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ABSTRACT: The information that crops offer is turned into profitable decisions only when efficiently 

managed. Current advances in data management are making Smart Farming grow exponentially as data have 

become the key element in modern agriculture to help producers with critical decision-making. Valuable 

advantages appear with objective information acquired through sensors 

withtheaimofmaximizingproductivityandsustainability.Thiskindofdata-basedmanagedfarms rely on data that can 

increase efficiency by avoiding the misuse of resources and the pollution of the environment. Data-driven 

agriculture, with the help of robotic solutions incorporating artificial intelligent techniques, sets the grounds for 

the sustainable agriculture of the future. This paper reviews the current status of advanced farm management 

systems by revisiting each crucial step, 

fromdataacquisitionincropfieldstovariablerateapplications,sothatgrowerscanmakeoptimized decisions to save 

money while protecting the environment and transforming how food will be produced to sustainably match the 

forthcoming populationgrowth. 
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I. INTRODUCTION 
Theagriculturesectorisundergoingatransfor

mationdrivenbynewtechnologies,whichseems very 

promising as it will enable this primary sector to 

move to the next level of farm productivity and 

profitability [1]. Precision Agriculture, which 

consist of applying inputs (what is needed) when 

and where is needed, has become the third wave of 

the modern agriculture revolution (the first was 

mechanizationandthesecondthegreenrevolutionwith

itsgeneticmodification[2]),andnowadays, it is being 

enhanced with an increase of farm knowledge 

systems due to the availability of larger amounts of 

data. The United States Department of Agriculture 

(USDA) already reported in October 2016 that 

Precision Agriculture technologies increased net 

returns and operating profits [3]. Also, when 

considering the environment,  new technologies are 

increasingly being applied in the farms  to maintain 

the sustainability of farm production. However, the 

adoption of these technologies involves uncertainty 

and trade-offs. According to a market analysis, the 

factors that would facilitate the adoption of 

sustainable farming technologies include better 

education and training of farmers, sharing of 

information, easy availability of financial 

resources, and increasing consumer demand  for 

organic food [4]. When applying these new 

technologies, the challenge for retrieving data from 

crops is to come out with something coherent and 

valuable, because data themselves are not useful, 

just numbers or images. Farms that decide to be 

technology-driven in some way, show valuable 

advantages, such us saving money and work, 

having an increased production or a reduction of 

costs with minimal effort, and producing quality 

food with more environmentally friendly practices 

[5]. However, taking these advantages to the farm 

will depend, not only on the willingness 

ofproducers 

foradoptingnewtechnologiesintheirfields,butalsoon

eachspecificfarmpotentialintermsofscale 

economies, as profit margin increases with farm 

size. The USDA reported that, on average, corn 

farm operating profit of Precision Agriculture 

adopters was 163 dollars per hectare higher than for 

non-adopters, taking into account that the highest 

adoption rates for three technologies (computer 

mapping,guidance,andvariable-

rateequipment)wereonfarmsover1500hectares[3].S

uchmargins 

canevengoupto272dollarsdependingonthecrop.Agre

ateruseofSmartFarmingservicesisvital 

tonotonlyimprovingafarm‘sfinancialperformance,b

utalsotomeetthefoodneedsofanexpanding 

population[6]. 

The final purpose of this paper is to 

demonstrate how making decisions with the 

modern data-based agriculture available today can 

lead to sustainable and profitable actuation to 

nourish 

peoplewhilereducingharmtotheenvironment.Inorder
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toevaluatehowmodernagriculturecanhelp in a 

sustainable decision-making process, this article 

revisits the main steps of an information-based 

agricultureandfocusesondatamanagementsystemsby

reviewingrecentapplicationsrelatedtoeach 

crucialstep,fromdataacquisitionincropfieldstotheexe

cutionoftaskswithvariablerateequipment. 

 

Data-Driven Agriculture: Agriculture4.0 

This new philosophy centered on 

agricultural data has been expressed with several 

names: 

Agriculture4.0,DigitalFarming,orSmartFarming,an

dwasbornwhentelematicsanddatamanagement were 

combined to the already known concept of 

Precision Agriculture, improving the accuracy of 

operations[7].Asaresult,Agriculture4.0isbasedonPre

cisionAgricultureprincipleswithproducers 

usingsystemsthatgeneratedataintheirfarms,whichwil

lbeprocessedinsuchawaytomakeproper 

strategicalandoperationaldecisions.Traditionally,far

mershavegonetothefieldstocheckthestatus 

oftheircropsandmakedecisionsbasedontheiraccumul

atedexperience.Thisapproachisnolonger 

sustainableas,amongotherreasons,somefieldsaretool

argetobeefficientlymanagedaccordingto the 

threefold criteria that will lead the coming years: 

Efficiency, sustainability and availability (for 

people).Advancedmanagementsystemswithintheco

ntextofSmartFarmingareprovidingpractical 

solutions.Also,despitesomefarmershavealong-

timeexperiencegatheredaftermanyyearsofwork in 

the field, technology may provide a systematic tool 

to detect unforeseen problems hard to notice by 

visual inspection on occasional checks. Regarding 

the willingness of adopting modern tools in 

agriculture, young farmers show a more positive 

attitude than elder ones, as the former can support 

their not-so-large experience in the field with new 

smart tools providing key information. However, 

theaverageageoffarmersinthelastdecadeshasbeenala

rminglyincreasing:Around58yearsoldin 

theUSAandEurope,60insub-

SaharanAfrica,or63inJapan[8,9].Fortunately,thistre

ndisexpected to change. Several European policies, 

for example, are being set to support a generational 

renewal, 

facilitatingaccesstoinitialinvestment,loans,business

advice,andtraining[9].Agenerationalrenewal 

inaruraldevelopmentcontextgoesbeyondareductioni

ntheaverageageoffarmers;itisalsoabout 

empoweringanewgenerationofhighlyqualifiedyoung

farmerstobringthefullbenefitsoftechnology in order 

to support sustainable farming practices [10]. This 

implies that young farmers will need to transform 

the existing land to more modern and competitive 

farms with the purpose of maintaining viable food 

production while improving the competitiveness of 

the agrifood chain, because with advanced 

technologies and new thinking, young people can 

transform the agricultural sector[8]. 

