 from p as shown in Fig. 3, for 

each operation to make error detection possible in 

AES. 

 This work applies an ðn þ 1;nÞCRC to AES, 

where n 2 f4;8;16g. In the case where, n ¼ 16, a 128-

bit AES state is treated as a message; hence, only one 

parity is generated for a 128-bit data block. When n ¼ 

4, the error detection is designed to check each 

column of the output state. In other words, four 4-byte 

column vectors in an AES state, 

ft4jþ1;t4jþ2;t4jþ3;t4jþ4g, 0  j  3, are checked separately. 

Therefore, four parities are required for a 128-bit data 

block when n ¼ 4. For n ¼ 8, two parities are required 

for a 

128-bit data block. The following context addresses 

the two cases, n ¼ 16 and n ¼ 4, because the 

ð9;8ÞCRC for the AES algorithm can be constructed 

under similar conditions to the ð17;16Þ or ð5;4Þ CRC 

for AES. 

 

3.1 In SubBytes 

In this paper, two implementation types of SubBytes 

are considered. The first type uses one table instead of 

the GFð2
8
Þ inversion and the affine transformation. 

The second type separately calculates the GFð2
8
Þ 

inversion and the affine transformation and the 

implementation of the GFð2
8
Þ inversion is not limited 

to the look-up-table method or the combinational 

logical circuit. In this paper, the first 

 
Fig. 4.The error detection for united SubBytes. 

 

 

type is named united SubBytesand the second type is 

separated SubBytes. 

For united SubBytes, it is assumed that both the Sub 

Bytes circuit and the InvSubBytes circuit are 

implemented in a chip. Error detection is achieved by 

feeding the output of SubBytes into InvSubBytes, then 

comparing the input of SubBytes and the output of 

InvSubBytes, and vice versa, as Fig. 4 shows. If both 

are identical, then it is concluded that no errors have 

occurred. Otherwise, the errors did occur. This error 

detection method may be time-consuming, if only the 

SubBytes operation is considered. However, in 

practical terms, normal encryption could be further 

processed, without waiting for the error detection 

result, because SubBytes is either the first operation or 

the second operation in each round. In other words, 

the operation after SubBytes, such as ShiftRows, 

MixColumns, or AddRoundKey, may continue, when 

the output of the round would be intercepted if errors 

are detected in SubBytes. 

 If separated SubBytesis adopted, error detection 

must be applied separately to the GFð2
8
Þ inversion 

and the affine transformation. Considering the error 

detection for the GFð2
8
Þ inversion first, there are two 

schemes proposed herein. Similarly to Fig. 4, the first 

scheme detects errors by using the relationship of the 

mutual inverse. However, the computation of the 

GFð2
8
Þ inversion is identical for both SubBytes and 

InvSubBytes; hence, this scheme does not require the 

encryption and decryption circuits to simultaneously 

exist in one chip. It can be used with the encryption-

only or decryption-only hardware. 

 The second scheme is the ðn þ 1;nÞCRC and 

assumes that the GFð2
8
Þ inversion is implemented in 

look-up-table approach. Instead of the inverse value of 

a giving input, the exclusive value of the giving input 

and its inverse is stored in the table. Therefore, giving 

an input  2 GFð2
8
Þ, the value,  ¼  þ 

1
, is obtained from 

the table and then the input is added to to yield 
1
, as 

the marked block in Fig. 5. The error is detected by 

the syndrome obtained by the dashed line in Fig. 5. In 

this diagram, no errors are introduced, hence the 

syndrome is zero. 

For one GFð2
8
Þ inversion, according to Fig. 3 and the 

error model given in Fig. 2, the errors induce a fault at 

the input of the GFð2
8
Þ inversion, as shown in Fig. 6. 

Suppose that the byte siis changed into another byte s
0

i 

by adding the error e0. Then, the syndrome used to 

detect errors is calculated as ðsiþ e1Þ þ tiþ1 þ ðtiþ1 þ 

tiþ11Þ ¼ e0 þ e1: ð12Þ 
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 The one-byte structure of Fig. 5 could be 

extended to the 4-byte, 8-byte, or 16-byte structure. 

Taking the 16-byte 

 
Fig. 5.The block diagram of one GFð2

8
Þ inversion with the error detection. 

structure into consideration, the input state is denoted as 

P 

S ¼ fs0;s1;...;s15g and then the parity p is 
15

i¼0 sifrom (9). According to (12) and Fig. 3, the parity of the output 

parity t0 could be predicted by 

 X15 X15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, all ShiftRows, MixColumns, and 

AddRoundKey are protected by error detection code. 

