
Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 72 | P a g e

Selection and Reuse of Software Design Patterns Using CBR and

Word Net

Debabrata Sahu, Samiksha Mahanta
Gandhi Institute of Excellent Technocrats, Bhubaneswar, India

 Subas Institute of Technology, Bhubaneswar, Odisha, India

ABSTRACT

Softwareengineersandprogrammersdealwithrepeatedproblems and situations in the course of software

design.This lead to the development of software design patterns,which can be defined as a description of an

abstract so-lution for abstract design problems.Existing approachesto pattern application using computer tools,

need the helpand guidance of a human designer to select which

designpatterntoapply.Theautomationofthistaskopensthepos-sibility of CASE design tools providing complete

automa-tion for the application of design patterns, and the offeringnew functionalities that can help the software

designer toimprove systems, and do better software reuse. In this pa-per we present an approach that automates

design patternselectionandapplication.ThisapproachisbasedonCase-

BasedReasoningandWordNet,showinghowtheyarecom-bined to generate evolved software design

diagrams.Wealsopresentanexperimentalstudyofourapproach.

I. INTRODUCTION
The complexity of software systems is

increasing to theextent that software development

teams have difficulty todeliver systems within the

schedule accorded with clients.But this is not the

only problem, complexity brings bugsand

unforseen situations by the system specifications.

Oneway to attenuate this problem is to reuse

software [11, 5],not only code, but other

knowledge gathered during thesoftware

development process.Among the different typesof

knowledge involved in the software development,

is theknowledge about prototypical situations, and

how they canbe efficiently solved. In the software

engineering researcharea, the development of

software design patterns [7] hadthe goal of

cataloging these common situations that

appearinmostofallsoftwaresystems.

Softwaredesignpatternsareanelegantandeff

icientwayof solving abstract problems. Each

pattern describe a solu-tion thatcomprisesaset

ofstepsthatcan beusedtodesign a specific part of the

system being developed.They con-dense

knowledge about how the problem should be

viewedand what are the consequences of using a

specific pattern.The development of these patterns

were mainly for humanusage, but there were efforts

from the research communityto automate the

application of design patterns. Most of

thedevelopedapproachesneedhumanintervention,atl

eastforselection of the pattern to be applied. In this

paper we pro-

poseanapproachthatautomatescompletelytheapplica

tionofsoftwaredesignpatterns.

There are several research works that have

common as-pects with our approach.Eden et. al.

[6] has proposedan approach to the specification of

design patterns, and aprototype tool that automates

extensively their application.This approach

considers design patterns as programs

thatmanipulate other programs, thus they are

viewed as meta-programs. Eden’s approach does

not automates all the pro-

cessofdesignapplication,sinceitistheuserthathastose-

lect which pattern to apply. Another important

issue is

theabstractionlevelofapplication,whichinEden’scas

eisthecode level, while in our approach is the design

level. Tokudaand Batory [14] also present an

approach in which patternsare expressed in the

form of a series of parameterized pro-

gramtransformationsappliedtosoftwarecode.LikeEd

en’swork, this work does not address the

automation

owhichpatterntoapply.Otherworksonspecifyingdesi

gnpatternsandautomatingitsapplicationarepresented

byBär[3]and

Cinnéide[4].Theseworksalsoautomatetheapplication

of design patterns, but do not select which pattern

to ap-ply, this is done by the user. Both works deal

with

designmodificationinsteadofcodemodification.Guéhe

´neucand Jussien [8] developed an application of

explanation-

basedconstraintprogrammingfortheidentificationofd

esignpat-ternsinobject-orientedsourcecode.

