
P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 57 | P a g e

Security Design Framework For Data Management And

Distribution For Middleware In Grid Extended Cloud Computing

P.Nagamani*, Dr.P. Suresh Varma**Dr.M. Upendra Kumar***
*Research Scholar, CSE, Rayalaseema University Kurnool, A.P. India.

**Professor, CSE, Adikavi Nannaya University, A.P, India.

***Professor, CSE, MVSR Engg. College, O.U. HYD, T.S. India.

Corresponding auther: P.Nagamani

ABSTRACT
This research paper is a novel and innovative idea of providing a security framework for Data Management and

Distribution for Middleware technology for Grid extended Clouds, with a validation on a case study. The

proposed research model is an Object Oriented Pattern and Framework using UML Security Design Model for

Authentication and Authorization for Data Management and Distribution in Grid extended clouds. Appropriate

implementations are performed in case study to adequately validate the proposed Object oriented model. This

model can be extended for High Performance Computing in Distributed Systems and Big Data.

Keywords–Grid Data Management, Cloud Computing, Security Design, Authorization, Authentication, Object

Oriented Framework, Middleware

--- ----------

Date of Submission: 20-05-2018 Date of acceptance:05-06-2018

-- ----------

I. INTRODUCTON

Overview of Grid Computing:

The vision of grid computing is to enable

computing to be delivered as a utility. This vision is

most often presented with an analogy to electrical

power grids, from which it derives the name ―grid‖.

So, grid computing was meant to be used by

individual users who gain access to computing

devices without knowing where the resource is

located or what hardware it is running and so on. In

this sense, it is pretty similar to cloud computing.

However, just as electrical power girds can derive

power from multiple power generators and deliver

the power as needed by the consumer, the key

emphasis of grid computing was to enable sharing

of computing resources or forming a pool of shared

resources that can then be delivered to users. So,

most of the initial technological focus of grid

commuting was limited to enabling shared use of

resources with common protocols for access. Also,

since the key takers of this fascinating vision were

educational institutions, a particulars emphasis was

given the handle heterogeneous infrastructure.

Which was typical of a university datacenter? From

a technical perspective, a software-only solution was

proposed (Globus) and implemented on this

heterogeneous infrastructure to enable use of the

resources for higher computing needs. Once

reasonably successful within universities, grid-

computing faced a serious issue when it came to

sharing resources across commercial institution.

Establishing that and security models between

infrastructure resources pooled from two

different administrative domains became even more

important. [1]

Three Fundamental Characteristics of a Grid:

The version of grid computing is to enable

computing to be delivered as a utility. This vision is

most often presented with an analogy to electrical

power grids, from which it derives the name ―grid‖.

So, grid computing was meant to be used by

individual users who gain access to computing

devices without knowing where by individual the

resource is located or what hardware it is running,

and so on. In this sense, it is pretty similar to cloud

computing. However, just as electrical power grids

can derive power from multiple power generators

and deliver the power as needed by the consumer,

the key emphasis of grid computing was to enable

sharing of computing resource or forming a pool of

shared resources that can then be delivered to users.

So, most of the initial technological focus of grid

computing was limited to enabling shared use of

resources with common protocols for access, Also,

since the key takers of this fascinating vision were

educational institutions, a particular emphasis was

given to handle heterogeneous infrastructure, which

was typical of a university datacenter. From a

technical perspective, a software-only solution was

proposed (Globus) and implemented on this

heterogeneous infrastructure to enable use of these

resources for higher computing needs. Once

reasonably successful within universities, grid

computing faced a serious issue when it came to

RESEARCH ARTICLE OPEN ACCESS

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 58 | P a g e

sharing resolves across commercial institutions.]

Establishing trust and security models between

infrastructure resources pooled from two different

administrative domains became even more

important.

Three Fundamental Characteristics of a

GridIn 2002, Ian Foster from Argonne National

Laboratories proposed a three-point checklist for

determining whether a system is a grid or not. Ian

Foster along with Steve Tucker in the popular article

―Anatomy of Grid‖ defined grid computing as

―coordinated resource sharing and problem solving

in dynamic, multi-institutional virtual

organizations.‖

So, the key concept emphasized was the

ability to negotiate resource sharing agreements

among a set of participating parties – where sharing

did not really mean ―exchange‖ but direct access to

computing resources either in a collaborative

resourced sharing or negotiated resource brokering

strategies. Further, this sharing was highly

controlled with resource providers and consumers

grouped into virtual organizations primarily based

on sharing conditions.

The following is the precise simple checklist that

was proposed: A grid is a system that

 Co-ordinate resources that are not subject to

centralized control

 Using standard, open, general purpose protocols

and interfaces

 To deliver nontrivial quality of service

The first criterion sates that a grid should

integrate computing resources from different control

domains (say servers from commuter centers of

different universities, each center having a different

system administrator in each university).

Technologically, this requirement addresses the

issues of cross-domain security, policy management,

and membership. Use of a common standard for

authentication, authorization, resource discovery

and resource access becomes a necessity in such

cases and hence the second criterion. Finally, in an

effort towards commercializing the usage of shared

resources, it is important to support various quality-

of-service parameters such as response time,

throughput, availability or even co-allocation of

resources to meet use demands.

A Closer Look at Grid Technologies:

First of all, grid computing defines a notion

of a virtual organization to enable flexible, co-

ordinate, secure resource sharing among

participating entities. A Virtual organization (VO) is

basically a dynamic collection of individuals‘ or

institutions from multiple administrative domains. A

VO forms a basic unit for enabling access to shared

resources with specific resource-sharing policies

applicable for users from a particular VO The key

technical problem addressed by grid technologies is

to enable resources sharing among mutually

distrustful participants of a VO who may have

varying degrees of prior relationship (perhaps none

at all) and enable them to solve a common task.

An extensible and open Grid Architecture

was defined by Ian Forstrn ―The Anatomy of the

Grid [36] in which protocols, services APs and

SDKs are categorized according to their roles in

enabling resource sharing. The Grid Fabric layer

provides the resources to which shared access is

mediated by grid protocols. These can be

computational resources, storage systems. Catalogs,

network resources or even a logical entity, such as s

distributed file system, computer cluster, or

distributed computer pool,. A well-known toolkit for

the fabric layer is they Globus Toolkit that provides

local resource specific operations on existing

computing elements [37]. The connectivity layer

includes the core protocols for communication and

authentication for inter-node communication. The

key aspects of these protocols include single sign

on, delegation, use-based trust relationships and

integrating with local security solutions. One

important protocol whose reference implementation

is available in Globus is the public key based GSI

protocol (Grid Security Infrastructure), which

extends TLS (Transport Layer Security) to address

these issues. The resource layer includes APIs and

SDKs for secure negotiation, monitoring, control,

accounting, and payment for operations on a single

shared resource. An example protocol at this layer is

the GRAM (Grid Resource Access and

Management) protocol used for allocating,

monitoring and control of computational resources;

and the GRIP (Grid Resource Information Protocol)

and GridFTP (File Transfer Protocol), which are

extensions of LDAP and FTP protocols. The

Collective Layer implements a variety of sharing

behaviors with directory services, brokering

services, programming systems community

accounting and authorization services and even

collaborative services. One such services is the GIIS

(Grid Information Index Servers) that supports

arbitrary views on resource subset, which can be

used with LDAP and the DUROC library that

supports resource co-allocation. [38].

Current implementation of Open Grid

architecture follows a Web Services-based interface

enabling interoperability between different

implementations of the protocols. Since web

services by definition are stateless, the Grid

community (Globus alliance) introduced a set of

enhanced specifications called Web services

Resource Framework (WSRF) that web services

could implement to become state full. Open Grid

Services Architecture now defines a service-oriented

grid computing environment, which not only

provides standardized interfaces, but also removes

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 59 | P a g e

the need for layering in the architecture and defines

a concept of virtual domains, allowing dynamic

grouping of resources as well.

