
Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 46 | P a g e

A Trident Extensible Multiprocessor Network

1
Shaifali Agarwal,

2
ShivangiAgarwal,

3
Amit Kumar,

4
Dr. Nishant Srivastava

1,2
Pre-Final Student ,

3,4
Assistant Profressor

3,4
Computer Science & IT ,Faculty of Engineering & Technology, Jaypee University Anoopshahr,India

Corresponding Auther: 1shaifali Agarwal

ABSTRACT- Recently the thrust for higher and higher computing power is increasing day by day, user don't

miss an opportunity to use even there smaller and smaller laptop for this purpose to get their requirement full

filled . As a first attempt version of 4 node multiprocessor architecture has been proposed in compact form

connected to fulfill the properties of multiprocessor network .It has been found that the architecture is linearly

extensible and its performance can be compared with the existing commercial multiprocessor architecture. The

proposed 4 node multiprocessor network performs equally good as compare to the existing our reported

multiprocessor network .This economical compact multiprocessor can be used for higher computation purposes .

General Terms Parallel and Distributed Systems, Scheduling & Load Balancing.

Keywords: Linearly, Multiprocessor, Scheduling and Extensibility, Two Round Scheme ,Minimum Distance

Scheme.

--- ---------

Date of Submission: 08-06-2018 Date of acceptance:23-06-2018

--- ----------

I. INTRODUCTION

 Research is to design a multiprocessor

network (interconnection) network with lesser no

of node having better characteristics then the

existing network .Lesser no of node means

economical. The other important characteristics of

a multiprocessor network a diameter, connectivity,

extensibility, fall tolerance, The efficient

management of parallelism on an interconnection

network involves optimizing conflicting

performance indices, like the minimization of

communication and scheduling overheads and

uniform distribution of load among the nodes[4]. In

such a system more than one nodes process the

various jobs concurrently. Each job may consist of

various tasks that could be executed independently.

The number of tasks allocated to each processor

has to be controlled in such a way that a high speed

execution of processes may occur while

maintaining high processor utilization. In such a

system, if some nodes remain idle while others are

extremely busy, system performance will be

degraded drastically. Therefore, scheduling of tasks

becomes an important problem for multiprocessor

system architectures and consequently it has a

substantial effect on the system performance and

utilization. It is required that all the processors

should share the load evenly that would lead to

complete the job in minimum possible time

Scheduling may be performed at the local

level or global level based on the information they

use to make load balancing decisions . In the global

schemes, the scheduling decision is made using

global knowledge: i.e. all the processors take part

in the synchronization and send their performance

profiles to the scheduler. Scheduling algorithms

can be classified as either static or dynamic. The

static algorithm performs by a predetermined

policy, whereas, the dynamic algorithm makes its

decision at run time according to the status of the

system[11],[12],[13] .

The important parameter when dynamic

scheduling algorithms are implemented on a

parallel system is the configuration of the

interconnection network. The parallel system

generally uses a regular point-to-point

interconnection network, instead of a random

network configuration. Over the years, many

different interconnection networks have been used

in commercially available concurrent systems and

numerous research prototypes have been proposed

and evaluated in the literature[1],[2] . Prime

examples are found in tree network, Hyperloop

network, novel extensible

network(NEW)[3],[4],[15],[16],Trident extensible

multiprocessor network(TEN)[5],[6],[7],[8]. The

choice of the topology of the interconnection

network is critical in the design of massively

parallel computer systems. Interconnection

networks may be categorized into two major

groups on the basis of their complexity and

scalability. The first category includes high

complex networks because of their exponential

expension and hence posses poor

scalability[7],[8],[9]. Some examples are hyperloop

networks etc. The second category of

multiprocessor systems is of Linearly Extensible

Networks, which are lesser complex[1].,[2] These

RESEARCH ARTICLE OPEN ACCESS

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 47 | P a g e

networks are highly scalable networks i.e. the size

of the system (e.g., the number of nodes) can be

increased with minor or no change in the existing

configuration. In this paper two linearly extensible

multiprocessor interconnection networks having

similar topological properties are considered for the

purpose of simulation (Fig. 1.2 to Fig.1. 3). In

addition the performance is also evaluated for

standard TEM architecture (Fig. 1.1) and a

comparative study of FOUR node network is

carried out and shown below in the table. The

important properties of these interconnection

networks are given in Table 1.