However, the detection technique of SubBytes is 

varied with its implementation. According to the error 

detection scheme for SubBytes, three proposed 

architectures for AES are denoted by united-SubBytes 

detection (USBD, hybridSubBytes detection (HSBD), 

and parity-based-SubBytesdetection(PbSBD), as 

shown in Fig. 7. 

 
Fig. 6. An error is injected into the input state after entering the GFð2

8
Þ inversion. 

 siþ ðtiþ1 þ tiþ11Þ; 

 i¼0 i¼0 

and the syndrome is 

ð13Þ 

X15 

 t0 þ tiþ1; 

i¼0 

 X15 X15 

 ) tiþ1 þ p þðtiþ1 þ tiþ11Þ: 

 i¼0 i¼0 

ð14Þ 

If no errors have occurred, the value tiþ
1
1 will equal si. 

Therefore, the syndrome (14) is zero. 
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Fig. 7. The three proposed architectures for AES. 

 

For the affine transformation, error detection is 

achieved by the ðn þ 1;nÞCRC, where n 2 f4;8;16g. 

Considering n ¼ 16 first, and according to (9), the 

parity p of an input state, S ¼ fs0;s1;...;s15g, where si2 

GFð2
8
Þ, is generated by 

X15 

 p ¼ si: ð15Þ 

i¼0 

The output state is denoted as T ¼ ft0;t1;...;t16g. From 

(2) and Fig. 3, tiþ1 is Asiþ 63, where 0  i15. The 

hexadecimal constant 63 will be eliminated after 

taking summation of the output state Tnt0, i.e., 

 Xn1Xn1 X15 

 tiþ1 ¼ðAsiþ 63Þ ¼ A si¼ Ap: ð16Þ 

 i¼0i¼0 i¼0 

Therefore, t0 can be predicted by (16) with input parity 

p. If no errors occur, the syndrome u must be zero, 

X16 

 u ¼ ti¼ 0: ð17Þ 

i¼0 

In the case of ð5;4ÞCRC or ð9;8Þ CRC, (16) also 

holds. 

3.2 In ShiftRows 

From (3), the ShiftRows operation simply rotates the 

input state S, but does not alter the value of si. 

Therefore, t0 may be directly predicted by P
n
i¼0 siin the 

case of n ¼ 16. Similarly, the ShiftRows operation is 

error free if the syndrome is zero 

X16 

 ti¼ 0: ð18Þ 

i¼0 

When n ¼ 4, because each column of the output state 

would be detected, the four parities pj, where 0  j3, are 

p0 ¼ s0 þ s5 þ s10 þ s15; p1 ¼ s4 þ s9 þ s14 þ s3; p2 

¼ s8 þ s13 þ s2 þ s7; p3 ¼ s12 þ s1 þ s6 þ s11; 

hence,thetj;0 foreachoutputmessageft4jþ1;t4jþ2;t4jþ3;t4jþ4g 

is pj. The case of n ¼ 8 is analogous to the case of n ¼ 

4. 

3.3 In MixColumns 

The behavior of the MixColumns operation is more 

complex because each byte in the input state S 

influences four bytes in the output state T. However, 

because of the ingenious design of the matrix 

coefficients, it is also possible to apply the ðn þ 

1;nÞCRC directly, where n 2 f4;8;16g. The 

MixColumns operation works as follows: 

2 t4jþ1 3 2 02 03 01 01 3 2 s4j 3 

664 tt44jjþþ23 775 ¼ 466 01 02 03 0101 01 02 03 577 

664 ss44jjþþ12 577;where 0  j  3: 

|fflfflffltffl{zfflfflffl4jþ0 4 ffl} 03 01 01 02 

|fflfflfflfflffl{zfflfflfflfflffl}s4jþ0 3 

 T S 

ð19Þ 

From (19), it is yielded that the summation of vector 

T
0 
equals that of vector S

0
. 

X3 

t4jþkþ1 ¼ ð02 þ 01 þ 01 þ 03Þs4jþ 

k¼0 

ð03 þ 02 þ 01 þ 01Þs4jþ1þ ð01 þ 03 þ 02 þ 01Þs4jþ2þ 

ð20Þ 

ð01 þ 01 þ 03 þ 02Þs4jþ3; 

¼ s4j þ s4jþ1 þ s4jþ2 þ s4jþ3; 

X3 

 ¼ s4jþk: 

k¼0 

Therefore, when the ð5;4ÞCRC is applied, the output 

parity tj;0 of the jth column vector may be directly 

predicted from the jth column vector of the input state 

by P
3
k¼0 s4jþk. 