 

Internet of Things: CollectingInformation 

Internetofthings(IoT)inanagriculturalcontextreferst

otheuseofsensorsandotherdevicesto turn every 

element and action involved in farming into data. It 

has been reported that an estimation of a 10% to 

15% of US farmers are using IoT solutions on the 

farm across 1200 million hectares and 250,000 

farms [11]. IoT drives Agriculture 4.0 [12]; in fact, 

IoT technologies is one of the reasons why 

agriculture can generate such a big amount of 

valuable information, and the agriculture sector is 

expected to be highly influenced by the advances in 

these technologies [13]. It is estimated that, with 

newtechniques,theIoThasthepotentialtoincreaseagri

culturalproductivityby70%by2050[14], 

which is positive, because according to Myklevy et 

al., the world needs to increase global food 

production by 60% by 2050 due to a population 

growth over nine thousand million [15]. The main 

advantagesoftheuseofIoTareachievinghighercropyie

ldsandlesscost.Forexample,studiesfrom OnFarm 

found that for an average farm using IoT, yield 

rises by 1.75% and energy costs drop 17 to 32 

dollars per hectare, while water use for irrigation 

falls by 8%[12]. 

 

Big Data: Analysis of MassiveData 

Inthecurrenttechnology-

basedera,theconceptofbigdataispresentinmanyecon

omicsectors, but is it already available to 

agriculture? The ever-growing amount of data 

available for field management makes necessary 

the implementation of some type of automatic 

process to extract operational information from 

bulk data. However, the volume of data currently 

retrieved from most 

commercialfieldsis,arguably,notyetatthelevelconsid

eredtobeclassifiedasbigdata.Accordingto Manyica 

et al. [16], big data has three dimensions: Volume, 

velocity, and variety. Kunisch [17] added a 

fourthVforveracity.Finally,afifthVwasaddedbyChiet

al.fortheextradimensionvalorization[18]. Overall, 

the five V (dimensions) of big data standfor: 

• Volume refers to datasets whose size is 

beyond the ability of typical database software 

tools to 

capture,store,manage,andanalyzeinformation.Thisd

efinitionincludesanestimateofhowbig 

adatasetneedstobeinordertobeconsideredbig,anditca

nvarybystudysector,dependingon 

softwaretoolsthatarecommonlyavailableandcommo

nsizesofdatasets,typicallystartinginthe terabyte 

range[16]. 

• Velocity refers to the capability  to  
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acquire,  understand  and  interpret  events  as  they  

occur. In agriculture, this would refer to 

applications that occur in real time, like data being 

processed right in the field to apply variable rates 

of chemicals in equipment featuring variable rate 

applicationtechnologies. 

• Variety refers to the different data formats 

(videos, text, voice), and the diverse degrees of 

complexity. This situation is not strange in 

agriculture when different data sources are used to 

work in complex scenarios such as images and soil 

or weatherprobes. 

• Veracity refers to the quality, reliability, 

and overall confidence of thedata. 

• Valorization is the ability to propagate 

knowledge, appreciation and innovation[18]. 

In the context of crop management, Kunisch [17] 

concluded that big data is applicable only in 

somecasesinagriculture,dependingoneachfarmandit

sleveloftechnologyadoption.Nevertheless, the 

Proagrica [19] report confirmed that big data was 

being increasingly applied in the agriculture sector. 

Kamilaris et al. [18] cited 34 works where big data 

was used in agricultural applications, and Wolfertet 

al. [20] published a review on big data applications 

in Smart Farming. In line with this trend, the 

Consortium of International Agricultural Research 

Centers (CGIAR, Montpellier, France) 

createdaPlatformforBigDatainAgriculturewiththepu

rposeofusingbigdataapproachestosolve agricultural 

development problems faster, better, and at a 

greater scale than before[21]. 

 

Agriculture 5.0: Robotics and Artificial 

Intelligence (AI) to Help in Nourishing People 

Big engineering challenges typically spur  big  

solutions  through  disruptive  technologies,  and 

Agriculture 5.0 is probably the one for the first half 

of the 21st Century. The conceptAgriculture 

5.0impliesthatfarmsarefollowingPrecisionAgricultu

reprinciplesandusingequipmentthatinvolves 

unmannedoperationsandautonomousdecisionsuppor

tsystems.Thus,Agriculture5.0impliestheuse 

ofrobotsandsomeformsofAI[22].Bytradition,farmsh

aveneededmanyworkers,mostlyseasonal, 

toharvestcropsandkeepfarmsproductive.However,so

cietyhasmovedawayfrombeinganagrarian 

societywithlargequantitiesofpeoplelivinginfarmstop

eoplelivingincitiesnow;asaresult,farms 

arefacingthechallengeofaworkforceshortage.Onesol

utiontohelpwiththisshortageofworkersis agricultural 

robots integrating AI features. According to a 

Forbes study [23], farm robots augment 

thehumanlaborworkforceandcanharvestcropsatahig

hervolumeandfasterpacethanhuman 

laborers.Althoughtherearestillmanycasesinwhichro

botsarenotasfastashumans,agricultureis 

currentlydevelopingroboticsystemstoworkinthefield

andhelpproducerswithtedioustasks[24–27], pushing 

agricultural systems to the new concept of 

Agriculture 5.0. According to Reddy et al. [28], the 

advent of robots in agriculture drastically increased 

the productivity in several countries and reduced 

the farm operating costs. As said before, robotic 

applications for agriculture are growing 

exponentially[27],whichofferspromisingsolutionsfo

rSmartFarminginhandlinglaborshortageand a long-

time declining profitability; however, like most 

innovations, there exist important limitations to 

cope with at the current early stages. These 

technologies are still too expensive for most 

farmers, especially those with small farms [29], 

because scale economics make small individual 

farms less 

profitable[30].Nevertheless,thecostoftechnologydec

reaseswithtime,andagriculturalrobotswillbe 

surelyimplementedinthefutureasthealternativetobrin

gabouthigherproduction[4,31].Theworld 

agricultural production and crop yields slowed 

down in 2015. The concept of agricultural robotics 

was introduced to overcome these problems and 

satisfy the rising demand for high yields. Robotic 

innovations are giving a boost to the global 

agriculture and crop production market, as 

according to the Verified Market Intelligence 

report, agricultural robots will be capable of 

completing field tasks with greater efficiency as 

compared to the farmers[32]. 

Agricultural tech startups have raised over 

800 million dollars in the last five years [31]. 