Paramete

r

Hyperlo

op

Novel

extensi

ble

Trident

Extensi

ble

No. of

Processor

N=3+n+

1

N=4+(

5n/2)

N=E-

2*n

Degree

4 4 4

Extensibil

ity

3

Invert

mirror

image

1

Diameter O(n) O(2) O(1)

Figure: Table(1)

Figure (1.1): TEN

Figure(1.2) NEW

Figure(1.3) HYPERLOOP

II. DYNAMIC TASK SCHEDULING

PROBLEM
The performance of a multiprocessor

system can be characterized by communication

delay, distribution of load among the processors

and scheduling overhead[8],[9],[10],[11]. There are

many schemes which are based on the principle of

minimum distance feature Minimum distance is the

property which assures the minimization of the

communication in distributing subtasks and

collecting partial results. A scheduling scheme

operates with this property such as Minimum

Distance Scheduling (MDS) minimizes overhead

and ensures the maximum possible speedup,

however, at the cost of idle unconnected node[4].

In this scheme, the adjacency matrix of the network

is used to satisfy the minimum distance property. A

„one‟ in the matrix indicates a link between two

nodes whereas a „zero‟ indicates there is no link

between nodes. For load balancing, the MDS

algorithm determines the value of Ideal Load (IL)

at various stages of the load (task generation). IL is

calculated by summing the load of each node in the

network divided by the total number of nodes

available in the network. The processors having a

load value greater than the IL are considered as

overloaded processors. Similarly, processors

having lesser load than the value of IL are termed

as underloaded processors. In other words the

overloaded (donors) and underloaded (acceptors)

processors are identified based on a threshold value

known as IL. Each donor processor, during

balancing, selects tasks for migration to the various

connected and underloaded processors (i.e. the

processors having a „one‟ in the adjacency matrix)

and thus maintaining minimum distance. Mostly

any load balancing algorithm considers the overall

load on the network. However, in this algorithm the

load is mapped through various stages of the task

structure. Each stage represents a particular state of

the task structure which consists of finite number

of tasks.

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 48 | P a g e

2.1 Dynamic Load Model
For the purpose of simulation we assume a

simple problem characterization in which the load

is partitioned into a number of tasks. Each task can

be an independent program or partitioned modules

of a single program. However, all the tasks are

independent and may be executed on any processor

in any sequence. The scheduling performance of

the strategy has been tested on the three different

networks by simulating artificial dynamic load. In

order to simulate the load on the given networks, it

is characterized into two groups of task structures

i.e. uniform and non-uniform load. For a

meaningful simulation, tree structures that forms a

representative sample of programs are needed

which are to be executed on the network. The tree

is considered as a test problem on which the

schemes are to be applied. In case of uniform load,

tasks are generated in a deterministic manner in the

form of a regular tree. Each node of the tree

represents a task, and executed in parallel in

breadth-first manner starting from the root task

which is assigned to some given nodes of the

network. The total number of nodes in the task tree

at a level represents a particular stage of the load.

In order to characterize non-uniform load

(non-deterministic load), the total problem is

conceived to be an arbitrary tree which unwind

itself level by level. A task scheduled on a

processor spawns an arbitrary or random number of

subtasks, which are part of the whole problem tree.

Thus the load on each processor is varying at run

time creating unbalance, and balancer/scheduler

has to be invoked after each stage.

Using the above pattern of task structure

(load), the performance of the networks has been

tested for various scheduling schemes as well as

with a new scheduling scheme. The performance is

measured in terms of Load Imbalance Factor (LIF)

i.e. the load imbalance left after a balancing action

at each stage of the load. The above simulation has

been performed on various similar multiprocessor

networks using IBM server X series 226 having

Intel Xeon 3.0 GHz processor.

III. DESIGN & ANALYSIS
The TEM network grow linearly as an

inverted image of its previous step/level. Let Q be a

set of N identical processors represented as

Q= {P0, P1……, Pn-1}

The number of processor N in the network is given

by

 N= no. of node + 2*n

Where, n is the level or steps of network (n ϵ Z and

n>0) & 4 is the no of nodes of 0th level or the basic

NEM network itself. For n=1, an TEM architecture

of 4+2*1= 6 interconnected processor can be

obtained. Similarly for n=2 there will be 9

interconnected processor.