A reference implementation of these

protocols is available in popular open source

software toolkit called Globus toolkit (GT), which

was developed by the Globus alliance, a community

of organizations and individuals developing

fundamental technologies behind the grid [39-41].

The nice thing about this software is that it enables

existing resources to easily join a grid pool by

enabling the required protocols locally. To get

started on setting up a grid, one just needs to

download and install GT on any of the supported

platforms. To create a resource pool, it is a good

idea to install a resource scheduler such as the

Condor cluster scheduler and configure that s a grid

gateway for resource allocating. After some initial

security configurations (obtaining signed certificates

and setting up access rights), the grid can be up and

running.

Comparing Grid and Cloud:

From the earlier description of grid

computing. It can be seen that it has many

similarities with cloud computing. However, there

are differences as well, notably the fact that grid

computing emphasizes the pooling of resources

from multiple organizations, and that it mostly

targets high-performance computing (HPC)

applications. This section compares the two

technologies in more detail using different

parameters. Readers are referred to studies made in

2008 [42, 43] for a detailed comparison of grid and

cloud computing from a practical implementation

perspective.

Similarities between Grid and Cloud:

The key similarity between cloud

computing and grid computing is the intent of

providing resources that can scale and go beyond

what a use personally owns. In grid computing, the

scalability is provided by increasing the utilization

of resources and is achieved by load balancing

across shared resources. On the other hand

scalability in a cloud service is achieved by using

sophisticated auto-re-provisioning techniques or

simply by provisioning more than what these asked

for (always catering to peak loads).

The need for multitasking and multi-

tenancy is also common between the two-Multiple

users can simultaneously access the same resources

and run multiple instances of applications. However,

since cloud computing typically involves a more

commercial agreement between the vendor and the

user, the system has more rigorous need for multi-

tenancy at every aspect of the stack-infrastructures,

platforms well as application.

Since both the forms of computing require

use of resources form someone else either the cloud

vendor or collaborator in the grid case, strict

service-level agreements need to be in place to

ensure fair play, especially when the resource usage

comes with certain commercial agreements.

Similarly, many grid systems provide support for

application failover (Condor) and this is particularly

useful for long running HPC applications to restart

from the nearest failure point. Fault tolerance of

applications on a cloud system risk in fact, critical

and the vendor needs to ensure service availability

through appropriate failover mechanisms.

Difference between Grid and Cloud:

Given the detailed discussion of cloud

computing in the earlier models and the short

introduction to grid commuting, if will be clear that

there are differences between the computing models.

A grid basically links disparate resources from

multiple organizations to form one large

infrastructure pad. Grid computing allocates

compute and storage resources to a use from a

shared point of assets that can even have a

contribution from the user‘s own organization. The

key focus is in harnessing unused resources and

typically these resources are heterogeneous in

nature. On the other hand, cloud infrastructure will

usually consist of homogeneous resources and is

provided by a single vendor to a consumer or user

(different from the vendor).

Advance Reservation:

In fact, there were many advance

reservation algorithms (Grid-ARS) and APIs (Grid

Engine) [44] proposed around 2005, to enable

optimal resource utilization in grid systems. On the

contrary, no reservation is needed in a cloud

infrastructure. On-demand resource provisioning is

one of the key benefits of cloud computing. The

resources are supposed to magically expand when

the demand increases. Some of the techniques and

APIs provided to enable this elasticity in computing

have been described earlier, and massive scale up of

resource on demand is a key aspect of cloud

computing, which removes the need for advance

resource reservations.

Another aspect that is different between the

two models is the ownership of resources. Since

resources from multiple organizations are pooled,

the machines in a grid pool will typically come from

different administrative domains. So, protocols to

manage authenticated access in such a virtual

organization become important. Resources on cloud,

however, are owned by a single cloud vendor and

any joint partnerships are handled at a business level

and no technology components for the same are

used.

Further, in a cloud environment, consumers

use what they need and pay only for what they used

(even in a private cloud, different departments in a

business may pay for their resource usage)-while

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 60 | P a g e

payment is not an aspect studied in the grid context.

Users may also pay implicitly by contributing their

resources to a shared pool for other‘s use. So, while

fine-grained usage monitoring becomes important

on a cloud, it is not of much value in a grid system.

There are also differences in the target user segment

that the two computing models address. The target

segment for cloud computing is established industry,

academia and also startups or new ventures. And

they are hosted by commercial companies like

Amazon and HP, who charge users for what they

use. On the other hand, the target populations for a

grid are primarily researchers and technology

collaborators (groups of institutions) that are

interested in sharing their individually owned

resources among each other.

Grid computing is a software-only solution,

with tools (Globus toolkit deployed to enable grid

protocols over existing systems. A cloud-based

solution, on the other hand, involves technologies at

multiple layers of the stack, leading to different clod

models (IaaS, PaaS and SaaS). Also, grid

applications are parallel, distributed, message-

passing applications that either execute certain

modules on specialized computing resources located

in a different geography, or execute a data parallel

application loosely coupled and distributed on a

number of similar compute and storage resources.

Grids are therefore suited for HPC applications for

large-scale computation where large data sets are

crouched by parallelizable compute intensive

applications. A cloud application, on the other hand,

need not be a distributed application. It needs to be

architected in a way to scale based on demand. So

apart from using distributed machines, it can also

use a scale-out technique on clusters or parallel

threads on multiple compute nodes with s shared

memory, for example. Cloud computing is also used

to host web services that tend to be a long-serving

daemon--like services that run for a long time, as

opposed to grid applications that tend to be more

compute intensive and batch-like, needing a lot of

resources for a limited amount of time (and this

estimated completion time is used for prior

reservation of the resources). Similarity, the unit of

storage used by a cloud consumer can vary from I

byte to petabytes, where a data grid is particularly

useful for large-scale date storage and manipulation.

Since cloud applications execute on a web

browser, they are much easier to use without any

client software installed: whereas grid applications

tend to be distributed and need a specific types of

heterogeneous resources requiring appropriate grid

schedulers for installation. Though the consumers

here too can use a simple browser-like interface, the

results of grid applications tend to large amounts of

data that require sophisticated visualization tools to

consume. The key aspect of cloud is abstraction of

complex technologies-he it hardware, software or

applications-and delivering it in the most simplistic

fashion. The main advantage of clouds over grid is

simplicity of usage and that of grids over cloud is

efficient use of resources.

Comparing Grid and Cloud Computing:

Can we combine the two technologies?

Though in principle, it is possible to deliver cloud

computing services over a resource pool of a grid

system, the business viability of harnessing such

resources from different organizations to

collectively deliver as a joint cloud infrastructure

vendor seems less likely. Similarly, it is possible to

think of a cloud infrastructure participating as one of

the nodes in a resource pool enabling shared access

to cloud-hosted paid infrastructure. Again, linking

up the pay-per-use model with sharing is tricky.

While the technologies are underlying both grid

computing and cloud computing may converge or

become interoperable ion the future, differences in

the commercial aspects will remain, specifically

around type of usage and access patterns.

II. PROPOSED RESEARCH WORK AND

MODEL
The Grid computing discipline involves the

actual networking services and connections of a

potentially unlimited number of ubiquitous

computing devices within a ―grid‖. Grid Computing

is widely regarded as a technology of immense

potential in both industry and academia. The

evolution pattern of grid technologies is very similar

to the growth and evolution of internet. A

computational grid is defined as hardware and

software infrastructure that provides dependable,

consistent, pervasive, and inexpensive access to

high-end computational capabilities.