Similarly, in the case n ¼ 16, t0 is predicted by 

 X3 X3 

t0 ¼ t4jþkþ1; j¼0 k¼0 

 X3 X3 

 ¼ s4jþk; 

j¼0 k¼0 X15 

 ¼ si: 

i¼0 

Because the summation of 02, 01, 01, and 03 is 01, 

(20) can be satisfied for the ð17;16Þ, ð9;8Þ, or ð5;4Þ 

CRC. The coefficients of InvMixColumns display an 

identical phenomenon. The summation of the four 

coefficients used in decryption, 0B, 0D, 09, 0E, is also 

01. Therefore, t0 or tj;0can be predicted in the same 

way as that of MixColumns. 

 

3.4 In AddRoundKey 

Discussing the case n ¼ 16 first, it is assumed that 

each round key already has a parity; hence, the round 
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key is represented as fk0;k1;...;k16g, where k0 ¼ P
15

i¼0 

kiþ1 is the parity and fk1;...;k16g is the normal round 

key. The AddRoundKey operation only adds the input 

state with a normal key K ¼ fk1;k2;...;k16g to yield the 

output state as follows: 

 T ¼ S þ K: ð21Þ 

 
Fig. 8.The error detection scheme for key expansion. 

 

We apply the summation operation to (21) to obtain 

X15 X15X15tiþ1 ¼ siþ kiþ1 ¼ p þ k0: ð22Þ i¼0 

i¼0i¼0 

Accordingly, t0 may be obtained from p þ k0. The 

parities for n ¼ 4 or n ¼ 8, pj, are calculated in the 

same way; however, the round key must also have 

four or two parities. 

3.5 In the Key Expansion 

 The ðn þ 1;nÞCRC is also adopted in key 

expansion, where n 2 f4;8;16g. However, the 

ð5;4ÞCRC is always used in the interior of the key 

expansion. The key expansion and the error detection 

scheme are jointly depicted in Fig. 8, where the 

decision blocks are removed from Fig. 1 for a simple 

description of error detection, as the conditions only 

determine where the error detection is applied, not 

how it is designed. 

In this key expansion, with error detection, one word 

contains five bytes and the symbol of a word is 

denoted by W
0
½i ¼ ½W½i k parity, where k is a 

catenation symbol. At first, the parities of the first Nk 

words, where Nk 2 f4;6;8g, are obtained by the 

generator 1 þ x, i.e., the parity pi of 

W½i ¼ ½wi;0wi;1 wi;2 wi;3is 

 pi ¼ wi;0 þ wi;1 þ wi;2 þ wi;3: ð23Þ 

 Then, the Nk-pair parities and messages form 

new Nk words, W
0
½0;W

0
½1;... , and W

0
½Nk  1. The 

new words are successively put into the Nk shift 

blocks, from W
0
½i  Nkto W

0
½i  1, at the top of Fig. 8, 

after which, the key expansion starts. A 128-bit round 

key and its one-byte parities are collected after each 

period of four shifts. If ð17;16Þ CRC is chosen for 

AES, the one-byte parity of a round key is obtained by 

summing the four parities of output words. If 

ð5;4ÞCRC is chosen, then the four parities are kept. 

In the key expansion, the RotWord rotates the byte 

order of W½i  1; hence, the parity is the same as that 

of W
0
½i  1. For the SubWord operation because it is a 

function which executes SubBytes on each byte of 

input, the error detection scheme is the same as that in 

SubBytes, described in Section 3.1. However, in the 

case of united SubBytesbeing used, the parity must be 

calculated separately. 

For the EXOR operation with Rcon½i=Nk, the error 

detection is achieved by EXORing the parity of temp 

and that of Rcon½i=Nk, where Rcon½i=Nk ¼ 

f02
bi=Nkc

;00;00;00g. The parity of Rcon½i=Nkequals 

02
bi=Nkc

due to the three bytes of zero value in 

Rcon½i=Nk. At the end of the key expansion, the 

parity t0 is the EXOR of the parity of current data and 

the parity of W
0
½Nk  1. 

3.6 More Details for ð5;4Þ CRC 

Although the ð5;4ÞCRC has four parities, it is 

possible for only one parity to be used in realization of 

this scheme. AES can be implemented in a 32-bit 

structure, i.e., one column of a state is processed once 

in every round. In this structure, the position of 

ShiftRows must be shifted above the SubBytes 

operation. After ShiftRows, each column passes 

through the identical calculations, SubBytes, 

MixColumns, and AddRoundKey; the parity 

generation, or the syndrome calculation for each 

column, are also identical, so only one circuit is 

required. 

 

UNDETECTABLE ERRORS 

 Even though the AES algorithm propagates the 

errors during encryption, the error coverage can be 

also analyzed mathematically. Actually, only the 

MixColumns and SubBytes operations cause 
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numerous erroneous bits when a single-bit error is 

injected, when ShiftRows or AddRoundKey do not 

change the bit number of the errors. Several 

assumptions are made, as follows: 

1. The error model is considered as Fig. 2. 

2. All nonzero error block over GFð2
8ðnþ1Þ

Þ have 

the same probability, where n 2 f4;8;16g. 