In order to define the link function we

donate each processor in set Q as Pn. They are

numbered anticlock wise. The arrangement is

shown in Figure (3.1)

 The link function can be determined by

adjacency matrix of order N*N where N is the

number of processor Figure () show the adjacency

matrix for proposed network of four processor,

where „1‟ indicates a connection and „0‟ indicates

no connection between nodes.

Figure (3.1): Adjacency matrix for Figure (1.1)

IV. PROPERTIES OF THE TEM

NETWORK
This section defines the various methods

of connecting processor in a parallel computer. A

processor organization can be represented by a

graph in which the nodes (vertices) represent

processor and the edges represent communication

channels between pairs of processors. These

processors organization could be evaluated based

on certain criteria‟s or properties of the

organization the various properties are:

 Number of Nodes (N): The no of nodes in a

multiprocessor network plays an important

role to evaluate the performance of a

multiprocessor system. Lesser the no of nodes,

lesser is the system complexity and it is more

economical. Therefore, number of nodes

should be optimal. The no of nodes in TEN

network is N=no.of node +2*nfor n>0 whereas

no of nodes in TEN.Due to lesser no of

processor in NEW network it may be

considered more economical than other

networks.

 Diameter (D): The diameter of a network is

the measure of the maximum inter-node

distance in the network. This property is

important in determining the distance involved

in communication and hence the performance

of multiprocessor systems. In the simple words

diameter of a network is bound to increase as

the size grows unless there is no limit on the

no of links.In simple words diameter of a

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 49 | P a g e

network is the maximum shortest path between

sources and destination node. The path length

is measured by the number of links traversed.

The network diameter indicates the maximum

number of distinct hops between any two

nodes, thus provides a figure of

communication point of view.

 Degree (d): The degree in a network ids

defined as the number of connections required

at each node. It is the connectivity among

different nodes in a network. The degrees of

nodes determine the complexity among

different nodes in a network. The degree of

nodes determine the complexity of the

network. Therefore, the node degree should be

kept as low, as possible in order to reduce

cost. It is best if the number of edges per node

is a constant independent of network size,

because the processor organization then scales

more easily to systems with large number of

nodes.

 Extensibility: It is the property which

facilitates large sized system out of small ones

with minimum changes in the configuration of

nodes. It is the smallest increment by which

the system can be expanded in useful way. In

order to avoid the increasing complexity of the

system, the expansion must be linear.

 Bisection Width (b): The bisection width of a

network is the minimum number of edges that

must be removed in order to divide by the

bisection width puts a lower bound on the

complexity of the parallel algorithm.`

Its extensibility is depicted in figure (1.1a) .

V. PERFORMANCE STRATEGY (TRS –

TWO ROUND SCHEDULING

SCHEME
)

The basic approach in MDS is to optimize

the load balancing among processors under the

constraint of the need to keep message path lengths

to one hop and thus satisfying the minimum

distance property. Migration from donor processor

is done to directly connected acceptors only. Thus

for every donor, there is a set of acceptors which

are outside this set. Referring to Figure (1.1) of

NEW network, MDA (P0)= {P1, P3} ,which

indicates that even if the processor P2 is under

loaded, it would not be considered as a part of the

balancing process. Therefore, a more dynamic

nature of algorithm is required to make the

networks fully balanced, which takes into

consideration those processors also, which are not

directly connected.

 A new scheme has been proposed for

solving load balancing problem with unpredictable

load estimates. The proposed algorithm works as

an extension of MDS and named as Two Round

Scheduling scheme. It is dynamic in the sense that

no prior knowledge of load is assumed. TRS

scheme takes donor node. There may be more than

one path between the donor and acceptor

processors which are not connected directly to

processors which require multi-hop. However,

large number of hopes gives minimum load

imbalance and hence, LIF is smaller (i.e., less than

the standard range of 40%). The proposed TRS

algorithm has a constraint in the scheduling to

consider only one processor as intermediate node

between donor and acceptor nodes. To perform the

load balancing, the algorithm calculates ideal load

value for each stage of task structure, which is used

as a threshold to factor for k
th

stage, denotes as

LIFk
,
 which is

LIFk= [max {loadk (Pi)}-(ideal_load) k]/

(ideal_load) k

Where (ideal_load) k = loadk (P0) + loadk (P1) +…+

loadk (Pn-1)]/N,

and max (loadk (Pi)) denotes the maximum load

pertaining to stage k on a processor Pi, 0<=i<=N-1,

and loadk(Pi) stands for the load on processor Pi

due to k
th

 stage. Each stage of the task structure

(load) represents a finite number of tasks. Based on

the IL value, the donor (overloaded) processors and

acceptors (under loaded) processors are identified.