 Data movement requires secure data

transfers, thus virtualized data storage mechanisms

such as Storage Area Networks (SAN), network file

systems, storage servers and virtual databases

evolved that help developers to design such

infrastructure with much more flexibility. Data-

intensive grids is on data management of variety of

data storage facilities in geographically dispersed

locations capable of providing data virtualization

services to provide transparency for data access,

integration and processing

The open Grid Services Architecture

(OGSA) describes the overall structure and services

to be provided in the grid environment OGSA

allows a system to perform a specific task, or solve a

challenging problem, by using distributed resources

over the Interconnection network. The Open Grid

Service Infrastructure (OGSI) defines mechanism

for creating, managing and exchanging information

across the grid and standard interfaces and behaviors

of grid services builder on platform web service

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 61 | P a g e

many Grid computing. Mechanismsinvolve static

data, infrastructure for aggregation of resources for

large scale problems solving, science, engineering

and commerce. The Globus security Infrastructure

provides security based upon public key encryption

or any encryption technique with virtual

organization.

The primary motivation for remote sharing

application services deployed on community

resources is virtual organization. In traditional mode

of operation, from the owner each user has to obtain

an account of each resource participating in VO

(virtual organization which is not a satisfactory

concept. Thus VO credentials allow the use of both

hardware and software resources as its increasing

trends or updates. Globus toolkit‘s resource

management mechanism combining with rich VO

policies to provide an architecture that allows

authorization and authentications that using

application services and traditional computing

resources. This architecture involves GRAM and the

Grid security Infrastructure (GSI) mechanisms.

III. LITERATURE SURVEY AND

RESEARCH OBJECTIVES
Literature Survey : The Grid consists of

loosely coupled, heterogeneous, and geographically

dispersed computing elements that are connected by

a network acting together to perform large tasks

.Grids require general software libraries called the

middleware to accomplish coordination among a

large number of nodes that comprise them. Resource

discovery is the process of finding the location of

the required resources such as the database tables in

the Grid. Resource allocation process, on the other

hand, tries to map these resources to the application

requirements for the best performance. Both

resource discovery and resource allocation are

active research areas for the grids. Recently, a

number of systems have arisen that attempt to

convert what is essentially a manual large-scale

resource provisioning and programming problem

into a more abstract notion commonly referred to as

elastic, utility, or cloud computing.

Infrastructure and information technology

primary idea is to provide or enable the people more

effectively and efficiently to perform their tasks.

The computations in modern scientific

problems are so huge that current solutions are

either incapable of solving those or may take large

amount of time to solve those. The Grid computing

is a solution that meets such requirements and gives

optimal solution by reducing computational time by

use of a large number of integrated resources. The

grid computing is analogues to electric grid which

gives consistent, steady and transparent access to its

shared resources irrespective of source. It is often

constructed over LAN, WAN OR internet

environments. The grid has multiple resource sites

that offer computing resources like workstations,

large servers, a mesh of processors and Linux

clusters to satisfy a chain of computational needs.

According to Globus Proposed model, the

grid computing is an infrastructure that enables the

integrated, collaborative use of high-end computers,

networks, databases and scientific instruments

owned and managed by multiple organizations.

The Grid bus defines grid computing as a

type of parallel and distributed system that enables

the sharing, selection and aggregation of

geographically distributed autonomous resources

dynamically at runtime depending on their

availability, capability. Performance, cost and user‘s

quality of service requirements.

There are many benefits associated with grid are:

 Provides heterogeneous system support

 Provides increased capacity and Productivity

 Supports virtual resources and virtual

 Organizations

 Provide load balancing of resources

 Provides scalability

 Improves execution by reducing time

The following broad categories of requirements:

 Trust—A grid deployment must achieve high

levels of trustworthiness and the trust

infrastructure must accommodate the unique

needs for federated control.

 Management Reporting—the grid environment

should provide a variety of reports that support

managements‘ need to understand the

deployment and utilization of resources.

 Monitoring-- A wide variety of processing

tasks may be using the resources of he grid, and

these need to be monitored in real-time and

both normal and abnormal events must be

reported using various modalities.

 Service Levels—Commercial collaborators who

choose to use grid technologies have concrete

expectations about service levels tied to specific

business relationships; the tools and techniques

for monitoring and managing service levels

must be present.

 Data Catalogs and Replicas-Sharing data

resources is often the compelling motivation for

the deployment of computing grids. Meta-data

based mechanisms support the needs for data

distribution in grids.

In addition to these management concerns,

facilities that support end user ease-of-use have an

impact on the robustness of management tools.

IV. PROPOSED WORK VALIDATED ON

CASE SUTDY
 We propose a new decentralized access control

scheme for secure data storage in clouds that

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 62 | P a g e

supports anonymous authentication. In the

proposed scheme, the cloud verifies the

authenticity of the server without knowing the

user‘s identity before storing data.

 The scheme prevents replay attacks and

supports creation, modification, and reading

data stored in the cloud. We also address user

revocation

 The main aim of this research is that the

identity of the user is protected from the cloud

during authentication.

 Revoked users cannot access data after they

have been revoked.

 To avoid replay attacks in the cloud and also

improve the security to the cloud data

V. SCOPE OF WORK
 Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing

resources that can be rapidly provisioned and

released with minimal management effort. Cloud

providers typically use a "pay as you go" model.

Cloud computing is a kind of grid computing; it has

evolved by addressing the QoS (quality of service)

and reliability problems. Cloud computing provides

the tools and technologies to build data/compute

intensive parallel applications with much more

affordable prices compared to traditional parallel

computing techniques.

Attribute-Based Encryption (ABE) and

Proxy Re-Encryption (PRE) scheme are one of the

schemes to flexibly control cloud data access in an

efficient way by integrating the concept of trust and

reputation evaluation into a cryptographic system

It is proposed a middleware technology

framework for data management and distribution in

grid computing. The goal of this framework is to

provide good resource allocation for grid application

and support collaboration with consistency or

transparency over field test on distributed data

which automates. These grid frameworks with Open

grid Services Architecture (OGSA) & GT4 has main

characteristics providing middleware technologies

along with distributed computing. The data

distribution or resource distribution have effective

grid collaboration framework. Thus in this paper we

discuss about the architecture /framework of Grid

computing with required security policies in present

environment which allows the heterogeneous

resources with grid resource broker. We also discuss

the elements of Grid and various grids that gives the

choices according to the user applications. P2P

middleware grid technology provides re-

configurability dynamics which helps from failure

by load dynamics .Globus toolkit, OGSA, OGSI,

provides Virtual organization for data managements

and resource managements are handled with great

security level job submitters and administrators to

access .This has its future enhancement for big data

and cloud computing in which still security policies

to be increased in their level of criteria

authentication or key provisions

 We have presented a decentralized access

control technique with anonymous authentication,

which provides user revocation and prevents replay

attacks. The cloud does not know the identity of the

user who stores information, but only verifies the

user‘s credentials. Key distribution is done in a

decentralized way. One limitation is that the cloud

knows the access policy for each record stored in the

cloud. The scheme introduced for realizing scalable,

flexible, and fine-grained access control in cloud

computing. The scheme seamlessly incorporates a

hierarchical structure of system users by applying a

delegation algorithm to R-HABE. Also achieves

efficient user revocation because of multiple value

assignments of attributes which allows flexible

access revocation capability also. Revocation is

achieved using interpolation which does not require

any change in other user‘s shares. . A sequence of

walk through steps for both the initial key

agreement and revocation provided also show how

these work together. We formally proved the

security of scheme based on the security of CP-

ABE. Finally, we improve the flexibility, scalability

and fine grained access control of this system by

reducing the number of keys generated for same

attributes in the same level of organization. We

implemented the proposed scheme, and conducted

comprehensive performance analysis and

evaluation, which showed its efficiency and

advantages over existing schemes. Thus R-HABE

can also introduce fuzzy –IBE as its future work

which is an application of polynomial for biometric

identity and also for error tolerance identity

VI. PROPOSED MODEL
The knowledge required to develop

complex software has historically existed in

programming folklore, the heads of experienced

developers, or buried deep in the code. These

locations are not ideal since the effort required to

capture and evolve this knowledge is expensive,

time-consuming, and error-prone. Many popular

software modeling methods and tools address

certain aspects of these problems by documenting

how a system is designed. However, they only

support limited portions of software development

and do not articulate why a system is designed in a

particular way, which complicates subsequent

software reuse and evolution.[77]

Patterns, frameworks, and middleware are

increasingly popular techniques for addressing key

aspects of the challenges outlined above. Patterns

codify reusable design expertise that provides time-

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 63 | P a g e

proven solutions to commonly occurring software

problems that arise in particular contexts and

domains. Frameworks provide both a reusable

product line architecture [1] – guided by patterns –

for a family of related applications and an integrated

set of collaborating components that implement

concrete realizations of the architecture. Middleware

is reusable software that leverages patterns and

frameworks to bridge the gap between the functional

requirements of applications and the underlying

operating systems, network protocol stacks, and

databases. This paper presents an overview of

patterns, frameworks, and middleware, describes

how these technologies complement each other to

enhance reuse and productivity, and then illustrates

how they have been applied successfully in practice

to improve the reusability and quality of complex

software systems.Fig.1 provides Middleware

Layers in Context. Figure 2 provides relationship

between framework components.