3. Each operation has the

 same error injection probability. 

4.1 The Undetectable Errors in SubBytes 

Because SubBytes is invertible, all errors injected into 

input can be detected by InvSubBytes and vice versa. 

Therefore, the united SubBytes, has 100 percent fault 

coverage. In separated SubBytes, both operations, the 

GFð2
8
Þ inversion and the affine transformation, have 

their own error detection. The GFð2
8
Þ inversion is 

also invertible, so it has 100 percent fault coverage in 

hybrid SubBytes. 

In parity-based SubBytes, the error detection 

capability of the GFð2
8
Þ inversion is analyzed. 

According to (14), the scheme only uses XOR 

operations, so all the codewords are the undetectable 

errors in parity-based SubBytes. Therefore, while 

applying the ð17;16ÞCRC to a 128-bit data block, the 

number of undetectable nonzero errors is 

ð2
8
Þ

16 
1 and the percentage of 

undetectable errors is 
ð

8
16

17 ffi0:4%. When ð2 Þ 

theð5;4Þ CRC is applied to a 128-bit data block, the 

total number of undetectable nonzero errors is ðð2
8
Þ

4 

1Þ
4 

and the percentage is ð
ð

8
4 

5 Þ
4 

100% ffi2:56 10
8
%. Simið2 Þ larly, the percentage of 

undetectable errors for the ð9;8ÞCRC is 0:16 10
2
%. 

The affine transformation is detected by ðn þ 

1;nÞCRC. Although five erroneous bits were caused, 

while injecting a single-bit error, the error coverage 

can still be analyzed. Theorem 1.Given an input state 

S ¼ fp;s0;s1;...;sn1g, 

P 

where parity p is 
n
i¼0

1 
si, and n 2 f4;8;16g, the output 

state is T ¼ ft0;t1;...;tng, where t0 is Ap from (16), and 

tiþ1, 0  i  n  1, is obtained from (2). Introducing an error 

E ¼ fe0;e1;...;eng into the state S ¼ fp;s0;s1;...;sn1g, the 

summation of the output T
0 

will equal to zero if and 

only if P
n
i¼0 ei¼ 0. 

Proof. Because n is even, the value 63 will be 

cancelled. Therefore, the summation of the erroneous 

output T
0 

is 

Xnt0i ¼ Ap þ e0 þ A Xn1ðsi þ eiþ1Þ; 

 i¼0 i¼0 

Xn1 Xn¼ Ap þ A siþA ei; 

 |fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl
i¼0 

ffl} 
i¼0

 

0 

Xn 

 ¼ A ei: 

i¼0 

 ATherefore,gular overPni¼0 ei¼GF0Pis held. 

Because the matrixð
n
i2¼Þ0,tA

0
iPequalsneiis zero if and 

only ifto zero ifandAis 

nonsin-onlyPin¼0 eifi 

i¼0 

 is zero. tu 

In the ðn þ 1;nÞCRC, the nonzero errors are 

undetected, when the equation P
n
i¼0 ei¼ 0 is held, i.e., 

errors are also the codewords. According to Theorem 

1, all undetectable errors are also undetected after the 

affine transformation. Therefore, while applying the 

ðn þ 1;nÞCRC to a 128-bit data block, the percentages 

of the undetectable errors are 0.4 percent, 0:16 10
2
%, 

and 2:56 10
8
%, respectively, for n ¼ 16, n ¼ 8, and n 

¼ 4. 

4.2 The Undetectable Errors in MixColumns 

MixColumns also has a diffusion property. It causes 

five or 11 erroneous bits while injecting a single-bit 

error in one column vector of the input state. 

However, the coefficients eliminate the diffusion of 

errors after summing the erroneous 

columnvectoroftheoutputstate.TheMixColumns is 

shown again below, and it is supposed that each byte 

of the input vector is polluted by an error. 