Migration of task can take place between donor and

acceptor processors only.

Trs Algorithm

trs()

{

/* Generate task at 0th processor, tgs indicates task

generation at a particular stage*/

/* Consider LMAX is the maximum load on a

processor at a particular load stage */

tgs[0] = 1;

while (it_count1 < LMAX)

{

/* calculate IL and RIL */

IL = Calculate_IL (tgs);

RIL = ceil (IL);

printf (tgs);

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 50 | P a g e

/* For all processors check whether the load on a

particular processor is exceeding the RIL (Rounded

IL). If so then migrate the load*/

/* Let the total number of processors are equal to

PMAX */

for (it_count2 = 0; it_count2 < PMAX; ++

it_count2)

{

if (tgs [it_count2] > RIL)

{

/* Migrate till load at processors become equal to

or less then RIL */

while (true)

{

migrate (it_count2)

if (tgs [it_count2] < = RIL) break;

} } }

printf (trs)

/* calculate LIF */

LIF = (max(tgs) – IL) / IL;

/* Enter into the next level of the task generation

(ts indicates task structure)*/

tgs = ts * tgs;

it_ count ++;

} }

/* Functions used by the algorithm */

Calculate_IL (X[])

{

sum = 0; /* x[i] indicates load at ith processor */

for (i = 0; i < PMAX; ++i)

sum = sum + x[i];

return (sum / PMAX);

}

/* Perform migrations */

migrate (p_number)

{

/* Get the set of connected processors to the

processor for which migration is being called i.e.

p_number */

for (i =0; i < PMAX; ++i)

{

if (connect ed (i, p_number, level))

temp [k++] = i ;

k--;

}

/ * Get the small loaded processor number */

small = temp [0];

for (i = 0 ; i < PMAX; ++i)

if (tgs [temp[i]] < tgs [small])

small = temp [j];

/* Transfer the load from p_number to the smallest

loaded and connected processors */

while (tgs[p_mumber] != IL || tgs[small] != IL)

{

tgs [p_number] --;

tgs [small] + =1; }

}

/* Check the under loaded processors which are not

connected. If any repeat the above procedure for

the next level of connectivity */

}

/* Function used to find the maximum load on a

processor */

max (X [])

{

max = x [0];

for (i =0; i < PMAX; ++ i)

if (x [i] > max) max = a [i] ;

return (max);

}

/* Function to check the connectivity of processor i

with processor j. Assume the level of connectivity

is given (1 or 2)*/

int connected (int i, int j, int level) /* returns true if

processors i, j are connected */

{

/* printf("\n node %d is connected to %d: %d", i, j,

adj [i][j]); */

if (level = = 1)

return adj [i][j];

for(int k = 0; k < PMAX; k++)

{

if (k = = i || k = = j) continue;

if (connected (i ,k , 1) && connected (k, j, 1))

{

/* printf("\n node %d is connected to %d through

%d", i, j, k); */

return 1;

} }

return 0; }

end of procedure.

VI. SIMULATION RESULTS
The above mentioned TRS scheme has

been implemented on IBM server X series 226

having Intel Xeon 3.0 GHz processor in the same

environment. The stimulation run consists of

generating tasks and executing them on the

network of processors i.e. Four processor TEN

network under the proposed Two Round

scheduling scheme. The result are computed based

upon the various types of load as well as for non-

uniform load (on random load) generation. To

evaluate the performance, the average percentage

of LIF is computed, which indicates the load

imbalance after a balancing action at each stage of

the task structure.

VII. TRS SCHEME ON TEN

NETWORK
The load is generated based upon the

different stages of the task structures and the

balancing action Take place for every stage. A

particular stage of task structure represents some

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 51 | P a g e

fixed amount of tasks. Table and show output of

computer generated.