Fig. 1 Middleware Layers in Context

Fig. 2 Relationships between Framework

Components

VII. DATA MANAGEMENT
A grid is a collection of distributed

computing resources over a local or wide area

network that appears to an end user or application as

one large virtual computing system.

A computational grid is a hardware and

software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high

end computational capabilities.

Web Services and Grid Computing:

The users of such grids viz. citizens will

require web services over the Internet. They will not

b e interested or required to know of any details of

hardware or software resource locations or resource

allocations management. All this has to be provided

by the grid computing environment. Thus,

integrating web service with grid architecture

becomes a necessity for these purposes. The Open

Grid Services Architecture (OGSA) becomes

essential to offer effective, shameful web services

based on Service Oriented Architecture (SOA) on

the grid.

Key Functional Requirements in Grid Computing:

In any grid the functional elements are: [79]

 Resource Management: The ability to keep

track, allot and remove grid resources.

 Security Management: The ability to ensure

authenticated and authorized access to grid

Resources, from the users in the external world.

 Data Management: The3 ability of transporting,

cleaning, parceling and processing the Data,

between any two nodes in the grid, without the

knowledge of the user.

 Services Management: The ability of

the users and applications to query and obtain

response from the grid efficiently.

Table 1 Provides Layered Architecture:

Table 1: Layered Architecture

1. Infrastructure layer-Processors,

storage, software, data

2. Security layer-Authentication and

authorization

3. Job management layer-job scheduling,

job management, accounting

4. Resource management layer-Resource

access and management, and

scheduling services

5. Middleware layer-Tools, languages,

libraries

6. Application layer-

Scientific/engineering, commercial,

governance applications

Table 2 Provides object oriented Grid tool kit:

Table 2: object oriented Grid tool kit

Application

Legion library (method invocation server)

Legion Common Resource

File Space Management

System Directory Service

 Service

Legion object management server (core

objects)

Computational infrastructure

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 64 | P a g e

Data Management:

This model describes the basics of data

transfer on grid environments using the GridFTP

APIs provided by the Java Commodity Grid (COG)

Kit 1.2 and the Globus Toolkit,[71]

This model includes information on the following

topics:

 An overview of the GridFTP protocol for

remote file transfer

 A sample Java program for connecting to

theGridFTP server, performing single, multiple,

or parallel transfers.

 Common mistakes and error usages seen when

working with GripFTP and troubleshooting

ti8ps for those errors

 Transferring files using other grid protocols

such Globus Access to Secondary Storage

(GASS)

 GridFTP is a high performance file transfer

protocol designed specifically for grid

environments. The following sections describe

GridFTP features along with source code.

Computational grids provide the

infrastructure for powerful new tools for

investigation, including desktop computing, smart

instruments, collaboration, and distributed

commuting. The Globus Proposed models are

engaged in defining and developing a persistent data

grid with the following capabilities [Reliable Data

Transfer]:

 High-performance, source, robust datatransfer

mechanisms

 A set of tools for creating and manipulating

 Replies of large datasets

 A mechanism for maintaining a catalog of

 Dataset replicas

GridFTP is a high-performance-secure,

reliable data transfer protocol optimized for high-

bandwidth wide-area networks. The GridFTP

protocol is based on FTP, the popular Internet file

transfer protocol [Reliable Data Transfer]. This

protocol and family of tools were born from a a

realization that the grid environment needed a fast,

secure, efficient, and reliable transport mechanism.

According to Allocock and colleagues [Grid Data

Management large decentralized computational

grids require a robust transport mechanism with the

following features:

 Parallel data transfer:

Multiple TCP streams to improve bandwidth

over using a single TCP stream Parallel data transfer

is supported through FTP command extensions and

data channel extensions.

 Grid Security Infrastructure (GSI) and Kerberos

authentication support:

Use-controlled settings of various levels of

data integrity and confidentiality, user-controlled

settings of various levels of data integrity and

confidentiality. This feature provides a robust and

flexible authentication, integrity, and confidentiality

mechanism for transferring files.

 Third-party control of data transfer:

Support for managing large data sets for

large distributed communities. This provides third-

party control of transfers between storage servers.

 Striped data transfer:

Capabilities to partition data across multiple

servers to improve aggregate bandwidth. GridFTP

supports stripe data transfers through extensions

defined in the Grid Forum Draft.

 Partial File Transfer:

New FTP commands to support transfers of

regions of a file, unlike standard FTP that requires

the allocation to transfer the entire file, file, unlike

standard FTP that requires the application to transfer

the entire file.

 Reliable data transfer:

Fault recovery methods for handling transient

network failures and server outages and for

restarting failed transfers.

 Manual Control of TCP buffer size:

Support for achieving maximum bandwidth with

TCP/IP.

 Integrated Instrumentation:

Support for returning restart and performance

markets.

 Connecting in a GridFTP Server:

The Java program in Listing1 implements a basic

GridFTP transfer to the local file system.

Listing 1:

Listing 1 GridFTP.java A client program to

transfer files via Grid FTP

package grid.ftp;

import java.io.*;

import org.globus.ftp.*;

import org.globus.ftp.exception.*;

import org.globus.gsi.*;

import org.globus.gsi.gssapi.*;

import org.ietf.jgss.GSSCredential;

import java.util.*;

import org.apache.log4j.Logger;

import org.apache.log4j.Level;

import java.security.cert.X509Certificate;

/**

 * GridFTP: Transfer files via the GridFTP

protocol

 * run grid-proxy-init before running this

program

 *

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 65 | P a g e

 * Both client and server must have each other

CA certificates

 * for mutual authentication to work

 */

public class GridFTP

{

 private static Logger logger =

Logger.getLogger(GridFTP.class.getName());

 // Protocol client, provided by he Cog API

 private GridFTPClient client = null;

 // default port

 private static int GRIDFTP_PORT = 2811;

 /**

 * Constructor

 * @param host remote GridFTP host

 * @param port remote GridFTP port (default

is 2811)

 */

 public GridFTP(String host, int port)

 throws ServerException, IOException

 {

 client = new GridFTPClient(host, port);

 /**

 * Authenticate using the default

credentials.

 * Requires GSI to be configured

properly on the client.

 * Including user cert/key pair an CA

certificates

 *

 */

 client.authenticate(null);

 }

The Globus Toolkit uses the standard Apache log4j

package from http://jakarta.apache.org/log4j/docs/

to displays log messages by defining a static logger;

Private static Logger logger =

Logger.getLogger

(MyGrdFTP.class.getName ()):

This package is very popular among Java

programmers and can be very helpful when

debugging your classes. The class constructor takes

the hostname and port as arguments and

authenticates against the server using GSI

credentials.

This class works only with the Globus

Toolkit 2.2 or later. GSI changed significantly after

version 2.0. The functionality of the

org.globus.security.GlobusProxy class is largely

replaced by the or.globus.gs1.GlobusCredential

class. However, Globus recommends not using the

org.globus.gsi.GlobusCredential class because it is a

representation of Public Key Infrastructure (PKI)

credentials that are specific to one security protocol.