Ourapproachisbasedontheideathatasystemcanlearnt

o select and to apply design patterns if it can store

RESEARCH ARTICLE OPEN ACCESS

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 73 | P a g e

andreuse experiences that encode the situation in

which pat-terns are used.This idea is based on an

area of ArtificialIntelligence [13] called Case-

Based Reasoning (CBR,

[9]).CBRisbasedontheideanotonlyofreasoningfrome

xperi-

ence, but also to learn from it. If the application of a

specificsoftware design pattern can be represented

in the form of acase, then CBR can be used for the

automation of designpatterns.Our approach

considers a case to be a situationwhere a design

pattern was applied to a specific

softwaredesign(intheformofUnifiedModellingLang

uage-UML

[12] class diagram). Cases are stored in a case

library andindexed using a general ontology

(WordNet [10]). The CBRframework that we

propose selects which pattern to apply,regarding

the target design problem, generating a new de-

sign.It can also learn new cases from the

application ofdesign patterns.This approach has

been implemented inREBUILDER, a CASE tool

which provides new function-alitiesbasedonCBR.

There are two fundamental concepts that need to be

fur-ther explored: software design patterns detailed

in section2, and CBR described in section 3.Then

we present

theREBUILDERtool,whichintegratesourapproach,f

ollowedby the detailed description of our approach.

Finally we de-scribe the experimental work made

with REBUILDER us-

ingourapproachinsection7andconcludeinsection8.

Software Design Patterns

Asoftwaredesignpatterndescribesasolution

foranab-stract design problem.This solution is

described in termsof communicating objects that

are customized to solve thedesign problem in a

specific context. A pattern

descriptioncomprisesfourmainelements:

Nameisthedescriptionwhichidentifiesthedesignpatte

rn,andisessentialforcommunicationbetweendesigner

s.

Problem describes the application conditions of

the designpattern and the problem situation that the

pattern in-

tendstosolve.Italsodescribestheapplicationcontextth

roughexamplesorobjectstructures.

Solution describes the design elements that

comprise

thedesignsolution,alongwiththerelationships,respon

si-bilities and collaborations. This is done at an

abstractlevel,sinceadesignpatterncanbeappliedtodiff

erentsituations.

Outcome describes the consequences of the pattern

appli-cation.Mostofthetimespatternspresenttrade-

offstothedesigner,whichneedtobeanalyzed.

Eric et al.[7] describe a catalog comprising 23

designpatterns, and give a more detailed

description for each pat-tern consisting on: pattern

name and classification, patternintent, other well-

known names for the pattern,

motivation,applicability,structure,participants,colla

borations,con-

sequences,implementationexample,samplecode,kno

wn

uses,andrelatedpatterns.Fromtheseitems,wedrawatt

en-tion to the participants and the structure.The

participantsdescribe the objects that participate in

the pattern, alongwith their responsibilities and

roles. These objects play animportant role in our

approach.The structure is a graphi-cal

representation of the design pattern, where objects

andrelationsbetweenthemarerepresented.

A Pattern is classified based on its function or

goal,whichcategorizespatternsas:creational,structur

al,andbe-havioral.Creational patterns have the main

goal of objectcreation, structural patterns deal with

structural changes,and behavioral patterns deal with

the way objects relate

witheachother,andthewaytheydistributeresponsibilit

y.

As an example of a design pattern we briefly

present theAbstract Factory design pattern (see [7],

page 87). The in-tent of this pattern is to provide an

interface for creation offamilies of objects without

specifying their concrete classes.Basically there are

two dimensions in objects: object types,and object

families.Concerning the type of objects, eachtype

represents a group of objects having the same

concep-tual classification, like window or scrollbar.

The family ofobjects defines a group of objects that

belong to a specificconceptual family, not the same

class of objects.For ex-

ample,MotifobjectsandMSWindowobjects,whereM

otifobjects can be windows,scrollbars or

buttons,which ex-ist in MS Window objects but do

not have the same visualcharacteristics.

Suppose now, that an user interface toolkit is being

im-plemented. This toolkit provides several types

of interfaceobjects, like windows, scroll bars,

buttons, and text boxes.The toolkit can support also

different look-and-feel stan-dards, for example,

Motif, MS Windows, and Macintosh.In order for

the toolkit to be portable, object creation

mustbeflexibleandcannotbehardcoded.Asolutiontot

heflex-iblecreationofobjectsdependingonthelook-

and-feel,canbe obtained through the application of

the Abstract Factorydesign pattern.This pattern has

five types of participatingobjects:

The Abstract Factory object declares an interface

foroperationsthatcreateabstractproducts.