Progress of load migration for uniform

and non-uniform load respectively on TEN

network of four processors (up to stage 4). In each

row the entries are: processors (donors and

acceptors), TGS (tasks generated at a particular

load stage), TR schedule, IL, Rounded IL (RIL),

LIF (%) and total tasks (TT) available at a

particular stage of load. The behavior of load

imbalance is evaluated for both the above

mentioned types of load. The average value of LIF

is obtained and the curves are plotted as the

average percent LIF against the load at various

stages (i.e. the problem size) shown in Figure(7.1).

Figure(7.1): Performance of TEN network for

uniform load

Figure(7.2): Performance of TEN network for non-

uniform load.

Figure (7.3): TRS scheme on various

multiprocessor networks

Figure (7.4): TRS scheme on multiprocessor

networks

The trend of curves obtained in figure

indicates the behavior of the load imbalance factor

with respect to load at various stages for uniform

task structures. It is observed that LIF initially rises

from zero to its high value and then reducing

asymptotically. When the number of tasks at a

particular stage is lesser than the number of nodes,

the LIF shows a higher value and hence a high load

imbalance. However, as the number of task

increase, the LIF starts reducing (as balancing

activity starts its effect) and finally approaches to

zero value. For non-uniform load (Figure) value of

00.51

A
V

ER
A

G
E

LI
F%

Load At Various Stage

LIF FOR UNIFORM LOAD(TRS)

TEN

0
0.2
0.4
0.6
0.8

1

A
V

ER
A

G
E

LI
F%

Load At Various Stage

LIF FOR NON UNIFORM LOAD(TRS)

TEN

0

2

4

6

8

10

12

14

16

18

A
V

ER
A

G
E

LI
F%

Load At Various Stage

LIF FOR UNIFORM LOAD

HYPERLOOP

NEW

TEN

0

5

10

15

20

1 3 5 7 9

A
V

ER
A

G
E

 L
IF

%

Load At Various Stage

LIF FOR NON UNIFORM LOAD

Hyperloop

NEW

TEN

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 52 | P a g e

LIF starts from zero, reaches to peak and remains

same for several stages of the tasks generation. The

reason for this high value of LIF for several load

stages may be due to imbalance of load which

result due to unpredictable load, which is smaller

than the number of processors in the network

during these stages. In this situation some of the

processors may remain idle and hence lacks the

efficient utilization of the processing elements. On

the other hand when sufficient numbers of tasks are

available, the LIF starts reducing. This reduction

however, is not that smoother as in the case of

uniform load. Figure (7.3) and figure (7.4) shown

above also depict the same scenario when

compared with other existing linear extensible

networks.

VIII. MDS ALGORITHM:
Following are the steps of scheduling algorithms

applied and corresponding comparative graph are

drawn:(MDS)

1. Mapping of the load to the root processor in

the network.

2. Calculate I at any particular load stage.

3. Migrate the task to other processor of the

network.

4. Create the subset of acceptors and donors on

the basis of IL.

5. Transfer the load from donors to the acceptors

on the basis of connectivity of the processor.

6. Repeat step 5.

7. Repeat step 2 to 5 until each and every

processor has the same load.

Figure (8.1): Implementation results of MDS

algorithm.

IX. CONCLUSION
The overall performance of the

multiprocessor system is affected by a number of

factors, such as communication delays, imbalance

of load among the processor and scheduling

overheads. Scheduling plays a vital role to improve

the performance of the system and hence a Two

Round scheduling algorithm has been proposed and

implemented on various similar multiprocessor

systems. The performance evaluated in terms of

load imbalance and the balancing time. The

performance of the TRS algorithm is highly

dependent on the connectivity of the various nodes

available in the network. However, the algorithm

allocates the tasks to the available processors in the

network whether they are connected directly or

indirectly. From the comparison made on the

graphs based on various simulation results, it may

be concluded that TRS scheme is performing well

on linearly extensible multiprocessor type systems

in general and on TEM network in particular while

considering the factor of LIF and its balancing

time. The proposed TRS scheduling scheme is

performing better, degree of balancing is higher

and the network utilization is efficient. Therefore, it

can be concluded that proposed TRS scheme is

ideally suited for linearly extensible multiprocessor

networks. The proposed TRS scheme may be

applied to other similar multiprocessor network for

better network utilization..

ACKNOWLEDGMENT

Author is deeply obliged to the Professor

& Head(CSE) M. Qasim Rafiq , Jaypee University

Anupshahr giving the idea and helping in

implementing this project.