Instead, Globus recommends using the Generic

Security Service (GSS) abstractions as much as

possible.

The code snippet from Listing 2 shows how to do

this conversion:

GlobusCrdential globusCred = new

GlobusCredential (…);

 GSSCredential creg = new

GlobusGSSCredential Impl (lobusCred,

GSSCredential.DEFAULT_LIFETIME);

Transferring Data:

The code in Listing 2 implements a single file

transfer through GridFTP

Listing 2:

Listing 2 Single GridFTP transfer

/**

 * Transfer a file from a remote host

 * @param remoteFile Remote file. It must

exist in the server

 * @param localFile Where should the remote

file be stored?

 * @param transferType FTP transfer type.

One of:

 * GridFTPSession.ASCII

 * GridFTPSession.BINARY

 */

public void download(String remoteFile

, String localFile, int transferType)

 throws ServerException, ClientException,

IOException

{

 // remote file size

 long size = client.getSize(remoteFile);

 // check if remote file exists

 // if not an exeception will be thrown...

 if (client.exists(remoteFile)) {

 client.setType(transferType);

 /** required to transfer multiple files **/

 client.setLocalPassive();

 client.setActive();

 final FileOutputStream fos = new

FileOutputStream(localFile);

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 66 | P a g e

 // get the file, use the DataSink interface to

write incoming data

 // Implement this interface to provide your

own ways

 // of storing data.

 // It must be thread safe; in parallel transfer

mode several

 // streams may attempt to write.

 client.get(remoteFile, new DataSink() {

public synchronized void write(Buffer buffer)

throws IOException

{

System.err.println(

"received " + buffer.getLength() + " bytes");

fos.write(buffer.getBuffer());

}

public void close() throws IOException {

// close File output streams

fos.flush();

fos.close();

};

 }, null);

 // transfer ok

 logger.info(

 "Successfully transfered: "

 + remoteFile

 + " to "

 + localFile

 + " size: "

 + size);

 } else {

 System.err.println(remoteFile + "

doesn't exist");

 }

}

Transferring Multiple Files:

At first glance, a parallel transfer may

sound as though the client is capable of transferring

multiple files from multiple servers in Kazaa or

Morpheus style. In reality, however, parallel transfer

means simply that multiple streams will be opened

to transfer the same file from the same server. For

two-party transfers, GridFTP will only add overhead

in single processor machines [Reliable Data

Transfer]. In any case, the client will transfer

multiple copies of the same file without any slicing

whatsoever, although it may increase performance if

you have a multiprocessor system.

In case of two-party transfer, parallelism

should be carefully chosen. The advantage of having

multiple streams has mostly to do with low-level

TCP procedures and is also related to the TCP

window size. Using twice-the number of parallel

streams will not necessarily produce twice the

performance. Actually from a certain point, you will

experience a decrease in performance. Current

implementation of the FTP package handles each

data pathway in a separate thread, so unless your

machine has multiple CPUs, you only add

computing overhead by increasing parallelism

[ReliableDataTransfer04].

A parallel transfer requires extended mode.

Furthermore, the transfer type must be image, and

the data sink/source must support random data

access and be threading safe. Multiple threads may

write to it.

Troubleshooting:

Most of the problems in writing this code

relates to dealing with legacy proxies and converting

them to GSSCredentials, Take a careful look at the

constructor of this class to make sure you

understand the conversion process. Also ensure that

you are running the correct versions of the Globus

Toolkit and the GridFTP servers. Older versions

(before 1.5) are bit enabled for GSSAPI.

Also make sure your client-side java

libraries, prvide3d by the CoG it, are properly

configured in your class path. A set of user

certificates is also required to connect through GSI.

Runtime or Defective Credential Errors:

 Defective credentials indicate a problem with

your client and server certificates. The

following tips should be kept in mind when you

run the code ion this model:

 Make sure your java environment is setup

properly. This is done by setting the

environment variable GLOBUS_LOCATION

to the install directory, and running the java

environment configuration script

$GLOBUS_LOCATION/etc/globus.dev-

env. {csh, sh}.

 A GSI proxy should be generated first on

the client by running the command grid- Proxy-init.

Authentication Failed Errors:

If you run into an authentication failed

error, here are some tips that can help you fix them:

 For mutual authentication to succeed, both

client and server require a use certificate,

private key, and CA certificate to be properly

configured. On the client, the path to these files

is described in the file cog.properities found in

the user‘s home directory $HOME/.globus (in

UNIX systems).

Transferring Files Using Multiple Protocols:

The transfers are performed using URLs of the

form:

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 67 | P a g e

PROTOCOL: //HOST / FILE

For example to transfer a file between

two GridFTP servers:

Source URL: gsiftp://host

1:2811/c:/temp/file.xml

Destination URL:

 gsiftp://host2.2811/c:/temp/file.xml

Or, to perform a third-party transfer from

a GASS server to a GridFTP server:

Source URL: https://host

1:3154/c:/temp/file.xml

Destination URL:

 gisftp://host2:2811/tmp/filr.xml

GridFTP is a secure, reliable data transfer

protocol optimized for high-performance networks

based on FTP, the popular Internet protocol. This

model has provided a developer‘s overview of

GridFTP features withy sample programs based on

the lava Cog Kit API provided by the Globus

Toolkit. GridFTP is the foundation of data

management services, which constitute the second

pillar of the Grid Services Architecture.

Grid Extended Cloud Computing Case Study

Validation:

Cloud computing is frequently compared to

grid computing Grid computing also has the same

intent of abstracting our computing resources to

enable utility models and was proposed at least a

decade earlier than cloud computing and there are

many aspects of grid computing that have formed

the basis of the requirements placed on a cloud .

Having said that, there are also very specific

differences between a grid computing infrastructure

and the features one should expect from a cloud

computing infrastructure. This can be seen by first

describing some funds mental aspects of grid

computing and then comparing them with those of

cloud computing.

Motivation of the Thesis;

Cloud Computing has been envisioned as

the next-generation architecture of IT Enterprise. It

moves the application software and databases to the

centralized large data centers, where the

management of the data and services may not be

fully trustworthy. This unique paradigm brings

about many new security challenges, which have not

been well understood. This work studies the

problem of ensuring the integrity of data storage in

Cloud Computing. In particular, we consider the

task of allowing a third party auditor (TPA), on

behalf of the cloud client, to verify the integrity of

the dynamic data stored in the cloud. The

introduction of TPA eliminates the involvement of

the client through the auditing of whether his data

stored in the cloud are indeed intact, which can be

important in achieving economies of scale for Cloud

Computing. The support for data dynamics via the

most general forms of data operation, such as block

modification, insertion, and deletion, is also a

significant step toward practicality, since services in

Cloud Computing are not limited to archive or

backup data only. While prior works on ensuring

remote data integrity often lacks the support of

either public auditability or dynamic data

operations, this paper achieves both. We first

identify the difficulties and potential security

problems of direct extensions with fully dynamic

data updates from prior works and then show how to

construct an elegant verification scheme for the

seamless integration of these two salient features in

our protocol design. In particular, to achieve

efficient data dynamics, we improve the existing

proof of storage models by manipulating the classic

Merkle Hash Tree construction for block tag

authentication. To support efficient handling of

multiple auditing tasks, we further explore the

technique of bilinear aggregate signature to extend

our main result into a multiuser setting, where TPA

can perform multiple auditing tasks simultaneously.

Objectives:

 Input Design is the process of converting a

user-oriented description of the input into a

computer-based system. This design is

important to avoid errors in the data input

process and show the correct direction to the

management for getting correct information

from the computerized system.

 It is achieved by creating user-friendly screens

for the data entry to handle large volume of

data. The goal of designing input is to make

data entry easier and to be free from errors. The

data entry screen is designed in such a way that

all the data manipulates can be performed. It

also provides record viewing facilities.