Concrete Factory objects implement the operations

tocreateconcreteproducts.

•

•

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 74 | P a g e

AbstractProductobjectsdeclareaninterfaceforatypeo

fproductobject.

ConcreteProductobjectsdefineaproductobjecttobecr

eatedbythecorrespondingconcretefactory,andalsoim

plementtheAbstractProductinterface.

ClientobjectsuseonlyinterfacesdeclaredbyAbstractF

actoryandAbstractProductclasses.

Figure1.TheapplicationoftheAbstractFac-tory design pattern to the interface toolkitproblem.

A possible solution structure for the

problem posed

bytheinterfacetoolkitisdepictedinfigure1.Thepat-

ternparticipantsare:abstractfactory(WidgetFactory),

con-

cretefactories(MSWindowsFactoryandMotifFactor

y),ab-stract products (Window and

ScrollBar),concrete prod-

ucts(MSWindowsWindow,MotifWindow,MSWind

owsS-crollBar, and MotifScrollBar), and client

(Client). The cre-

atemethodsinthefactoriesaretheonlywaythatclientsc

ancreatetheinterfaceobjects,thuscontrollingandabstr

actingobject creation.The main consequences of

this pattern isthat it isolates concrete classes, makes

exchanging

productfamilieseasy,andpromotesconsistencyamon

gproducts.

Case-BasedReasoning

Case-

BasedReasoningcanbeviewedasamethodologyforde

velopingknowledge-

basedsystems[2]thatmakesuseof experience for

reasoning about problems. Its main

ideaistoreusepastexperiencestosolvenewsituationso

rprob-lems.

A case is a central concept in CBR, and it

represents achunk of experience in a format that can

be reused by a CBRsystem.Usually a case comprises

three main parts: prob-lem, solution, and

outcome.The problem is a descriptionof the

situation that the case is representing.This can

be,for example, the symptoms of a patient in case

of a med-ical situation, or a software system’s

requirements, or anydescription that can

characterize the situation being repre-sented. The

solution describes what was used to solve

thesituation described in the problem. For instance, in

the med-

icaldomainitcanbethetreatmentsusedtohealthepatien

t,or in the software domain a design that complies

with

thesystem’srequirements.Theoutcomeexpressesther

esultofthe application of the solution to the

problem. This

meansthatcommonlytherearetwopossibleoutcomes:

successorfailure.A success case represents a

situation in which

thesolutionworkedwell,whileafailurecaserepresents

asit-

•

•
•

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 75 | P a g e

Figure2.TheCBRcycle.

uation where the solution did not work.

There can be

otherpartsofcaseslikethejustificationthatrelatesprobl

emwithsolutionthroughcausalrelations.

Another important part of the CBR methodology is

thecase library. This is the place where all the cases

are

goingtobestoredandorganized.Duetothehighnumber

ofcasesthat the library can have, most of the CBR

systems use in-dexing structures that enable fast

retrieval of relevant casesfrom memory. So most of

the times a case library is

morethanjusttheplacetostorecases,butitdefineshowt

heyarestoredandhowtheycanbeaccessed.

At an abstract level CBR can be described by the

rea-soning cycle depicted in figure 2 [1].The

reasoning pro-cess starts with the problem

description, which is then trans-formed into a target

problem (or query case). The

problemisprovidedbyasystemuserorbyanothersyste

m.Thefirstphase in the CBR cycle is to retrieve

from the case librarythe cases that are relevant for

the target problem. The rele-

vancyofacasemustbedefinedbythesystem,butthemos

tcommondefinitionisbasedonfeaturesimilarity.Inthe

endof retrieval, the best retrieved case
1
 is returned

and passestothenextphasealongwiththetargetcase.