 2 3 2 32 3 

k¼0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 tiþ1 02 03 01 01 siþ ei 

664 ttiiþþ23 775 ¼ 646 01 02 03 0101 01 02 03 577664 

ssiiþþ12 þþ eeiiþþ12 775: 

 tiþ4 03 01 01 02 siþ3 þ eiþ3 

Then, the summation of the column vector tiþ1 is 

X3 

tiþkþ1 ¼ ð02 þ 01 þ 01 þ 03Þðsi þ eiÞþ 

k¼0 ð03 þ 02 þ 01 þ 01Þðsiþ1 þ eiþ1Þþ 

ð24Þ 

ð01 þ 03 þ 02 þ 01Þðsiþ2 þ eiþ2Þþ ð01 þ 01 þ 03 þ 02Þðsiþ3 

þ eiþ3Þ; X3 

 ¼ ðsiþkþ eiþkÞ: 

ð25Þ 



Rupashree Sahu Int. Journal of Engineering Research and Application                     www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 7, ( Part -III) July 2018, pp.89-104 

 

 
www.ijera.com                                   DOI: 10.9790/9622-08070389104                    98 | P a g e  

 

 

 

 

The equation also holds for two or four columns 

vectors. 

Theorem 2.Giving an input state S ¼ fp;s0;s1;...;sn1g, P 

where p ¼ 
n
i¼0

1 
siis the checksum of the input state and 

n 2 f4;8;16g. After MixColumnsand the parity 

prediction (20), the output state is T ¼ ft0;t1;...;tng, 

where t0 ¼ p, and the rest is the output of 

MixColumns. Introducing an error 

E ¼ fe0;e1;...;eng into the state S ¼ fp;s0;s1;...;sn1g, then 

the errors of the ðn þ 1;nÞ CRC in MixColumnsare P 

 undetectable if and only if the summation 
n
i¼0 

eiis zero. 

Proof. The syndrome P
n
i¼0 tiis used to check whether 

errors occurred or not. It is assumed that no errors 

occurred, if and only if the syndrome is zero. The 

summation of the erroneous output state is 

Xnt0i ¼ ðt0 þ e0Þ þ Xnt0i: 

 i¼0 i¼1 

From (25), because n is the multiple of four, the above 

equation is represented as 

Xnt0i ¼ ðt0 þ e0Þ þ Xnðsi1 þ eiÞ; 

 i¼0 i¼1 

Xn1 Xn¼ t0 þ siþ ei; 

 |fflfflfflfflfflffl{zfflfflfflfflffl
i¼0 

ffl} 
i¼0

 

0 

Xn 

 ¼ ei: 

i¼0 

Therefore, the error is undetectable if and only if P
n
i¼0 

eiis zero. tu 

From Theorem 2, there are ðð2
8
Þ

16 
1Þ nonzero errors 

that are undetectable, when the ð17;16ÞCRC is 

applied to a 128-bit data block. This result is the same 

as those in the affine transformation described above. 

Similarly, the total number of the undetectable errors 

for the ð9;8Þor ð5;4Þ CRC is ðð2
8
Þ

4 
1Þ

4 
or ðð2

8
Þ

8 

1Þ
2
, respectively. 

4.3 The Undetectable Errors in ShiftRowsor 

AddRoundKey 

ShiftRows does not change the value of the input 

state, and AddRoundKey only EXORs the input state 

with a round key. Therefore, the undetectable errors 

are the same as those analyzed in the affine 

transformation or MixColumns. 

 

DETECTION LEVELS 

 The proposed scheme may be used in 

operation-level, roundlevel, or algorithm-level error 

detection. In operation-level detection, the syndrome 

is checked at the end of each operation. Similarly, if 

the syndrome is obtained at the end of each round, it is 

round-level detection. The implementation of 

operation-level error detection is easy to figure out. 

The syndrome is calculated at the end of each 

operation according to the equations derived in 

Section 3. However, the implementation of a round-

level detection needs more ingenuity, when the 

SubBytes is protected by united SubBytes. The parity 

is generated at the end of the SubBytes or the 

beginning of the ShiftRows. Then, the parity directly 

passes through ShiftRows, and MixColumns because 

its value will not be changed after the two operations. 

Finally, 

 
Fig. 9.The proposed scheme under round-level error detection. 

 

 

the parity is EXORed with the key parity. The total 

path is shown in Fig. 9. Obviously, the syndrome 

could then be checked at the end of the round. In 

hybrid SubBytes, the structure for round-level error 

detection is similar to Fig. 9, but the parity is 

generated after the GFð2
8
Þ inversion. Because the 

parity of the state, in the ith round, cannot pass 

through the inversion of GFð2
8
Þ in i þ 1 round, the 

parity must be regenerated in each round. Therefore, 

unitedSubBytes detection or hybrid-SubBytes 

detection cannot be implemented as algorithm-level 

detection. 

However, each operation of parity-based SubBytesis 

protected by ðn þ 1;nÞCRC, hence the parity could 

pass through a round. Therefore, parity-based 

SubBytescould be applied as an operation-level, 

round-level, or algorithmlevel error detection. 