REFERENCE:
[1]. Samad.A,(2009) “Performance Evaluation

of Linearly Extensible Multiprocessor

Architectures For Networking “, PhD thesis

submitted at AMU

[2]. Manaullah, (2013)“A Δ-Based Linearly

Extensible Multiprocessor

Network”,Vol.4(5) pp:700-707

IJCSIT;ISSN:0975-9646

[3]. Samathan , M. R. and Pradhan, D. k.(1989).

“ The de Brujin multiprocessor network: A

versatile parallel processing and sorting

network for VLSI ” Vol 38 number 4 ,pp

561-581 IEEE Transaction on Computers

[4]. Rafiq, M.Q.,Padam Kumar and Gupta J.P

(1999) , “ A Novel Tree Structured

Multiprocessor Network ” International

conference on robotics Vision and Parallel

Processing for Automation July 16-18

Malasiya.

[5]. A. Samad and M. Q. Rafiq, “A Novel

Server Architecture for Networking”, In

Proceedings of Int‟l Conference on

Robotics, Vision Information and Signal

Processing, Malaysia, 2005, 1029-1032.

[6]. B. Towles and W. Dally. Principles and

Practices of Interconnection Network.

Morgan Kaufmann Press, san Francisco.

[7]. A. Ishfaq and A. Ghafoor, “Semi-

Dostributed Load Balancing For Massively

0
0.5

1
1.5

2
2.5

A
ve

ra
ge

 L
IF

 %

LOAD STAGE

LIF VS LOAD

hyperloop

NEW

TEN

http://www.ijera.com/

Shaifali Agarwal Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6 (Part -III) June 2018, pp 46-53

www.ijera.com DOI: 10.9790/9622-0806034653 53 | P a g e

Parallel Multicomputer Systems”, IEEE

Transaction on Software Engineering, vol.

17, no. 10, 1991, 987-1004.

[8]. W. M. H. LeMair and A. P. Reeves,

“Strategies for dynamic load balancing on

highly parallel computers”, IEEE

Transaction on Parallel and Distributed

Systems, vol. 4, no. 9, 1993, 979-92.

[9]. H. Attiya, “Two phase Algorithm for Load

Balancing in Heterogeneous Distributed

Systems”, In Proceedings of 12th Euromicro

Conference on Parallel, Distributed and

Network-Based Processing (Euro-PDP‟04),

2004, 434-439.

[10]. M. Bertogna., M. Cirinei, and G. Lipari,

“Schedulability analysis of Global

scheduling algorithm on multiprocessor

platforms”, IEEE Transactions on Parallel

and Distributed Systems, vol. 20, no. 4,

2009, 553-566.

[11]. M. Dobber, R. V. D. Mei and G.Koole,

“Dynamic Load Balancing and Job

Replication in a Global-Scale Grid

Environment: A Comparison” IEEE

Transaction on Parallel and Distributed

Systems, vol. 20, no. 2, 2009, 207-218.

[12]. Yiqiu Fang, Fei Wang, Junwei Ge, “A Task

Scheduling Algorithm Based on Load

Balancing in Cloud Computing” Lecture

Notes in Computer Science, Issue: 6318,

Publisher: Springer-Verlag, 2010, 271-277.

[13]. Bertogna, M., Cirinei, M., and Lipari, G.,

“Schedulability analysis of Global

scheduling algorithm on multiprocessor

platforms”, IEEE Transaction on Parallel

and Distributed Systems, volume 20,

number 4, 2009, 553-566.

[14]. D.I. George Amalarethinam and G.J. Joyce

Mary, “A new DAG based Dynamic Task

Scheduling Algorithm (DYTAS) for

Multiprocessor Systems”. International

Journal of Computer Applications (0975 –

8887) Vol. 19, No. 8, 2011, 24-28.

[15]. Shubham chaudhary,Gaurav

Raj,N.K.gupta,”Hyperloop:An Efficient

Linearly Extensible Network”,ijtrd

volume4(6),ISSN:2394-9333.

[16]. Anjali Sharma”A Novel Extensible

Multiprocessor Network”2015.

Shaifali Agarwal "A Trident Extensible Multiprocessor Network " International Journal of

Engineering Research and Applications (IJERA) , vol. 8, no.6, 2018, pp.46-53

http://www.ijera.com/