The reuse phase (also designated as adaptation

phase)adapts the retrieved case to the target

problem, yielding asolved case (or new case). This

process can be

performedwithseveralinferencetechniques,andmany

workhasbeendone on the subject [15]. The next

step for a CBR sys-

temistorevisethenewcasereturningatestedandrepaire

dcase. This phase usually comprises two parts:

verificationandevaluation.Whileverificationcheckst

henewcasecon-sistency and coherence, the

evaluation phase assesses

theperformancecharacteristicsofthenewcase.Finally,

there-tain phase learns the solved case by storing it

in the caselibrary. This phase is more complex than

it seems,

becausenotallcasesshouldbestored.Ifanewcaseisequ

alorvery

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 76 | P a g e

Figure3.REBUILDER’sArchitecture.

similartoacasealreadyinthelibrary,thenitshouldnotbe

stored because it brings nothing new to the system

and itdegrades the system’s performance. This last

phase

closestheCBRcyclebyfeedingthesystemwithnewexp

eriences,makingthesystemcapableoflearning.

REBUILDER

REBUILDER has two main

goals:centralize the cor-poration’s design

knowledge, and provide the software de-signer

with a design environment capable of

promotingsoftware design reuse.This is achieved in

our

approachwithCBRasthemainreasoningprocess,and

withcasesas the main knowledge pieces. This

section describes RE-BUILDER, detailing it’s

architecture, knowledge base andreasoningengine.

REBUILDER is based on a client-server

architecturecomprising two servers and two clients

(see Figure 3). Theknowledge base (KB) used in

REBUILDER comprises theWordNet server and

the file server, while the clients com-prise similar

modules. The main difference between clientsis

that the manager client has an extra module

allowing theKB maintenance. There can only be one

server of each type,and only one manager client.

Designer clients can be sev-

eraldependingonhardwareresources.

The WordNet server comprises the

WordNet ontologyand the Case Indexes. WordNet

is a general ontology usedin REBUILDER to index

cases using semantics. It also en-ables the

assessment of semantic similarity between con-

cepts, used in REBUILDER for case similarity.The

caseindexes are used for fast retrieval of cases from

the case li-brary. These indexes are associated to

cases and to

piecesofcasesalso,enablingflexibleretrieval.

Clients request the file server for cases,

which are in acentralized repository called case

library.Each file repre-sents an UML design (see

figure 4). This enables the clientto work only with

the strictly necessary cases. For the opti-

mizationofthisprocessthecaseindexesplayacrucialrol

e.

Thedatatypetaxonomyisusedforcomparingdatatypes

,and is a very simple taxonomy of the main Java

data

types.TheUMLeditor,theKBmanagermoduleandCB

Ren-

gineconstitutethemanagerclient(thedesignerclientise

qualtothisclientexceptthatitdoesnothavethemanager

module).

The UML editor is the front-end of REBUILDER

andthe environment where the software designer

develops de-

signs.Apartfromtheusualeditorcommandstomanipul

ateUML objects, the editor integrates new

commands

capableofreusingdesignknowledge.Thesecommand

saredirectlyrelatedwiththeCBRenginecapabilities.

TheKBmanagermoduleisusedbytheadministratorto

manage the KB, keeping it consistent and

updated.Thismodulecomprisesallthecase-

basemanagementfunctions.TheseareusedbytheKBa

dministratortoupdateandmod-ifytheKB.

TheCBREngineisthereasoningmoduleofRE-

BUILDER. This module comprises six different

parts: Re-trieval,Design

Composition,Analogy,Design Patterns,Verification,

and Learning.The Retrieval sub-module re-trieves

cases from the case library based on the

similaritywith the target problem.The Design

Composition sub-module modifies old cases to

create new solutions.It

cantakepiecesofoneormorecasestobuildanewsolutio

nby composition of these pieces.The Design

Patterns sub-module, uses software design patterns

and CBR for gener-ation of new designs.Analogy

establishes a mapping be-tween problem and

selected cases, which is then used tobuild a new

design by knowledge transfer between the se-

lectedcaseandthetargetproblem.CaseVerificationche

cksthe coherence and consistency of the cases

created or mod-ified by the system. It revises a

KnowledgeBase DesignerClient

CBR
Engine

UML
Editor

ManagerClient

CBR

Engine

UML

Editor

KBManagerModule

FileServer

Design DataType

Cases Taxonomy

WordNetServer

WordNet

Case

I
ndexes

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 77 | P a g e

Reuse
New
ClassDia

gram

ClassD

iagram Retrieval

KnowledgeBase

DPACase DesignPattern

Library Operators

Selection

solution generated by RE-BUILDER before it is

shown to the software designer. Thelast reasoning

sub-module is the retain phase, where the sys-tem

learns new cases. The cases generated by

REBUILDERare stored in the case library and

indexed using a memorystructure.