 When the data is entered it will check for its

validity. Data can be entered with the help of

screens. Appropriate messages are provided as

when needed so that the user will not be in

maize of instant. Thus the objective of input

design is to create an input layout that is easy to

follow

Problem Definition:

In the Existing systems, the notion of

public audit ability has been proposed in the context

of ensuring remotely stored data integrity under

different system and security models. Public

auditability allows an external party, in addition to

the user himself, to verify the correctness of

remotely stored data. However, most of these

schemes do not consider the privacy protection of

users‘ data against external auditors. Indeed, they

may potentially reveal user‘s data to auditors. This

severe drawback greatly affects the security of these

protocols in cloud computing. From the perspective

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 68 | P a g e

of protecting data privacy, the users, who own the

data and rely on TPA just for the storage security of

their data, do not want this auditing process

introducing new vulnerabilities of unauthorized

information leakage toward their data security.

Disadvantages of existing system:

 Although the infrastructures under the cloud are

much more powerful and reliable than personal

computing devices, they are still facing the

broad range of both internal and external threats

for data integrity.

 Second, there do exist various motivations for

CSP to behave unfaithfully toward the cloud

users regarding their outsourced data status.

 In particular, simply downloading all the data

for its integrity verification is not a practical

solution due to the expensiveness in I/O and

transmission cost across the network. Besides, it

is often insufficient to detect the data corruption

only when accessing the data, as it does not

give users correctness assurance for those

unaccessed data and might be too late to

recover the data loss or damage.

 Encryption does not completely solve the

problem of protecting data privacy against

third-party auditing but just reduces it to the

complex key management domain.

Unauthorized data leakage still remains

possible due to the potential exposure of

decryption keys.

Problem Solution:

In this paper, we utilize the public key

based homomorphism authenticator and uniquely

integrate it with random mask technique to achieve

a privacy-preserving public auditing system for

cloud data storage security while keeping all above

requirements in mind. To support efficient handling

of multiple auditing tasks, we further explore the

technique of bilinear aggregate signature to extend

our main result into a multi-user setting, where TPA

can perform multiple auditing tasks simultaneously.

Extensive security and performance analysis shows

the proposed schemes are provably secure and

highly efficient. We also show how to extent our

main scheme to support batch auditing for TPA

upon delegations from multi-users.

Advantages of proposed system:

 Public auditability: to allow TPA to verify the

correctness of the cloud data on demand

without retrieving a copy of the whole data or

introducing additional online burden to the

cloud users.

 Storage correctness: to ensure that there exists

no cheating cloud server that can pass the

TPA‘s audit without indeed storing users‘ data

intact.

Privacy preserving: to ensure that the TPA

cannot derive users‘ data content from the

information collected during the auditing process.

 Batch auditing: to enable TPA with secure and

efficient auditing capability to cope with

multiple auditing delegations from possibly

large number of different users simultaneously

 Lightweight: to allow TPA to perform auditing

with minimum communication and computation

overhead.

TPA

Admin

Owner

Create Account

Login

File Upload

Cryptography key
Request

File Download

File Details

File Verify

Owner Details

Fig. Use case Diagram

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 69 | P a g e

File Archive
Modify

FileID
FileName
FileSize
FilePath
FileOwner
MetaData
KeyRequest
VerifyStatus

comparemetadata()
fileupload()

File Archive

FileID
FileName
FileSize
FilePath
FileOwner
MetaData
KeyRequest
DownloadStatus
ModifyStatus
VerifyStatus

metadatagenration()
fileupload()

Registration

ID
OwnerID
Password
Gender
Mobile
EMail
Date

Loginidgenration()
CreateAccount()

Fig. Class Diagram

Admin TPA Owner

Database

Create Account

Not Modify File

Download Verification key request

Upload Files

Cryptography
Encryption key

Verify Owner Files

Diect Verify Files

Download key Request

Allow/Block

Download Verification/Key Processing

Upload Vrification File

File Modify Status

Modify File

Download File

Download
 verification

Direct
 verification

View Owner Detalils & Owner Files

Warning To Owner

Waring from Admin

Fig. Sequence Diagram

Login

Admin TPA

Exists

Create Account

Verifiction
Status

Direct

Verification

Download

Verification

Check

Download

Request
Status

Owner

Admin

View & Download
owner files

View Owner
Details

Warning Mail
To Owner

File Not
Modify

File Modify

File Download
with crypto

key

download modify
File with key

Warning from
Admin

File Upload

Cryptogrphic key
Sent to Mail

File Not
Modify

File Download
with key

File Verification

Direct
Verification

Download
Verification

key request
to owner

Process
Pending

File Download

Verify & Upload
Downlod File

A

Fig. Activity Diagram

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 70 | P a g e

File Archive
Modify

FileID
FileName
FileSize
FilePath
FileOwner
MetaData
KeyRequest
VerifyStatus

comparemetadata()
fileupload()

File Archive

FileID
FileName
FileSize
FilePath
FileOwner
MetaData
KeyRequest
DownloadStatus
ModifyStatus
VerifyStatus

metadatagenration()
fileupload()

Registration

ID
OwnerID
Password
Gender
Mobile
EMail
Date

Loginidgenration()
CreateAccount()

Fig. Implementation of system using

class diagram

SCREEN SHOTS;

Fig. Home window

Fig. Owner login form window

Fig. Owner registration window

Fig. Owner window after login is success

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 71 | P a g e

Fig. Owner file detail window

Fig. User requested files on owner window

Fig. Owner uploaded files window

Fig. User login window

Fig. User registration login window

Fig. TPA verified files on user window

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 72 | P a g e

Fig. User sees all files uploaded by owners

Fig. User download owner files

Fig. TPA login form

Fig. TPA window after login success

Fig. TPA verify the owner files

Fig. TabofileupDatabase Table

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 73 | P a g e

Fig. Tabownerreg

Fig. Userreg

VIII. CONCLUSION
This research paper is a novel and innovative

idea of providing a security framework for Data

Management and Distribution for Middleware

technology for Grid extended Clouds, with a

validation on a case study. The proposed research

model is an Object Oriented Pattern and Framework

using UML Security Design Model for Authnticaton

and Authorization for Data Management and

Distribution in Grid extended clouds. Appropriate

implementations are performed in case study to

adequately validate the proposed Object oriented

model. This model can be extended for High

Performance Computing in Distributed Systems and

Big Data.

REFERENCES
[1] M Ozaki, Dinkar Sitaram, Geetha Manunath,

‖Moving to the Cloud‖, Syngress Elsevier

2012, ISBN: 978-1-59749-725-1.

[2] R.E. Rajkumr Buyya, JamesBroberg, Andrzej

Goscinski, ―Cloud Computing Principles and

Paradigms‖, Wiley 2016, ISBN: 978-81-265-

4125-6.

[3] AravindDoss,RajeevNanda,―CloudComputin

g A Practitioner‘s Guide‖ McGraw Hill

Education,2013,ISBN(13): 978-1-25-906571-

8, IBN (10): 1-25-906571-2.

[4] Syed A. Ahson, Mohammad Ilyas, ―Cloud

Computing and Software Services Theory

and Techniques‖, CRC Press, ISBN: 976-1-

4398-0315-8.

[5] Jose C. Cunha,Omer F.Rana (Eds),‖Grid

ComputingSoftwareEnvironmentsand Tools‖,

Springer 2006, ISBN: 81-8128-461-5.

[6] Bhushan Jadhave. Sonli Jadhav, ―Grid and

Cloud Computing‖, Technical publications

2017, ISBN: 978-93-332-1162-8.

[7] Fran Berman,Geoffrey C,Fox, Anthony

J.G.Hey, ―Grid Computing Making the

Global Infrastruccture A Reality‖, Wiley

2010, ISBN: 978-81-265-2722-9.

[8] Ahmar Abbas, ―Grid Computing: A Practical

Guide To Technology And Applications‖,

Charles River Midia Inc. 2006, ISBN: 81-

7008-626-4.