 

FEATURES AND COSTS 

6.1 Scalability 

 In Section 3, it was found that the three error 

detections, ðn þ 1;nÞCRC, where n 2 f4;8;16g, had 

similar structures. The calculations of parities or 

syndromes were all based on Byte-EXOR (B-EXOR) 

operation and the length of the message was a multiple 
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of four bytes. Therefore, the proposed approach is 

scalable with practical hardware design; in other 

words, the three CRCs can be applied to an AES 

implementation of an 8-bit, 32-bit, or 128-bit 

structure. In general, the portable devices are more 

probable to encounter DFA than a nonportable device. 

Therefore, the scalability of error scheme is good for 

practical purposes because 8-bit and 32-bit 

architectures are most commonly used in portable 

applications, such as cell phones, SmartCard, or RFID 

tag. 

 The approach proposed by Bertoni et al. [1] 

cannot be easily scaled down into the 8-bit 

architecture because the parity of sirequires the 

information from siþ1 and siþ2. However, this work can 

easily be applied to an 8-bit, 32-bit, or 128-bit AES 

architecture. The syndrome generation is similar to 

parity generation. Fig. 10 shows a block diagram of 

(17) and (16) for 8-bit AES architecture. While 16 

bytes tiare obtained, the syndrome u is obtained 

immediately, where the initial value of parity registers 

as a zero byte. The ShiftRows, MixColumns, or 

AddRoundKey have similar structures to Fig. 10, but 

the matrix transformation, A, is not required. The 32-

bit or 128-bit AES can also be implemented, based on 

the concept in Fig. 10. 

The 32-bit architecture is the most flexible structure 

from the point of error detection because it could use 

ð17;16Þ, 

 
Fig. 10.The block diagram of error detection for 8-bit AES architecture. 

 

ð9;8Þ, or ð5;4Þ CRC to achieve the error detection 

objective. No matter which one is selected, it is 

possible that only a one-byte register is required to 

store the parities. However, the input must be a one-

column vector, defined in AES; thus, (20) may be 

used to detect faults for a one-column calculation. 

6.2 Symmetry 

 From Fig. 10, it can be seen that the proposed 

scheme is symmetric in both encryption and 

decryption. This has the advantage of the encryption 

and decryption being integrated into one chip. 

However, the scheme proposed by Bertoni et al. [1] is 

asymmetrical in MixColumns and InvMixColumns. 

As shown in Table 1, the output parity prediction of 

InvMixColumns is more complex than that of 

MixColumns. 

6.3 Costs 

 While introducing proposed error detection 

schemes into AES, the hardware cost required by 

those schemes is evaluated through their 

computational complexity. Error detection consists of 

two parts—the parity and syndrome generation. 

Discussing the cost in parity generation first, in our 

proposed schemes, the parity requires only the EXOR 

operation. A total of ðn1Þ
16

n Byte-XORs (B-EXOR) is 

required to calculate the parity of the input for the 

proposed approach. Taking the ð5;4ÞCRC for a 128-

bit data block as an example, one checksum of an 

input message is generated by three B-EXORs and a 

total of 12 B-EXORs for four parities. However, 

united SubBytesuses InvSubBytes to check error, so 

no parity generation is required. In hybrid SubBytes, 

the ðn þ 1;nÞCRC is applied to the affine 

transformation; 15, 14, or 12 B-XORs are required to 

produce the parities for n of 16, 8, or 4, respectively. 

In the method proposed by Bertoni et al. [1], 16 7 bit-

EXORs (b-EXOR) were required to obtain 16 one-bit 

parities for an AES state. In [7], they used the 

inversion operation to detect the errors; hence, no 

parities were paid for. However, the hardware of 

parity generation is minor because the parity 

generation is required to perform at the beginning of 

the parity-based detection is applied. In PbSBD, 

because the parity can pass through each operation 

along with predicting the parity, the parity generation 

only performs once. In USBD and HSBD, the parity 

must be regenerated in SubBytes of each round; 

nevertheless, only one circuit of parity generation is 

required when one round is implemented to achieve 

AES computing. In the approach of Bertoni et al. [1], 

the parity can also pass through the round; hence, one 

circuit of parity generation is required. 