CBRApproachtoSoftwareDesignPatterns

This section presents how software design

patterns canbe applied to a target design using

CBR. We start by de-scribing the patterns module,

and then we describe each ofitspartsinmoredetail.

Architecture

Figure 5 presents the architecture of the

patterns mod-ule.It comprises three phases: retrieve

applicable

DesignPatternApplication(DPA)cases,selectbestDP

Acase,andapply selected DPA case. A DPA case

describes the appli-cation

ofaspecificdesignpatterntoasoftwaredesign(the

Figure4.ExampleofanUMLclassdiagram.

Figure5.Softwaredesignpatternapplicationmodule.

nextsubsectiondescribesthecaserepresentationindeta

il).This module is used when the user decides to

apply designpatternstoimprovethecurrentdesign.

The first phase uses a target class diagram as the

prob-

lem,andsearchestheDPAcaselibraryforDPAcasestha

t match the problem. Then the retrieved DPA cases

areranked and the best one is selected for

application,whichis performed in the next step. The

application of the

DPAcaseusesthedesignpatternoperatorsandyieldsan

ewclassdiagram, which is then used to build a new

DPA case.

ThisnewcaseisstoredintheDPAcaselibrary.

DPACaseRepresentation

A DPA case describes a specific situation

where a soft-ware design pattern was applied to a

class diagram.EachDPA case comprises: a problem

and a solution description.The problem describes the

situation of application based on:the initial class

diagram, and the mapped participants.

TheinitialclassdiagramistheUMLclassdiagramtowhi

chthesoftware design pattern was applied.Like the

name indi-cates, it is the pre-modification diagram.

The mapped par-ticipants are specific elements that

1..* ItemSelector

Selector

1..*

0..1

1..*

1..* +MaxNoOfLoans:int

+id:int

+id:int

+isLoanable:boolean

+title:String

Account

Item
+creationDate:Date

Reservation

1..*

ReservationList

+getItem():void +closeAccount():void

+loanItem():void

+printLoanInformation() :void

+reloanItem():void

+reserveItem():void

+returnItem():void

+setAccount():void

+setItemManager():void

+setMessageHandler():void

+setReportWriter():void

+creationDate:Date

+returnDate:Date

+noOfExtensions:boolean

ItemManager LoanManager Loan

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 78 | P a g e

must be present in

orderforthesoftwaredesignpatterntobeapplicable.Par

ticipantscanbe:objects, methodsor attributes.Each

participanthas a specific role in the design pattern

and it is important forthe correct application of the

design pattern.Each

patternhasit’sspecificsetofparticipants.Oncetheparti

cipantsareidentified the application of a design

pattern follows a spe-cific algorithm that embeds

the pattern

actions.Mappingtheparticipantsisperformedtoselect

aroleforsomeoftheobjects,attributesand/ormethodsi

ninitialclassdiagram.

It is important to describe the types of participants

de-fined in our approach. Object participants can

be classesor interfaces, attribute participants

correspond to class at-tributes, and method

participants correspond to object meth-

ods.Eachparticipanthasasetofproperties:

Role(String)Roleoftheparticipantinthedesignpatter

n.

Object (class or interface)Object playing the role,

or incase of attribute or method participant the

object towhichtheattributeormethodbelongs.

Method (method) Method playing the role in case

of amethodparticipant.

Attribute (attribute) Attribute playing the role in

case ofanattributeparticipant.

Mandatory (Boolean) Optional or not, if the

participantmustexistinorderforthedesignpatterntobe

applica-ble,orjustoptional.

Unique (Boolean) Unique or not, if there can be

one ormoreparticipantsoftheRoletype.