[9] Dharanipragada Janakiram, ―Grid And Cloud

Computing‖, Mc Graw Hill 2016, ISBN: 13:

978-93-392-2147-8./*

[10] Grid computing –Joshy joseph and craig

fellenstein, Published by Pearson Education,

Inc., prentice Hall PTR .

[11] DanielNurmi,RichWolski, Chris Grzegorczyk

Graziano Obertelli, Sunil Soman, Lamia

Youseff,DmitriiZagorodnov,"The Eucalyptus

Open-sourceCloud-computing System",PP.1-

8.

[12] Paolo Maggi and Riccando Sisto ―A Grid-

Powered Framework to Support Courses on

DistributedProgramming‖ IEEE Transactions

on Education, VOL.50.No.1. February 2007.

PP.21-33.

[13] Ian Foster,CarlKesselman, Jeffrey M.Nick,

Steven Tuecke,"Grid Services for Distributed

System Integration",0018-9162/02/$17.00 ©

2002 IEEE, June 2002, pp.1-46.

[14] IanFoster,CarlKesselman,StevenTuecke,"The

Anatomy of the Grid",pp.1-24.

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 74 | P a g e

[15] DhineshBabuL.D.aP.VenkataKrishnab,"Appl

ied Soft Computing",2013 Elsevier B.V.

pp.2292–2303

[16] Bernard Cohen, Rajkumar Buyya. Manzur

Murshed,"A Toolkit for the Modeling

andSimulationofDistributedResourceManage

mentandSchedulingforGrid Computing",pp.1-

37.

[17] Geoff Coulson, Paul Grace, Gordon Blair,

Laurent Mathy DavidDuce, Chris Coopoer,

Wai Kit Yeung, Wei Cai ‗Computing Dept.

Lancaster University, LA 14YR, UK.

‖Towards A Component-Based Middleware

Framework For Configurable And

Reconfigurable Grid Computing‖ IEEE

International Workshops on Enabling

Technologies Infrastructure for Collaboraive

Enterprises (WETICE‘04) 1524-4547/04 &

IEEE. PP.

[18] Ken Kennedy , Mark Mazina, John Mellor-

Crummey, Keith Coooper, Linda Torczon

Rice University, Fran Berman, Andrew

Chien, Holly Dail, Otto Sieyert Univeristy of

California, San Diego ―Toward a Framework

for Preparing and Executing Adaptive Grid

Program‖. Proceeding of the International

Parallel and Distributed Processing

Symposium (IPDPS‘02) 2002

[19] David C. Rajkumar Buyya, "Economic-based

Distributed Resource Management and

Scheduling for Grid Computing",pp.1-166.

[20] Milan Lathia, ‖Advantages of Grid

Computing‖, IEEE DISTRIBUTED

SYSTEMS ONLINE Published by the IEEE

Computer Society. Vol.6 No.2; 2005.

[21] H.bennoit-cattin.f.bellet ahmar abbas,"grid

computing: a practical guide to technology

and applications",charlesrivermedia,

inc.pp..1-391.

[22] Coulson,G.,Blair, G.S., Clark,M.,

Parlavantazas,N.,‖The Design of a Highly

configurable and Reconfigurable Middleware

Platform‖, ACM Distributed Computing

Journal, Vol15, No2,pp109-126,April 2002.

[23] Neal LeavittLizhe Wang, Gregor von

Laszewski,"Scientific Cloud Computing:

Early Definition and Experience",PP.1-18.

[24] Ajith Abraham, Rajkumar Buyya ,Baikunth

Nath,"Nature's Heuristics for Scheduling Jobs

on Computational Grids",pp.1-8.

[25] Sergio Nesmachnowa,, Héctor Cancelaa,

Enrique Albab, "Applied Soft

Computing",2011 Elsevier

B.V.doi:10.1016/j.asoc.2011.09.022, pp.626–

639.

[26] Sankar Pal, Varun Talwar,"Web Mining

inSoft Computing Framework: Relevence,

State of the Art and Diorectins", IEEE,

publisher item identifies S 1045-9227/05562-

5, Vol.13, September,2002, PP.1163-1177.

[27] Pascale Vicat-Blose, Sebesties Soudas,

Romanic Guillier, Brice Goglis, ―Compute

Network, From Cluster to Cloud Computing‖,

Johnwilles Sons, ISN; 978-1-84821-286-2,

2011.

[28] David P. Anderson,"BOINC: A System for

Public-Resource Computing and Storage"

[29] [29] Dabu Panda, Arvind Maheshwari,‖

Middle Ware Management with Oracle

Enter prize Manager Grid Control‖, 10gR5,

Packb Publishing, ISBN: 978-1-847198-34-1,

2009.

[30] Rodrigo N. Calheiros,Rajiv Ranjan,C´esar A.

F. De Rose,"CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms",Published online 24

August 2010 in Wiley Online Library

(wileyonlinelibrary.com). DOI:

10.1002/spe.995, 2010 John Wiley & Sons,

Ltd. pp.41:23–50.

[31] Guido Schnutz, Daniel Liebhart, Peter

Welkerback, Service Oriented Architecture:

An Integration Blue Print‖, ISBN: 978-1-

849681-04-9, 2010.

[32] Maozhes li, Mark Baker,‖ The Grid Core

Technologies‖, ISBN: 978-04-470-09417-4,

2005.

[33] Ajith Abrahama, Ravi Jainb, Johnson

Thomasc,Sang Yong Hana,"D-SCIDS:

Distributed soft computing intrusion

detection system", Elsevier

Ltd.doi:10.1016/j.jnca.2005.06.001,pp,1-19.

[34] H. Liu,Ajith Abraham,"Scheduling Jobs on

Computational Grids Using Fuzzy Particle

Swarm Optimization Algorithm",publication

at:

https://www.researchgate.net/publication/237

144024,DOI:10.1016/j.future.2009.05.022,

PP..1-19.

[35] Edoardo Patti, Angeliti Lydia Ateria Syrri

Marco Jals, Pierlvisi Mascerlle,‖

Insrastructure for General Purpose Services is

smart Grid‖, IEEE, DOI: 10.1109|TSG.2014-

2375197.

[36] Klaus Krauter1, Rajkumar

Buyya,Muthucumaru Maheswaran "A

taxonomy and survey of gridresource

management systems for distributed

computing",SOFTWARE—PRACTICE

AND EXPERIENCE, 2002; 32:135–164

(DOI: 10.1002/spe.432).

[37] Energy Nikuleteu, Evgesiy Plozhrik, Eles

Lukyeschikov, Dmity Biuryukov, ―Features

Management & Middleware of Hybrid Cloud

Infrastructure‖, IJACSA,International Journal

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 75 | P a g e

of Advanced Computer Science &

Applications, Vol A, No. PP-31-36, 2016.

[38] SushmitaRuj, Member, Ieee, Milos

Stojmenovic, Member, Ieee, And Amiya

Nayak,‖ Decentralized Access Control With

Anonymous Authentication Of Data Stored

In Clouds‖ Ieee Transactions On Parallel And

Distributed Systems, Vol. 25, No. 2, February

2015.

[39] S. Ruj, A. Nayak, and I. Stojmenovic,

―DACC:Distributed access control in

clouds,‖ in IEEE TrustCom, 2011.

[40] Sung-Soo Kim, Ji-Hwan Byeon, Hongbo

Liu,Ajith Abraham,Sea´n McLoone"Optimal

job scheduling in grid computing using

efficient binary artificial bee colony

optimization", Springer-Verlag Berlin

Heidelberg 2012, Soft Comput (2013)

17:867–882,DOI 10.1007/s00500-012-0957-

7.

[41] Antonio J. Nebro, Enrique Alba,Francisco

Luna"Multi-objective optimization using grid

computing",Springer-Verlag 2006,Soft

Comput (2007) 11: 531–540, DOI

10.1007/s00500-006-0096-0.