 As regards the cost of the syndrome generation 

and parity prediction, it varies from operation to 
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operation. United SubBytesuses the InvSubBytesto 

detect errors. In hybrid SubBytes, the GFð2
8
Þ 

inversion is used to self-check errors; the ðn þ 

1;nÞCRC is used to detect errors of affine 

transformation. According to (17), 16 B-EXORs are 

required to obtain the syndrome for every ðn þ 

1;nÞCRCs. However, the execution number of affine 

multiplication to predict parity, (16), depends on n; the 

number is one, two, or four when n is 16, 8, or 4, 

respectively. For parity-based SubBytes, the cost in 

affine transformation is the same as that in hybrid 

SubBytes. However, the GFð2
8
Þ inversion also uses 

ðn þ 1;nÞCRC; according to (14), 32 B-EXORs are 

required (note that the ðtiþ1 þ tiþ
1
1Þ in (14) is obtained 

from a table, not requiring EXOR calculation). In 

ShiftRows and MixColumns, no prediction functions 

are necessary and the syndrome is obtained by 

summing all output byte and the parity. Therefore, in 

the two operations, 16 B-EXORs are required. In 

AddRoundKey, the one, two, or four one-byte parities 

of a round key are involved in the parity prediction, 

requiring extra B-EXORs to be paid for. The results 

summarized in Table 1 are the cost of the operation-

level detection, i.e., the error detection is at the end of 

every operation. If round-level or algorithm-level are 

chose, only 

 

TABLE 2 

The Possible Combinations of Our Proposed Schemes 

 
 

 

the cost of parity prediction is required in every 

operation and the cost of syndrome generation is only 

paid at the end of each round or of the AES algorithm, 

respectively. 

The costs of Bertoni et al.’s [1] approach are also 

varied in each operation. The SubBytes requires extra 

m 256-byte memory spaces to predict the parity, 

where m is dependent on the implementation of the 

AES. Taking an  

 

 

 

 

AES implemented in a 32-bit structure as an example, 

four bytes are calculated in parallel, thus four tables 

are required. The size of a table with error detection, 

in [1], is a double of that in AES, so a total of 512 

bytes is for one table, i.e., 256 extra bytes are caused 

for one table. The 256 extra bytes are constants with 

odd parity, e.g., 00000000 1; therefore, one 

comparisoncircuitorsyndromegenerationcircuitisrequir

ed to detect the error. This detection method has been 

modified by Bertonietal. [3] andthe extra memory 

sizeis reduced from m  256 bytes to m  256 bits. 

Additionally, m  9 b-EXORs are introduced. The error 

detection of one byte, appended with one-bit parity, 

requires eight b-EXORs (bit EXOR operation) or a 

total of 16 8 b-EXORs for a 128-bit data block. 

However, Bertoni et al.’s scheme must predict the 

output parity in MixColumns, therefore, the extra 

calculations of 16 4 b-EXORs are required in the 

encryption process. In decryption, the error-detection 

hardware for InvMixColumns is more complicated 

than in encryption. Because the prediction of 

InvMixColumn is not derived in [1], the cost is not 

specified in Table 1. The costs of Karri et al.’s scheme 

required the inversion of each operation and it was 

TABLE 1 

The Cost of Syndrome Generation and Parity Prediction in Each AES Operation in 

 the Operation-Level Detection 

 
B-EXOR = 8 b-EXORs, b-EXOR = bit EXOR operation, EN = encryption,  

DE = decryption, and AM = affine multiplication. 
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also time-consuming. The operations in the key 

expansion are similar to the four major operations of 

AES; thus, the detailed comparisons of the key 

expansion are not discussed. Although most 

operations require 16 B-EXORs to compute the 

syndrome, it is possible to achieve the computation 

with less B-EXORs. 

 

ERROR DETECTION CAPABILITY 

 In Karri et al. [7], because the four operations 

of AES are bijective, their error detection capability is 

very high. If it is assumed that only one 128-bit error 

occurs during encryption or decryption, then all 

nonzero error patterns can be detected in the 

operation-level, round-level, or algorithmlevel 

detection. In Bertoni et al. [1], they used the 

paritybased technique and the undetectable errors do 

exist. Bertoni et al. [1] did a lot of tests to obtain the 

results about error detection capability and the results 

will be compared to ours in Fig. 14. 

All simulations and statements of our proposed 

schemes, addressed here, are also under the three 

assumptions given in Section 4. Three architectures, 

USBD, HSBD, and PbSBD, were proposed herein; 

each architecture has three types of CRC, ð17;16Þ, 

ð9;8Þ, and ð5;4Þ CRCs, as shown in Table 2. 

 
Fig. 11.The simulation model. Each data block has 64 ones and the position of ones uniformly distributed in a 

data block. The error bits uniformly distribute in an error block. The assignment of error blocks uniform 

distributes in both rounds and operations. 

 

 

Thus, nine methods were simulated. In PbBSD, the 

data procedure is thoroughly protected by the ðn þ 

1;nÞCRC; thus, each operation has undetectable 

errors. However, in USBD, the fault coverage in 

SubBytes is 100 percent, so the amount of overall 

undetectable errors is 80 percent of that in USBD. 

Similarly, in HSBD, the amount is reduced to 75 

percent of that in USBD. 