The solution description of a DPA case is the name of

thedesign pattern applied, which is then used to

select the cor-

respondentsoftwaredesignpatternoperator.Different

DPAcasescanhavethesamesolution,becausewhataD

PAcaserepresents is the context of application of a

design pattern,andthereareinfinitecontextsituations.

DPACaseLibrary

The DPA cases are indexed using the

context synsets ofthe object participants (see figure

6) and only the partici-pants (objects, attributes and

methods) can be used as re-trieval indexes. The

WordNet structure is used as an indexstructure

enabling the search for DPA cases in an incremen-tal

way.Each case can be stored in a file, which can

beread only when needed. In figure 6 there are four

indexedobjects, three of them corresponding to

object participants,and one a method participant,

indexed by the object com-prisingthemethod.

Software Design Pattern Operators

For each design pattern there is one operator, for

in-

stance,theAbstractFactorydesignpatternhasaspecific

Figure 6.An example of the DPA case index-ing.

pattern operator, which defines how to apply the

AbstractFactory pattern, and if it can be applied. A

software designpattern operator comprises three

parts:the set of specificparticipants, the application

conditions, and the actions

forathespecificdesignpattern.

The participants are key objects, methods or

attributesthat play an important and active role in a

design pattern.For example, the participants

specification for the

AbstractFactorypatternoperatorare:

AbstractFactory(Type: Object; Mandatory: no;

Unique: yes): De-

claresaninterfaceforoperationsthatcreateabstractpro

ductobjects.

ConcreteFactory(Type:Object;Mandatory:no;Uni

que:no):Im-

plementstheoperationstocreateconcreteproductobjec

•

•

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 79 | P a g e

ts.

AbstractProduct(Type: Object; Mandatory: no;

Unique: no): De-

claresaninterfaceforatypeofproductobject.

ConcreteProduct(Type:Object; Mandatory:yes;

Unique:no):Definesaproductobjecttobecreatedbyth

ecorrespondingconcretefactory.

Client (Type:Object; Mandatory:no;

Unique:no):Uses

onlyinterfacesdeclaredbyAbstractFactoryandAbstra

ctProductclasses.

Application conditions define the constraints that

mustbe met by participant objects in order to the

operator to beapplied.In the case of the abstract

factory the applicationconditions are: there must be

at least one

ConcreteProduct,andthatallConcreteProductsmustha

venopublicattributesorstaticmethods.

The pattern actions for Abstract Factory are defined

inthe algorithm 7.This algorithm transforms

ClassDiagraminto NewClassDiagramthrough the

application of the Ab-stractFactorydesignpattern.

Retrieval of DPA Cases

The retrieval of DPA cases is done using the

WordNetas the indexing structure. The retrieval

algorithm (see fig-

ure8)startswiththetargetclassdiagram(ClassDiagram

).

Figure7.TheapplicationalgorithmfortheAb-stractFactorydesignpattern.

REBUILDER only uses UML class

diagrams for reason-ing tasks, the other UML

diagrams are not used as queries.Then ituses

thecontext synsets ofthe objects inthe tar-

getdiagramasprobestosearchtheWordNetstructure.T

healgorithminitiatesthesearchonthesynsetprobes,an

d then expands the search to neighbor synsets using

allthe WordNet semantic relations (is-a, part-of,

member-of,andsubstance-of

).Itrunsuntilthenumberofcasestoberetrieved(Number

OfCases)isreached,orthemaximumsearch level

(MSL) is reached, or the Synsetslist is

emptywhichcorrespondstotheexhaustivesearchofthe

WordNet.TheDPAcaseretrievalalgorithmreceivesth

einputparam-eters: ClassDiagram,

NumberOfCases, and MSL;

returningasetofretrievedcases(SelectedCases).

SelectionofDPACases

After the retrieval of the relevant cases,

they are

rankedaccordinglytoitsapplicabilitytothetargetdiagr

am(Class-Diagram). The selection algorithm (see

figure 9) starts bymapping the ClassDiagramto

each of the retrieved cases(SelectedCases),

resulting in a mapping for each case. Themapping

is performed from the case’s participants to

thetarget class diagram (only the mandatory

participants aremapped).Associated to each

mapping there is a score,which is given by the

number of mapped participants. So,what this score

measures is the degree of participants map-

pingbetweentheDPAcaseandthetargetdiagram.