[42] Ivan Krsul, Arijit Ganguly, Jian Zhang,José

A. B. Fortes, Renato J.

Figueiredo,"VMPlants: Providing and

Managing Virtual Machine Execution

Environments for Grid Computing",0-7695-

2153-3/04,2004 IEEE,pp.1-12.

[43] G. Laccetti, G. Schmid, (2007) ―A framework

model for grid security‖, Future

Generation Computer Systems, Volume 23,

Issue 5, June 2007, pp.702-713.

[44] I. Foster and C. Kesselman, eds., The Grid:

Blueprint for a Future Computing

Infrastructure, Morgan Kaufmann, San

Francisco, 1999.

[45] R. Buyya, D. Abramson, J. Giddy, and H.

Stockinger, Economic models for resource

management and scheduling in Grid

computing, Concurrency and Computation:

Practice and Experience 14(13–15):1507–

1542 (Nov.–Dec. 2002).

[46] Joseph, Craig Fellemtein ―Grid Computing‖,

PEARSON,, 2004, ISBN:978-81-317-0885-9.

[47] Anirban Chakrabarti, ―Grid Computing‖,

Springer 2007, ISBN: 978-3540-44492-3.

[48] C. Anton-Haro and M. Dohler, Machine-to-

machine (M2M) Com-munications:

Architecture, Performance and Applications.

Elsevier, 2014.

[49] Y.S. Dai, M. Xie and K.L. Poh, ―Availability

Modeling and Cost Optimization for the Grid

Resource Management System‖, IEEE

Transactions on Systems, and Cybernetics —

Part A: Systems and Humans, Vol. 38, No. 1,

pp.170-179.

[50] Goel, S., Sobolewski, M., ―Trust and

Security in Enterprise Grid Computing

Environment‖ Proceedings of the IASTED

International Conference on Communication,

Network and Information Security, New

York, USA 2003.

[51] C.S.R Prabha,‖Grid Computing‖, PHI, 2008,

ISBN:978-81-203-3428-1.

[52] [52] rajkumar buyya and srikumar

venugopal―market-oriented computing and

global grids:an introduction‖. market-oriented

grid and utility computing edited by rajkumar

buyya and kris bubendorfer copyright 2010

john wiley & sons, inc.

[53] Y. Tanaka, H. Nakada, S. Sekiguchi, T.

Suzumura, and S. Matsuoka, Ninf-G: A

reference implementation of RPC-based

programming middleware for Grid computing

Journal of Grid Computing 1(1):41–51

(2003).

[54] Ian Foster, Carl Kesselman,‖Grid 2‖ Morgen

Kaufanann publishers, 2006, ISBN-13:978-

81-312-0200-5.

[55] I. Foster, C. Kesselman, J. M. Nick, S.

Tuecke, ―The Physiology of the Grid: An

Open Grid Services Architecture for

Distributed Systems Integration‖. Draft, June

2002.

http://www.globus.org/research/papers/ogsa.p

df

[56] I. Foster, H. Kishimoto, A. Savva, D. Berry,

A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,

F. Siebenlist, R. Subramaniam, J. Treadwell,

J. Von Reich, ―The Open Grid Services

Architecture, Version 1.0‖, January 2005,

Global Grid Forum (GGF),

http://forge.gridforum.org/projects/ogsa-wg.

[57] Barry Wilkinson,―Grid Computing

Trehniques and Applications―, CRC Press,

ISBN: 2010.

[58] David S.Linthiam,‖Cloud Computing and

SOA Convergence in your

Enbterprise‖,PEARSON, ISBN:978-81-317-

3358-5, 2010.

[59] Geore Reesa,‖cloud Applicatin Architetures‖,

SPD Publication, 2015, ISBN-13:978-81-

8404-714-1.

[60] Michael Miller, ―cloud Computing Web-

Based Applications That Change The Way

You Work and Collborate online‖,PERSON,

2009, ISBN: 978-81-317-2533-7.

[61] C. C. T. Mark, D. Niyato, and T. Chen-

Khong, ―Evolutionary optimalvirtual machine

placement and demand forecaster for cloud

computing,‖in I.C. on Adv. Info. Net. and

Applications – AINA. IEEE, 2011

P.Nagamani Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 57-76

www.ijera.com DOI: 10.9790/9622-0805055776 76 | P a g e

[62] L. Wang, J. Xu, M. Zhao, and J. Fortes,

―Adaptive virtual resourcemanagement with

fuzzy model predictive control,‖ in I.C. on

Autonomic Computing – ICAC. ACM, 2011.

[63] Barrie Sosinsky,‖Cloud Computing

Bible‖,WILEY published, 2011, ISBN:978-

81-265-2980-3.

[64] Cong Wang, Kui Ren, Shucheng Yu and

Wenjing Lou ―Achieving Secure, Scalable,

and Fine-grained Data Access Control in

Cloud Computing‖, INFOCOM, 2010

Proceedings IEEE,march 2010.

[65] E. Caron, F. Desprez, D.Loureiro, and A.

Muresan, "Cloud computing resource

management through a grid middleware: A

case study with DIET and eucalyptus," in

Cloud Computing, 2009. CLOUD'09. IEEE

International Conference on, 2009, pp. 151-

154.

[66] John W.Ritting house, James

F.Ransome,‖Cloud Computing

Implementations Management and Security‖,

2010, ISBN: 978-1-4398-0680-7.

[67] Anthony,TobyJ.VelteRobortElsePeter,‖Cloud

ComputingAPracticalApproach‖,TataMcGra

w–HillEdition,2010,ISBN:978-0-07-068351-

8 ICAC.,ACM, 2011.

[68] A. Gautaom Shroff,‖Enterprise Cloud

Computing Technology, Architecturte,

Applicationss‖,Cambridge University Press,

2010, ISBN-13:978-1-107-64889-0.

[69] Stephen R.Smoot, Nam K.Tom,‖Private

CloudComputingConsolidation,Vitualkizatio

nandServieOrientedInfrastracture‖,ELSEVIE

R, and MK Publication, 2012, ISBN:97893-

81269-26-8.

[70] Fran Berman, Geoffrey C.Fox,Anthony

J.G.Hey,‖Grid Computing Making The

Global Infrastructure A Reality‖,WILEY

Publication, Feb 2010.

[71] Vladimir Silva,‖Grid Computing For

Developers‖,Dreamtech Publication,2006,

ISBN:81-7722-682-7.

[72] Ahmar Abbas,‖Grid Compouting:A practical

GuidetoTechnologyandApplications‖,Firewal

Media Publicatins,2010, ISBN:81-7008-626-

4.

[73] Syed A.Ahson, Mohammad Ilyas,‖Cloud

Computing and Software Services‖,CRC

Press,May 2017, ISBN:978-1-4398-0315-8.

[74] Bhushan Jadhav, Sonali Jadhav,‖Grid and

Cloud Compouting‖,Technical Publications,

June 2017, ISBN:978-93-332-1162-8.

[75] Amit Sahai, Brent Waters, ―fuzzy identity-

based encryption‖ ,CCS '08 Proceedings of

the 15th ACM conference on Computer and

communications security 2008.

[76] Carlos Gutierrez, Eduardo Fernandez-

Medina, Mario Piattini,‖Web Sersdvices

Security Development and Architecture

Theoretical and Practical Issues‖, Information

Science Reference, 2010, ISBN:978-1-

60566-950-2.

[77] Douglas C Schmidt, Frank Buschmann,‖

Patterns, Framework and Middleware: their

synergistic relationships‖, pp .1-11

[78] Tomasz Haupt, Marlon E Pierce, ―Distributed

Object-based Grid Computing

Environments‖, in Book Grid Computing:

making the global infrastructure a reality,

Fran Berman, pp 713-728

[79] C.S.R. Prabhu, ―Crid and Cluser Computing‖,

PHI, INBN: 978-81-203-3428-1.

P.Nagamani "Security Design Framework For Data Management And Distribution For

Middleware In Grid Extended Cloud Computing "International Journal of Engineering

Research and Applications (IJERA) , vol. 8, no.5, 2018, pp.57-76