Startups 

using robotics and machine learning to solve 

problems in agriculture started gaining momentum 

in 

2014,inlinewitharisinginterestinAI[33].Infact,ventu

recapitalfundinginAIhasincreasedby450% 

inthelast5years[34].Thiskindofnewagricultureprete

ndstodomorewithless,becausenourishing people 

while increasing production sustainably and taking 

care of the environment will be crucial in the 

coming years, as the Food and Agriculture 

Organization of the United Nations (FAO) 

estimates that, in 2050, there will be a world 

population of 9.6 billion [35]. Advanced sensing 

technologies in agriculture can help to meet the 

challenge; they provide detailed information on 

soil, crop status, and environmental conditions to 

allow precise applications of phytosanitary 

products, resulting in a 

reducedusedofherbicidesandpesticides,improvedwa

teruseefficiencyandincreasedcropyieldand 

quality[2]. 

 

Data-Driven Management for Advanced 

Farming: PrincipalStages 

The raw measurements of key parameters 
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from crops need to be efficiently processed so that 

numbersorimagesunambiguouslyturnintovaluablein

formation.Cropmanagementbasedonfield data 

already evolved when Precision Agriculture came 

to light thirty years ago, but it has certainly been 

transformed by the present digital information era. 

Traditionally, and in those places where technology 

has not arrived yet, field management consists of 

visually inspecting the development of 

cropstoreachadiagnosiswithwhichfarmersmakedeci

sionsandactuategivingdifferenttreatments to their 

crops. This approach relies on field experience and 

the information perceived through the eyes of 

farmers. Additionally, associated growers can 

follow the recommendations of cooperative 

technicians or engineers hired by the society they 

belong to. In farms where advanced technology has 

been implemented, field management varies 

according to the operating cycle shown in Figure1. 

Thismanagementsystembasedonobjectivefielddataa

ndsmartdecision-makingstartswiththeactual 

croptomanage,takingadvantageofitsinnervariability,

bothspatial-wiseandtime-wise.Theplatform 

referstothephysicalmeanswithwhichinformationisac

quired,beingthesensorsthespecificelements through 

which objective data are obtained. Data includes 

the information directly retrieved from the 

parametersmeasuredfromthecrop,soil,orambient.Re

trievingthedatafromthesensorscanbedone 

inmultipleways,frominsertingapendriveinaUSBport

togetthefiles[36]toretrievingdatafrom 

softwareapplicationssynchronizedtotheInternet.The

nexusbetweenthedataandthedecisionstage involves 

filtering routines and AI algorithms for getting only 

the right data and helping the grower make correct 

decisions. Finally, actuation refers to the physical 

execution of an action commanded by 

thedecisionsystem,andistypicallycarriedoutbyadvan

cedequipmentthatcanreceiveordersfrom 

acomputerizedcontrolunit.Aseachactiontakesplaceo

verthecrop,thecyclestartsandclosesat crop level; the 

response of the crop is then registered by 

specialized sensors and the loop continues 

systematically until harvesting time, which marks 

the end of the crop life cycle. 

 

Figure 1.Information-based management cycle for advanced agriculture. 

 

The following paragraphs and Figure1explain the cycle that embodies a general data-driven 

management system for advanced agriculture, including representative examples for each stage. Table1classifies 

the scientific works referenced in this study into the di fferent categories of Figure1. 
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Table 1.Classification of the research articles referenced in the present study. 

 
  

 StageI:TheCropastheBeginningandEndoft

heAgriculturalManagementCycle—

AnalyzingVariability 

Regardless how the crop will be managed, some 

degree of spatial variability is assumed for all 

fieldsbynature.AccordingtoSearcy[37],naturalvaria

bilityisinfluencedbyweatherwithinagrowing season 

and from year to year; then, data from several years 

may be needed to determine trends in the 

parameters of interest, and hence, data becomes a 

regular input to the farm management system. 

Therefore,thenecessityofmonitoringcropscomesfro

mtheexistenceofvariability,butthereisaneed 

fortheproducertomanagethatvariabilityinafeasiblew

ay,andthewidelyacceptedwaytodoitisby 

settingwithin-

fieldmanagementzones.Managementzonesaresubfie

ldareasthathavehomogeneous 

features,sofieldpracticescanbecustom-

madetoeachofsuchareas,resultinginapracticaland 

cost-

effectiveapproachtoPrecisionAgriculture[41].Thead

optionofmanagementzoneswouldreduce 

thecostoffertilizing,improvecropyields,reducetheus

ageofpesticides,providebetterfarmrecords that are 

essential for sale, and provide better information 

for management decisions [4]. According to Zhang 

et al. [38], the number of management zones is a 

function of the natural variability within the field, 

the size of the field and certain management 

factors. If the variability is high, the minimum size 

of a zone is limited by the possibility of each 

farmer to differentially manage regions within a 

fieldineconomicandlogisticsterms.Inadditiontodeci

detheareaofworkingzones,theselectionof the 

specific parameters to be tracked within those 

zones must be carefully made early in theprocess. 

Rovira-Más and Saiz-Rubio [65] classified crop 

biometric traits in a tri-level division of crop 

features 

dependingonthefocusofinterestbeingatsoillevel,plan

tlevel,orproducelevel. Thisdivision 

allowed the superimposition of various layers in a 

standardized map with the aim of determining a 

data-

basedwinequalityindexdefinedastheQualityPotentia

lIndex(QPI)foreachsubfieldareaina vineyard. 

Nevertheless,theremaybespecificcaseswherethespat

ialvariabilityofafieldissolowthat a single mapping 

event can be sufficient, as reported by Klassen et 

al. [42] when characterizing soil variability in 

ricefields. 

 

Stage II: Platforms SupportingSensors 

Sensorsaretheuniversaldevicestomonitorcr

opsandtoobtainobjectiveinformationfromthem. 

They are usually integrated in a platform, which is 

the general term used in Figure1to name the 

structureswheresensorsareplacedandcarried.Thesepl

atformsmaybeattachedtooff-roadvehicles 

orfixedtothegroundwithinfieldssuchaslocalweathers

tations.Oneofthemosturgentchallengesto 

copewithinthenextfewyearswillbegettingawiderrang

eofnon-invasivesensorsabletomeasure on-the-go. 

This approach would be closer to Agriculture 5.0, 

as these sensors could be attached to autonomous 

platforms and robots. Nowadays, not all the 

parameters of interest can be measured non-

invasivelyandatadistancefromthetarget;however,so

metechnologiessuchasmultispectralor hyperspectral 

imaging are making significantimprovements. 