The next step in the algorithm is to rank the

•

•

•

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 80 | P a g e

Selected- Caseslistbasedonthemappingscores.Thefinalphase

Figure 9.The algorithm for selection of DPAcases.TheinputlistofDPAcasesisSelected-Cases.

Figure8.TheretrievalalgorithmforDPAcases.

consistsoncheckingtheapplicabilityofthebestDPAca

se,which is done using the design pattern operator

associatedwith the DPA case. If the application

conditions of this op-

eratorarenotviolated,thenthisDPAcaseisreturnedast

heselected one. Otherwise, this case is discarded

and the nextbest case goes through the same

process, until one applica-

blecaseisfoundoritreturnsnull.

ApplicationofDPACases

Selected the DPA case, the next step is to

apply it to thetarget class diagram generating a new

class diagram and anew DPA case. Other UML

Scores← ?

Mappings←?

FORALLSelectedCaseinSelectedCasesDO

theSelectedCase
Add to Mappingsthe

SelectedCaseMappingAddto Scoresthe

SelectedCaseScore
ENDFOR

Rank lists:SelectedCases, Mappingsand Scores, by

ScoresFORALLSelectedCaseinSelectedCasesDO

IF(DesignPattern(solutionofSelectedCase)canbeapplied

toClassDiagramusingtheMappingestablishedbefore)T

HEN

RETURNSelectedCaseandtherespectiveMappingEN
DIF

ENDFORRETUR

NNULL

Mapping/Score←Getthemappingandscorefor

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 81 | P a g e

diagrams are not used for rea-soning purposes, thus

are not changed.The application ofa DPA case is

done using the pattern operator correspond-ing to

the software design pattern given as the solution

ofthe DPA case.Starting with the participants

mapping es-

tablishedbefore,theapplicationofthepatternisdoneusi

ngtheapplicationalgorithmofthepatternoperator.

ExperimentalWork

Experimentswereperformedtoevaluatetheperfor-

mance of our approach.We used a case-base of 60

DPAcases,eachonerepresentinganapplicationofasoft

ware

design pattern to an UML class diagram.Each DPA

casewas generated from a different class

diagram.For theseexperiments five software design

patterns were used, thenames of the patterns

accordingly to [7] are: Abstract Fac-tory, Builder,

Composite, Singleton and

Prototype.EachofthesepatternsareimplementedREB

UILDERalongwiththeparticipantsdefinitionandoper

ators.

We also defined 25 test class diagrams to evaluate

theprecisionoftheretrievalmechanism.Thesediagram

scom-

prisethreetofiveobjectsandhavenomethodorattribute

s.For each test diagram the algorithm retrieved 15

DPA cases,which were then evaluated.This

evaluation consisted

indefiningifthepatternsandparticipantschosenwerec

orrector if they were not applicable. The results are

presented infigure10.

The precision results show that the retrieval

mechanismfor this set of problems achieves 76% of

correct selectedDPA cases with a retrieval set size

of three (cumulative re-sult), which is in our

opinion a very good indicator.Asexpected, the non-

cumulative results degrade with the in-

creaseintherankofretrievedcases.Thisalsoindicatesth

atthesimilaritymetricusedtoranktheretrievedcasesis

per-forming as desired, choosing the best cases for

the initialplaces of the ranking. The cumulative

values show that

theprecisionrangesfrom76%(retrievalsetsizeof3and

4),to39%(retrievalsetsizeof15).

II. CONCLUSIONS
This paper presents an approach to the selection

andapplication of software design patterns in an

automatedway.UsingCBRandWordNetweareableto

storesit-

Figure10.TheprecisionvaluesfortheDPAretrievalalgorithm.

uations where design patterns were applied.These

situa-tions, called cases, can then be reused in

similar situationsto guide design pattern selection

and application. This ap-proach was implemented

and tested in a CASE tool

namedREBUILDER,whichusesUMLtomodelsoftware

systems.