 The simulation model is shown in Fig. 11. Each 

method is simulated by 26 tests distinguished by the 

bit number of the injected errors. The last test in Fig. 

12, Fig. 13, and Fig. 14, labeled as random, used error 

patterns with random erroneous bit number. Each 

error pattern has 10
7 

blocks and 

thebitlengthofeveryblockis136ð128 þ 8Þ, 144ð2  ð64þ 

8ÞÞ, or 160ð4  ð32 þ 8ÞÞ, respectively, for the 

ð17;16Þ, ð9;8Þ, or ð5;4Þ CRC. The all-one error 

block was considered as a totally different state; 

hence, the maximum number of erroneous bits was 

135, 143, or 159 in a random test. Each test used one 

data pattern of 10
7 
data blocks, and every 



Rupashree Sahu Int. Journal of Engineering Research and Application                     www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 7, ( Part -III) July 2018, pp.89-104 

 

 
www.ijera.com                                   DOI: 10.9790/9622-08070389104                    102 | P a g e  

 

 

 

 

 
Fig. 12. Percentage of undetectable errors of the ð17;16Þ CRC over GFð2

8
Þ. 

 

Fig. 13. Percentage of undetectable errors of the ð9;8Þ CRC over GFð2
8
Þ. Their percentage is 4.14 percent for 

2-bit errors and 0.067 percent for 4-bit errors. 

 

 

 

 

Fig. 14. Percentage of undectable errors of the ð5;4Þ CRC over GFð2
8
Þ. The percentage is 1.8 percent for 2-bit 

errors and 0.13 percent for 
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4-bit errors. 

block has 64-bit ones of normal distribution. The 

erroneous rounds and erroneous operation were also 

randomly chosen. 

 As seen in Fig. 12, all the simulated odd-bit 

errors were detected. The percentage of the 

undetectable errors dropped dramatically as the 

erroneous bit number increased. When the number of 

erroneous bits was greater than eight, the percentage 

was below 1 percent and stable. The test using random 

erroneous bits is about 0.3 percent and it was close to 

the theoretic value obtained in Section 4, 0.4 percent. 

Obviously, all the experimental results followed the 

curves of ideal values. 

 The same data patterns used in the above tests 

were also used for the ð9;8ÞCRC and the ð5;4Þ CRC; 

all test conditions, except for the error patterns, were 

identical to those used to test the ð17;16Þ CRC. The 

ð9;8ÞCRC generated two parities for a 128-bit data 

block. Because the values in the two tests, 2-bit and 4-

bit erroneous bits, are too large, they were 

dependently shown in Fig. 13. All odd-bit errors were 

also detected. The percentage also dropped 

dramatically when the erroneous bits increased, as 

shown in Fig. 13. For the random test, the percentage 

is about 0:14 10
2
%, very close to the theoretical value 

of 0:16 10
2
%. 

 In Fig. 14, the results of the ð5;4ÞCRC and 

Bertoni et al. [1] are shown. Obviously, this 

percentage is very small in contrast to the 

ð17;16ÞCRC or the ð9;8Þ CRC. When the number of 

erroneous bits was larger than 16, the percentages of 

undetectable errors dropped to zero. The percentage in 

the random test was 0 percent, very close to the 

theoretic value of 2:56 10
8
%. Of course, all odd-bit 

errors could be detected. 

 Fig. 14 also shows the results in Bertoni et al. [1]. The 

test models of Bertoni et al. [1] are different from 

ours. They have injected multiple bit errors (between 

2 to 16) at the beginning of the round. From Fig. 14, 

their scheme has better error detection than ours, when 

the errors are between 2 and 6, and the cases of 8-bit 

errors are close. When the number of erroneous bits is 

above 10, the performance of the proposed scheme is 

better than that of Bertoni et al. [1]. 

 

II. CONCLUSIONS 
 This work has proposed a simple, symmetric, 

and highfault-coverage error detection scheme for 

AES. Although the erroneous bits are diffused in AES, 

this work used the linear behavior of each operation in 

AES to design a detection scheme. This scheme only 

uses an ðn þ 1;nÞCRC to detect the errors, where n 2 

f4;8;16g, and the parity of the output of each operation 

is predicted in a simple fashion. Even though the 

number of parities is two or four, respectively, for n ¼ 

8 or n ¼ 4, it is possible to use only one 8-bit register 

for storing the parities during hardware 

implementation. This error detection may also be used 

in encryption-only or decryption-only designs. 

Because of the symmetry of the proposed detection 

scheme, the encryption and decryption circuit can 

share the same error detection hardware. The proposed 

schemes can be applied in the implementation of AES 

against differential fault attacks and can be easily 

implemented in a variety of structures, such as 8-bit, 

32-bit, or 128-bit structures. 
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