 

Remote Sensing Platforms:Satellites 

Remote sensing has played a key role in 

the progress of Smart Farming when field data 

became 
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generallyaccessiblefromartificialsatellites.Importan

tsatellitesprovidingagriculturalinformationare the 

American Landsat satellites (eight satellites take 

spectral data from the Earth each 16 to 18 days), 

the European Sentinel 2 satellite system (it 

provides multispectral data at 10 m pixel resolution 

for NDVI—

NormalizedDifferenceVegetationIndex—

imagery,soil,andwatercovereverytendays),the 

RapidEyeconstellation(fivesatellitesprovidemultisp

ectralRGBimagery,aswellasred-edgeandNIR 

bandsat5mresolution),theGeoEye-

1system(capturesmultispectralRGBdataandNIRdata

ata 

1.84 m resolution), and the WorldView-3 (collects 

multispectral data from the RGB bands including 

the red-edge, two NIR bands, and 8 SWIR bands 

with a resolution of 1.24 m at nadir).  IKONOS  

andQuickBird have been already decommissioned. 

There exist several reviews on satellite sensing 

applications,havingrecentstudiesfocusedonthepoten

tialapplicationsofthermaltechnologiesusing remote 

sensing [44] and nutritional status in commodity 

crops[45]. 

 

AircraftSystems 

The distance between crops and satellites 

is considerable, typically around 700 km, and 

deeper insights are reachable when sensors remain 

closer to the targets. For aircraft systems, the 

distance  to land can be around 100 m. For 

example, there is a legal limit of 120 m above the 

ground in Spain for unmanned flying vehicles. 

Unmanned aerial vehicles (UAV) and remotely-

piloted aircrafts(RPA) can basically be of two 

kinds: Fixed-wing aircrafts and multirotor aircrafts. 

Rotary-wing UAVs are 

morestablefliersastheyarecapableofaverticaltake-

offandlanding;however,theyareslowerand 

cannotcoverasmuchareaduringtheirbatterylife.Fixed

-wingplatforms,ontheotherhand,cancover more area 

per flight and carry larger payloads, but tend to be 

more expensive and break moreeasily 

aftermultiplelandings[45].Whencomparedtoremotes

ensing,theadvantagesofUAVsforPrecision 

Agriculture are their flexibility in frequency (revisit 

time of satellites) and better spatial resolutions. 

When compared to ground vehicles, UAVs can get 

data from inaccessible places where conventional 

equipmentcannotstand;however,theyrequireaprofes

sionalplanningoftheflightroutebeforehand, and 

certain machine vision applications may require 

flying at midday to avoid vegetation shadows on 

the ground causing errors with imagery data. 

Furthermore, post processing the data and image 

mosaicking is often quite challenging. An 

important disadvantage of UAVs is the limited 

payload 

theycancarry,whichoftenlimitsthesuiteofsensorsonb

oard,aswellastheincapacityofflyingwith strongwind. 

 Proximal Sensing: Ground Autonomous 

Systems—the Great Push for Agriculture5.0 

Whenmonitoringplatformsoperatefromtheground,th

edistancefromthesensorstothetarget 

cropdiminishestolessthan2m.Duetotheproximityoft

hesensortotheplant,whendataisacquired 

fromground-

basedplatforms,itiscalledproximalsensing. 

Groundvehiclesarepolyvalentinrelation 

tothepayloadofsensors.Asthesevehiclesmovenearth

ecrop,thedataacquiredincreaseinaccuracy, 

andresolutionsofoneormoresamplespermeterarefeas

ible,beingonlylimitedbythespecifications of the 

particular sensors implemented. When active 

sensors are used, weather conditions such as strong 

sunlight or poor illumination are not a serious 

problem anymore, and, in case of on-the-fly 

processing, real-time applications are possible, as 

spraying weeds with the previous detection of the 

pest[47].Therehasbeenasignificantimpulseinthelastf

iveyearsfortheparticularcasewheredatais 

retrievedfromanautonomousplatform(unmannedgro

undvehicleorUGV)[48–52].Aravindetal.[48] 

reviewed ground robots for tilling, soil analysis, 

seeding, transplanting, crop scouting, pest control, 

weed removal and harvesting, where crop scouting 

has been defined as the process of continuously 

monitoring the field to acquire information on the 

plant status, disease incidence, and infestations 

affectingcropgrowth.Shamshirietal.[27]describedre

centachievementsofUGVsforweedcontrol, field 

scouting, and harvesting, highlighting that, if 

successfully integrated and implemented, field 

scouting robots can play a key role in reducing 

production cost, increasing productivity and 

quality, and enabling customized plant and crop 

treatments. The European Commission (EC) has 

recently backed the relevance of robotic technology 

for Smart Farming by funding four projects 

involving the 

constructionofUGVsforadvancedvineyardmanagem

ent:VineRobot,Vinbot,GRAPE,andVineScout. 

In2016,theEuropeanprojectVineRobot[53]delivered

amonitoringrobotprototypeataTechnology 

Readiness Level (TRL) status between 6 and 7 

(TRL1 represents an early stage concept and TRL9     

is a solution ready for production), paving the path 

for its conceptual termination in the VineScout 

project [54]. The 2019 version of VineScout is 

shown in Figure2. This robot is autonomously 

driven when monitoring vineyards with the 

assistance of local perception sensors (stereo 

camera, lidar and 

ultrasoundsensors)fornavigationandsafeguarding.It

gathersdatafromthecanopyofthevineswith the goal 

of creating plant water status maps and nutritional 
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status maps. In order to accomplish its 

missioninareasonabletimeframe,establishedbyend-

usersatarateof6haperday,thisrobotmonitors 

vinecanopiesnon-

invasively,whichimpliesseveralchallenges.Regardin

ghardware,fastandrobust sensors were set to work 

non-invasively and in motion, while having a cost-

efficient price for the agriculture sector. Regarding 

software, the challenge was the agile integration of 

all the crop-sensing devices and the multi-season 

ground-truth validation of the models developed in 

thefield. 

Inadditiontoscoutingrobots,theintroduction

ofroboticstothefarmisalsobeingledbyindustry 

onspecificagriculturaltasks.NaïoTechnologies,forin

stance,hasdevelopedrobotOzformechanical 

weeding [55], and the autonomous sprayer GUSS 

received the Davidson Prize in 2019 [56]. RowBot 

Systems LLC (Minneapolis, MN, USA) patented a 

robotic platform whose structure was configured to 

perform several field tasks, as selectively applying 

fertilizer, mapping growth zones, or seeding cover 

crop [57]. Over the 20th century, farm productivity 

has been increasing by augmenting the  size of 

machines, which has led to heavy and oversized 

equipment. In order to invert this trend, researchers 

and growers have started to think about alternatives 

to tractors to avoid soilcompaction. 