An obvious advantage of our approach is the

completeautomation of the application of design

patterns.Our ap-proach selects which pattern to

apply based on DPA cases.This enables a CASE

tool to offer new functionalities,aimed for design

maintenance and reuse.For instance,

itcansuggesttothesoftwaredesignerseveraldesignalte

rna-

tivesbasedontheapplicationofdifferentdesignpattern

s.

One limitation of our approach is that the system

per-formance depends on the quality and diversity

of the caselibrary, which will improve as time

Debabrata Sahu Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.72-82

www.ijera.com DOI: 10.9790/9622-0806037282 82 | P a g e

follows. Another lim-itation, is that the range of

case application is always re-stricted, and it does not

outperform a software designer abil-

itytoidentifywhichpatterntoapply.Despitethis,wethi

nkthat our approach can provide a good contribute

for designimprovement, especially in situations

when the user has todeal with a huge amount of

objects.In this situation, au-tomation is possibly the

only way to apply design patterns,since it is

difficult for the designer to deal with such

anamountofobjects.

REFERENCES
[1] A. Aamodt and E. Plaza.Case–based

reasoning:Foun-dational issues,

methodological variations, and system ap-

proaches.AICommunications,7(1):39–

59,1994.

[2] K.-D.Althoff. Case-basedreasoning.

InS.K.Chang,editor,Handbook on Software

Engineering and Knowledge Engi-

neering,volume1,pages549–

588.WorldScientific,2001.

[3] H.Bär,M.Bauer,O.Ciupke,S.Demeyer,S.Duca

sse,M. Lanza, R. Marinescu, R. Nebbe, O.

Nierstrasz, T. Rich-ner,M.Rieger,C.Riva,A.-

M.Sassen,B.Schulz,P. Steyaert, S. Tichelaar,

and J. Weisbrod.The famoosobject–

orientedreengineeringhandbook.Technicalre-

port,ForschungszentrumInformatik,Software

CompositionGroup,UniversityofBerne,1999.

[4] M.CinnéideandP.Nixon.Amethodologyforthe

auto- mated introduction of design

patterns.In IEEE Interna-tional Conference

on Software Maintenance, Oxford, Eng-

land,1999.IEEE.

[5] B. Coulange.Software Reuse.Springer

Verlag, London,1997.

[6] A.Eden,J.Gil,andA.Yehudai.Automatingthea

pplicationof design patterns.Journal of

Object Oriented Program-ming,(May),1997.

[7] E. Gamma, R. Helm, R. Johnson, and J.

Vlissides.DesignPatterns: Elements of

Reusable Object-Oriented

Software.Addison-Wesley,Reading,1995.

[8] Y.-

G.GuéhéneucandN.Jussien.Usingexplanation

sforde- sign patterns identification. In

IJCAI’01 Workshop on Mod-

ellingandSolvingProblemswithConstraints,p

ages57–64,Seattle,WA,USA,2001.

[9] J. Kolodner.Case-Based Reasoning.Morgan

Kaufman,1993.

[10] G. Miller, R. Beckwith, C. Fellbaum, D.

Gross, and K.

J.Miller.Introductiontowordnet:anon-

linelexicaldatabase.InternationalJournalofLe

xicography,3(4):235–244,1990.

[11] R. PrietoDiaz.Status report:Software

reusability.IEEESoftware,3(May),1993.

[12] J.Rumbaugh,I.Jacobson,andG.Booch.TheUn

ifiedMod-

elingLanguageReferenceManual.Addison-

Wesley,Read-ing,MA,1998.

[13] S. Russel and P. Norvig.Artificial

Intelligence: A

ModernApproach.PrenticeHall,NewJersey,1

995.

[14] L.TokudaandD.Batory.Automatedsoftwaree

volutionviadesignpatterns.In3rdInternational

SymposiumonAppliedCorporateComputing,

Monterrey,Mexico,1995.

[15] A. Voss.Towards a methodology for case

adaptation.InECAI ’96; 12th European

Conference on Artificial Intelli-gence, pages

147–154, Chichester - New York -

Brisbane,Aug.1996.Wiley.