Shamshiri et al. [27] suggested using 

various machines instead of one heavy machine. In 

the same 

line,Hameed[58]proposedatechnologythatenabledas

inglefarmertocontrolateamofautomated vehicles, 

and Ball et al. [59] used cooperative robots as a 

measure to control weeds. In fact, there have been 

several projects implementing more than one 

machine operating in collaborative work,  as the 

Flourish European project that combines UAVs and 

UGVs to retrieve information for decision support 

[46], or the RHEA project where a fleet of 

autonomous robot units performed treatments in 

crops[82]. 

 

(a)                                                                                    (b) 

Figure 2.Version II (2019) of VineScout autonomous robot: Front (a) and rear (b). 

 

Stage III:Data 

One of the fundamental differences 

between traditional and modern farming is, apart 

from the mechanization level, the data collected 

directly from the crops. In traditional farms where 

growers judge by visual assessment, decisions are 

relative and subjective. Modern farming offers 

assessment by quantitative data producing 

objective decisions. Sensors allow data acquisition 

in the field, but the special case of non-invasive 

technologies in combination with on-the-fly 

sensing from moving platforms has opened the 

window of massive data collection, a forerunner of 

big data in agriculture. However, the excess of data 

is also a serious challenge to cope with, as vital 

information may result masked by noise. The 

NDVI measurements collected for plotting the 

maps of Figure3[94] were collected with two 

sensors working simultaneously (SRS sensors, 

METER Group, Inc., Pullman, WA, USA) and 

placed in the robot of Figure2. One of the sensors 

pointed to the sky and corrected NDVI estimates 

with the incident light from the sun, and the other 

sensor pointed sidewise to the canopy to collect 

data from the leaves at an approximate distance of 

0.5 m. The zenithal photo inserted on the bottom-

right corner of Figure3a shows the VineScout 

autonomous robot taking data between two rows in 

a vineyard. The onboard algorithm averaged 

individual local measurements of NDVI in square 
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cells of 16 m2 classified into nine NDVI levels 

between 0 and 1 (Figure3a). The grid map of 

Figure3a,despiteinformative,isnotoperational,soafur

thersimplificationofdataisnecessarybefore a grower 

may find it useful. Figure3b is the result of 

applying a clustering filter to Figure3a. It shows 

twomanagementzonesbasedonvinevigor(high-

medium)forthegrowertomakedecisions,together 

with water status maps, about fertilization and 

differentialharvesting. 

 

 
 

(a)                                                                      (b) 

Figure3.GridmapsofNDVI(NormalizedDifferenceVegetationIndex)withoutzoning(a),andafter applying a 

clustering algorithm(b). 

 

Maps Containing Relevant FieldFeatures 

Displayingdatainacoherentformatiskeyforf

inaluserstounderstandwhatishappeninginthe 

field.Themostcommonwaytodisplayagriculturaldata

hasbeenintheformatofmaps,asmappingis 

usefultodefinespatialtrendsandhomogeneouszones.

However,displayingagronomicalinformation 

inbeautifulmapsshouldnotbethegoalofmapgeneratio

n.Mapsneedtobeusefulformakingdecisions, they 

need to be a help to answer a question, providing 

an interpretation of spatial information [39]. 

Thegoalofbuildingmapsisobtainingafewmanagemen

tzoneswiththeparametersofinterestsothata 

treatmentcanbeefficientlyapplied.Togetplausiblema

nagementzones,krigingisoneofthemostused 

interpolationtechniquestodelimitareasofmanageable

sizes[43].Takingintoaccounttheconsiderable amount 

of data that Smart Farming generates, there are 

many software applications to cope with 

interpolation,ingeneral,orkriginginparticular[66].Al

so,whenbuildingamap,acoordinatesystem needs to 

be supplied along with the map. One ideal 

alternative for agricultural maps is brought by 

theLocalTangentPlane(LTP)coordinatesystem,whic

hfeaturesEuclideangeometry,allowsuser-set origins, 

and employs the intuitive coordinate frame east-

north. Regarding the coding and display of 

datainthemaps,gridsallowthesystematicquantization

oftheLTPcoordinatesystemtomanagecrop 

production information more efficiently, 

facilitating the exchange of information among 

successive seasons and the comparison of multiple 

parameters on the same field [67]. A practical 

example of grid-based maps using LTP coordinates 

is shown inFigure3. 

Taking into account the key role of positioning 

systems, a map-based approach is the method 

in which a Global Positioning System (GPS)—or 

any other Global Navigation Satellite System 

(GNSS)—receiver and a data logger (e.g., an 

onboard computer) are used to record the position 

of a 

particularmeasurement(georeferenceddata),sosever

almapscanbegeneratedandprocessedalong with 

other layers of spatially variable information [68]. 

In general, GNSS receivers are the universal 

position devices used to build maps; however, in 

some cases, for example in greenhouses or dense 

fieldsoftalltrees,GNSSisnotthebestoptiontousedueto

thedifficultyofgettingsignalswithreliable 

accuracy;so,insomecases,alternativesolutionssuchas

machinevisionmustbeimplemented[69]. 

 Data Management Software to Ease the 

Process of DecisionMaking 

A popular way to manage field data displayed on 

maps and culminate with a practical solution is 

through the use of Geographic Information Systems 

(GIS). This set of computer-based tools (or 

dataplatforms)allowstostore,analyze,manipulateand

mapanytypeofgeoreferencedinformation. A specific 

GIS system called the Field-level geographic 

Information System (FIS) was developed    for 

Precision Agriculture applications [70], but it was 

set for old computer operativesystems such as 

Windows 3.1×, 95, 98, or NT [71]. The updated 

version of FIS is the farm management 
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informationsystem(FMIS),whichaccordingtoBurlac

uetal.[72]isamanagementinformationsystem 

designedtoassistfarmerswithvarioustasks,rangingfro

moperationalplanning,implementationand 

documentationtotheassessmentofperformedfieldwor

k.ThepurposeofFMISistoreduceproduction costs, 

comply with agricultural standards, and maintain 

high product quality and safety, guiding growers to 

make the best decisions possible [95]. Farm 

management software solutions support the 

automationofdataacquisitionandprocessing,monitor

ing,planning,decisionmaking,documenting, and 

managing the farm operations [64], and include 

basic functions for record keeping like crop 

production rates (harvests and yields), profits and 

losses, farm tasks scheduling, weather prediction, 

soil nutrients tracking, and field mapping, up to 

more complex functionalities for automating field 

management accounting for farms and 

agribusinesses (accounting, inventory management, 

or labor 

contracts).Inmanycases,growersdonotneedtobefluid

ondatamanagementbecausethesoftwarecan build 

maps or decision-making models with basic 

information introduced by growers. Furthermore, a 

critical feature of these applications is that they 

even help in the early warning of weather-related 

hazards that enables farmers, policy makers, and 

aid agencies to mitigate their exposure to risk [83]. 

However,itmustbetakenintoconsiderationthattheeffi

ciencyofarecommendationforaparticular agent will 

depend on the factors included in the algorithms of 

the software (technical, economic, safety-wise. . . ). 

In this sense, a DSSAT (Decision Support System 

for Agrotechnology Transfer) provides outputs 

with experimental data for evaluation of crop 

models, allowing users to compare 

simulatedoutcomeswithobservedresults,whichiscriti

califreal-worlddecisionsorrecommendations 

arebasedonmodeledresults[84].Table2gathersarepre

sentativesetofcommerciallyavailableFMIS 

programs specifically configured to deal with the 

usual data generated in the farm. It includes the 

name of each application program, the company 

commercializing it with its headquarters location, 

and the main features of the program. The table is 

focused on programs managing crop data as the 

primary tool,  and its purpose is not the compilation 

of all available FMIS software,  which would  be 

futile given the rate new applications are constantly 

released, but bringing a proof of the global effort 

realized in the last decade to deploy Smart Farming 

in actual farms, accelerating the move from 

academics to agribusiness. The examples show that 

some smartphone and tablet applications 

alreadyincludecomplexfeaturessothatgrowerscanins

ertdatadirectlyinthefield;othercompanies, on the 

contrary, prefer having a basic application for 

mobile devices to increase complexity in the cloud-

based desktop version. In the majority of cases, it is 

not necessary to have wireless connection while the 

grower is entering data in the field, because as soon 

as the mobile device finds a wireless 

connectiontotheinternet,itsynchronizesthedataprevi

ouslyintroducedbythegrowerinthemobile device 

with the data safely stored in the cloud. Many of 

the programs listed below offer the option of 

upgrading the software depending on specific 

grower needs, increasing the price accordingly.  The 

most advanced tools include features for financial 

and machinery management, help in the decision-

makingprocess,releasewarnings,orevenproposeman

agementadvice.Inmanycases,these 

softwareapplicationsarenotonlyaddressedtothegrow

erorproducer,butalsotootherstakeholdersin 

agriculturesuchasinputssuppliers,servicesuppliers,a

ndfooddistributors,whichmakesadifference for 

Smart Farming, where multiple agriculture agents 

are connected. Regarding exploitation rights, 

variousagriculturalmanagementsystemshavebeenpa

tented,asthesoftwarefromTheClimateCorp. 

togenerateagricultureprescriptions[85],whichentere

dintopartnershipwithAGCOCorporationin 2017 [4]. 

Decisive Farming Corp. [73,74], AgVerdictInc. 

[75] or Trimble [86] have also patented their 

commercialsolutions. 
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Table 2.Crop data management software applications and their main features [31,77–79,91]. 
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Table 2.Cont. 

 

 
 

Table 2.Cont. 

Software Company Headquarters Relevant Features 

 
SpiderWeb GIS 

 
Agrisat Iberia 

Allows consultation, management and analysis. 
Satellite 

Spain 
images and other spatial reference layers. 

Datacorresponding 
to each pixel can be downloaded in the form of 
temporary 
tables and graphs. 
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Telematics 

 

Claas 
Collects important operational data for a self-

propelled Germany harvester and transfers it to a web 
platform. Unlimitedaccess 

with Internet connection. 

 
TAP TM 

 
Topcon 

Topcon and other companies‘ equipment compatible. 

Japan 
Traceability and connectivity. Data management 
for farmers, data analysis for agronomists, multi-
user datamanagement, 

cloud-based data management. 

 
Visual Green 

 
Visual NaCert 

Web platform to store farmers‘ data. GreenStar and 

Spain 
MyJohnDeere compatibility, costs control, 

agroclimatedata, official field notebook 
(compulsory inSpain), 

authorized products. 

 
WinGIS 

 
ProGIS Software 

GIS:raster/vectormaps,krigging,import/exportinDXF

orshp, 

Austria 
fast Sentinel images.  With its own 

developmentenvironment 

 

 

The use of commercial data management 

systems, as the ones listed in Table2, often implies 

that producers need to share their crop data with a 

software platform owned and run by private 

companies. This fact creates some controversy 

regarding the ownership of the data. In the 

Software Services Agreement (SSA), it is stated 

that the person or entity providing the data to the 

farm management software company shall own and 

retain all rights, title and interest in and to their  

data, so that the data belongs to the provider [76]. 

However, when data are aggregated with other 

growers‘data,thecombineddatatypicallybecomeprop

ertyofthesoftwarecompany[96].Thelistof 

applications included in Table2proves that there is 

a global interest in developing software for farm 

datamanagement,andmostofthefeaturesrequestedby

end-usersaresimilareverywhere.Thistable 

alsogivesanideaoftheinterestraisedinindustrybysoft

ware-basedmanagementsystems.However, 

manyapplicationsusetheirownproprietaryformats,w

hichcomplicatestheshareofdataamongdata 

acquisition and processing systems. A 

standardization effort is needed among software 

developers and providers. The ADAPT toolkit of 

Table2[77] is an example of how to face this 

challenge, as it providesanopen-

sourceapplicationthateliminatesabarriertothebroadu

seofPrecisionAgriculture data by enabling 

interoperability between different hardware and 

softwareapplications. 

 

Stage IV: Decision-Making 

Insituationswheremanyfieldparametersnee

dbeingconsidered,peoplefindpracticaldifficulties in 

managing complex information to make effective 

decisions. In such cases, artificial intelligence (AI) 

can help with techniques like deep learning or 

neural networks, fuzzy logic, genetic algorithms, 

orexpertsystems.AI,withitsmodellingandreasoningc

apabilities,canplayakeyroleinagriculture, 

helpingtomakesenseofallthedataavailable.Fuzzylogi

c,tonameoneexamplewithinAI,resembles human 

reasoning imitating the way of making decisions 

that involve several possibilities instead of ‗true‘ or 

‗false‘ alternatives; this technique uses linguistic 

variables that fit well with the complexity of the 

challenges posed by the diversity of agricultural 

decision making. According to Dengel [20], 

agriculture offers a vast application area for all 

kinds of AI core technologies as agents operating in 

uncontrolledenvironments.GiustiandMarsili-

Libellia[81]designedafuzzy-baseddecisionsupport 

system (DSS) taking as input variables soil 

moisture and rain forecast for kiwi, corn, and 

potato. Similarly, the DSS developed by Navarro-

Hellín et al. [87] estimated weekly irrigation for 

citrus 

orchardstakingintoaccountclimateandsoilvariables;i

nthatwork,real-timemeasurementsfromsoil 

parametersinaclosed-

loopcontrolschemeweredecisivetoavoidtheaccumul

ativeeffectduetoerrors in consecutive weekly 

estimations, as the DSS was allowed to adapt to 

local perturbations. In the 

samefashion,LindsayCorporation(Omaha,Nebraska

,USA)wasawardedforitssolutionFieldNET 

Advisor™ [91] that provides irrigation 

management decisions for growers. DSS may be 

morerobust and reliable when different variables 

are considered, but some procedures remain 

controversial as 

objectivescanleadtodifferentsolutionsatdifferenttim

esbasedontheprioritysetbydecisionmakers or other 

people involved in the procedure[88]. 

SrivastavaandSingh[80]highlightedtheimportanceof

incorporatingthegraphicalpartofGISto DSS, which 

was demonstrated for water management scenarios 

in India. The importance of using GIS for 

agricultural DSS lies on using user-friendly 

graphical interfaces for growers. The result of a 

questionnairedistributedbyVineScoutproject[36]me
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mberstotheattendeesofafielddemonstrationin 

Portugal(October2019),evidencedthehighvaluegive

ntographicaluserinterfaces(GUI).Considering that 

the prototype is in research phase and not 

commercial yet, 84% of the attendees concluded 

that the robot GUI shown in Figure4was simple to 

understand and easy to use (unpublished research). 

Rupnik et al. [89] developed a cloud-based system 

to allow growers upload their own data, utilize 

severaldataanalysismethods,andfinallypresenttheiro

utputsasdecisionstoapply.Thistime,their 

usecasefocusedonsprayplanningforfightingagainstp

estsinvineyardsandorchards. Roseetal.[90] 

conductedasurveyonDSSandarrivedtotheconclusion

that15factorswereinfluentialinconvincing 

UKgrowersandadviserstouseDSS,includingusability

,cost-effectiveness,performance,relevanceto 

user,andcompatibilitywithcompliancedemands.Inad

dition,theyfoundthat49%ofUKfarmersused some 

kind of DSS, and the preferred ways of delivery 

were software (28%), paper-based (22%) tools, and 

mobile apps (10%). These results show that the use 

of software to manage decisions is growing, but its 

percentage is still low and comparable to those who 

preferred paper-based tools. Choosing 

softwareandmobileapplicationstomakeagriculturald

ecisionsmaybeconsideredbeneficialbecause 

digitaltoolsincreasemanagementefficiencywhencom

paredtopaper-basedtools;however,thereis 

stillalongwaytomaketechnology-

basedtoolsattractiveenough—

easytounderstand,intuitiveand nice—for growers to 

adopt. On the producer side, it is important to have 

access to proper training until these technologies 

can be comfortablymanaged. 

 

Figure 4.Graphical user interface (GUI) for the VineScout robot. 

 

Stage V: Actuation through Variable 

RateTechnology 

The last step for closing the loop in the 

complete crop management cycle of Figure1is the 

physical actuation on the crop. Actuation is 

understood as executing some action on the crop or 

related to it, and this can be done by making 

decisions right after obtaining information (real-

time applications) or in another moment deferred in 

time (off-line). For farmers to execute decisions,  

they need advanced equipment that can receive 

orders from a computerized control unit. Variable 

rate machines can execute a number of farming 

tasks driven by a smart system [60]. Variable rate 

technology (VRT) applied on site-specific crop 

management (SSCM) has the potential to increase 

profit and decrease environmental impact [61] as 

only what is needed is actually applied. Colaço and 

Molin [92] conducted a long-term study for six 

years with the goal of evaluating the effects of 

variable rate fertilization on fertilizer consumption, 

soil fertility, and yield in citrus.  The outcomes  of 

comparing variable and uniform rates showed that 

the former achieved higher yields while using less 

fertilizer: using nitrogen, fruit yield (kg of oranges) 

respect to the amount of fertilizer resulted  in a 

32% yield increase in field 1, and 38% in field 2. 

When using potassium, the yield increase even 
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reached 40% in field 1. In the case of phosphorus, 

the growth rate was approximately 20% for both 

fields. A recent review led by Nawar et al. [93] 

confirmed that, when management zone delineation 

techniques were used for variable-rate nutrient 

application, farm efficiency increased in all cases 

when compared to traditional uniform-rate 

applications, and environmental impacts were 

reduced. Machinery manufacturers are leading the 

development of commercial solutions 

implementing VRT. Thomasson et al. [62] 

described commercial VRT systems offered by 

major agricultural machinery manufacturers, like 

CLAAS, that used the ISARIA crop sensor for the 

variable-rate application of nitrogen-based 

fertilizer, or the CEBIS MOBILE ISOBUS, which, 

apart from having other Precision Agriculture 

functions, it is a compatible terminal to integrate 

the ISARIA sensor. Another promising type of 

variable actuation is automatic differential 

harvesting or variable rate harvesting (VRH), 

which attempts harvesting according to previously 

defined management zones. In specialty crops, 

Sethuramasamyraja[40]workedindifferentialharvest

ingforvineyardsbyusingnear-infraredsensors 

todeterminegrapequalityinthefieldbasedontheanthoc

yanincontentofberries.Thethreestepsfor this VRH 

system involved sensing the anthocyanin content of 

grapes, using these data to produce 

qualitymapbasedonathresholdanthocyaninlevel,and

feedingthequalitymaptotheharvesterforits 

commanding. 

CLAASwasawardedforimplementingVRHincombi

nesandforageharvesters[91]by merging precision 

sensing technology with autonomous machine 

control. The goal was to maximize 

productivityandautomaticallyoptimizeharvesterperf

ormance,accordingtothechangingconditions 

ofthesoil,plants,grain,andhumidityintheharvestedfie

ld.AUSDAstatisticalanalysisconductedin 2010 [3] 

showed that variable rate technologies had positive, 

but small, rate adoptions of 1% due to 

theirdifficultyofuse.Apartfromefficiencyandutility,c

ostisalsoacriticalparametertoconsiderfor the 

adoption of this technology. In this sense, the 

ubiquitous availability of low-cost electronics will 

favortheintroductionofsuchdigitalapplications.Infac

t,advancesinautonomousdrivingtechnology for cars, 

including object detection capabilities through 

multi-camera systems, have already reduced the 

cost of developing automated agricultural 

machines[22]. 

 

II. DISCUSSION 
After the Industrial Revolution, mainly 

since the advent of mechanization, and along the 

Green 

Revolution,humansandmachineshavebeenefficientl

ycollaboratingforgrowingcropstofeedpeople. 

However, to face the population growth in the 

coming years, an extra effort is needed to succeed, 

not only in feeding people by increasing 

productivity, but also in doing it in the most 

efficient and 

respectfulpossibleway,thatis,producingsustainably.

To facethischallenge,remarkableadvancesin 

technologyhavebeenappearingoverthelastdecades,in

particulartheaccesstoreliableagricultural 

dataandadvancedcomputertechniquestogettheoptim

almeaningfromthem,eventuallyobtaining 

maximumbenefitswhilebeingrespectfulwiththeenvir

onment.Thisnewapproachdrivenbydigital 

technologyimpliesthatgrowersmustactassupervisors

oftheircropsratherthanlaborers,inanattemptof 

avoiding repetitive, physically-demanding, and 

tedious field tasks. In this modern agronomical 

framework,DATAisthekey,andtheinformation-

basedmanagementcycledescribedaboveprovides the 

practical approach that unites concept and tasks. 

The following points summarize some of the 

specific ideas drawn from thisstudy: 

• Precision Agriculture, which consists of 

applying what is needed when and where is needed,  

has further improved the efficiency of managing 

farms with the addition of data-based digital 

systemsthatincreasetheknowledgeofproducersabout

theirfields;thisisknownasAgriculture 

4.0 orDigital Farming. When these data-driven 

farms incorporate robotics with AI algorithms to 

their systems, the overall concept is then referred to 

as Agriculture 5.0. Some studies report that 

agricultural robots integrating forms of AI can do 

certain tasks faster than humans [23].Despite 

thereareotherstudiesthatcontradictthisstatement[63],

roboticsisagrowingeconomyandthere exists a great 

potential for many applications withinagriculture. 

• A greater adoption of Digital Farming by 

professional growers is vital to not only improving 

a farm‘s financial performance, but also to meet the 

food needs of an expanding population [6]. 

Smallfarmswillsteadilyincorporatebasictechnology

whereaslargefieldswilllikelyinvestwith 

sophisticated equipment, but data-less intuition-

driven management will no longer represent the 

modus operandi of professional farms in the future. 

This should be considered a source of 

opportunities, especially for a new generation of 

young farmers used to digital technology, who are 

the ones with the capacity to balance an aging 

population in rural areas, mainly those in 

industrializedcountries. 

• After the rapid growth of UAVs, a steady-

state is being reached, mostly induced by the 

factthat dataanalysisandground-

truthvalidationhasresultedfarmorecomplexanddelic

atethanimage 
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acquisitionandplatformhandling.Thishaspromotedth

eexpansionofproximalsensingandthe 

explorationofcombiningbothdatasources—

aerialandterrestrial—forabetterunderstandingof the 

physiology of plants andtrees. 

• Maps, as the most common way to 

represent agricultural data, would need to be 

standardized. Intensely-interpolated colored maps 

are output by GIS, FMIS, and other software 

applications, 

butatthetimeofcomparingdatawiththeprecisionenou

ghtograntstatisticalsignificance,itoften becomes an 

impossible mission without standardization. 

Figure3, for example, uses the flat representation 

provided by the local tangent plane (LTP) and 

formatted in a regular grid. Other programs use 

UTM projections, and there are even images only 

given in geodetic coordinates. At the need of 

overlapping maps, it takes a big effort to make all 

data compatible. Not only the 

waycoordinatesarerepresentedneedsastandard,butal

sotheunits,intervals,andevencolorsin which 

parameters are displayed. The combination of 

aerial and ground data, for instance, will greatly 

benefit from such standardization in the way data is 

visually displayed for the average grower 

tounderstand. 

• Table2provides a representative 

compilation of software applications for farm 

management. The list is not exhaustive, and yet 

includes companies from four continents and 14 

countries, which provides evidence of the fact that 

agricultural digitalization is in fact a globalmove. 

• Regardingvariablerateapplications,adoptio

nratesneedtoaugment,andtodoso,farmersmust find 

by themselves the value in this technology for their 

crops. Only after maintaining accurate 

spatialrecordsandanalyzingfielddatacaneffectivevar

iablerateprescriptionsbecreated[39]to address 

particulartasks. 

 

III. CONCLUSIONS 
This analysis confirms that consistent 

knowledge about farms leads to optimal decisions. 

Agricultural management systems can handle farm 

data in such a way that results are orchestrated to 

address customized solutions for each farm. This 

aid for farmers in the form of digital solutions 

combines forces with robotics and artificial 

intelligence to launch the imminent idea of 

Agriculture 5.0. After thirty years of great 

expectations—and disappointments—by the 

application of robotics to agriculture, the timing 

seems right for the first time. However, in order to 

take the most advantages from Agriculture 5.0, 

deep training needs to be delivered to users, ideally 

young farmers eager to 

learnandapplymoderntechnologiestoagricultureand

grantingagenerationalrenewalstilltocome. It seems 

to be the right time to move forward towards a 

modern and sustainable agriculture that     is 

capable of showing the full power of data-driven 

management to face the challenges posed to food 

production in the 21st Century. The evolution to 

Agriculture 5.0 is in the agenda of most major farm 

equipment makers for the next decade, and 

therefore off-road equipment manufacturers will 

playakeyroleinthismoveifagriculturalrobotsareconsi

deredasthenext—smarter—generationof 

farmmachines. 
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