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ABSTRACT 
In this work, the author compares optimal homotopy asymptotic method with Adomian decomposition method 

for the solution of integro-differential equations. These methods are applied to first, second and third order 

problems. Both of these methods develop series solutions to a wide variety of functional equations. Optimal 

homotopy asymptotic method traces the solution very rapidly as it uses a homotopy and control the convergence 

by the virtue of auxiliary function. Numerical results are compared with the exact solution. 
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1.  INTRODUCTION 
 Many physical systems have been modeled to 

integro-differential equations (IDE’s). The main area 

of applications includes fluid dynamics, biological 

models, chemical kinetics, population dynamics, 

nuclear reactors, wave propagation, image 

processing and engineering systems. Exact solutions 

for such equations solutions can be obtained for a 

limited class of equations. To get approximate 

solutions, many numerical/semi-numerical 

techniques have been developed and their 

applications have been extended to IDE’s. Many 

authors [1-4] used numerical methods for the 

solution of variety of IDE’s.  

 Optimal homotopy asymptotic method (OHAM) 

is the newest of all homotopy based methods. It uses 

a flexible auxiliary function which control 

convergence of the developing series. This method 

gives more accurate results than homotopy analysis 

method (HAM) and homotopy perturbation method 

(HPM).  

 Javed Ali et al. applied this new technique to 

multi-point, two-point higher order boundary value 

problems [5-9]. 

 Adomian decomposition method [10] is a 

simple and low cost method that can be applied to 

functional equations. This method develops a series 

solution that is based on Taylor’s series. Modified 

form of this method has proven to develop solution 

of the problems more effectively and rapidly [11, 

12]. 

 In this work, OHAM and ADM are compared. 

Three examples are taken from literature. The article 

is organized as follows. In section 2, basic idea of 

OHAM is extended to the problems under discussion 

and in section 3, the ADM is developed for the 

purpose. In section 4, numerical examples are given. 

Finally, in section 5, conclusion is given. 

Mathematica 7 is used for symbolic calculations. 

 

II.    APPLICATION OF OHAM TO NTH- 

         ORDER IDE 
Consider the nth order integro-differential equation 

of the form 

,
x

nv x x x d     


                              (1)                                                           

with boundary conditions  v 


    . 

Here nv x     is the nth derivative of the unknown 

function ,v x  and v x    is a nonlinear function. 

The kernel x     and the function x   are real 

and derivable functions on [0, ]b  and  and i i   are 

real constants.  

Constructing a family of curves that is defined by 

the homotopy equation 

i

x

p L x p x

p C L x p x

x p d

 

 

   


         

          

      

                                (2) 

along with the boundary conditions 

,






    


                                                        (3) 

where L is a linear,    is a nonlinear and B is a 

boundary operator. ( , )ip C  is an auxiliary function 

with [0,1]p  as an embedding parameter and 'iC s  

are convergence control parameters. 
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For 0p  , ( , ) 0ip C  , and for 0p  , 

( , ) 0ip C  . 

Eq.(2) satisfies 

   for 0,L x x p        and                          (4) 

,     

for 1.

x

L x x x d

p

     


           



       (5) 

 Solution of Eq.(4) is denoted by v x    and is 

called initial solution which satisfies the boundary 

conditions. It serves as an initial or starting value for 

the scheme to be developed. As p  moves from 0 to 

1, the initial solution v x    traces the solution curve 

v x x     , of the given problem (1). 

For 0p  , we have the linear ODE, 

L v x x      , and for 1p  , we get the complete 

problem .
x

L v x x x v d   


             

 The auxiliary function ( , )ip C  is not a fixed 

function, one can choose the best among many 

which suits the given problem. The most famous and 

simple form of this auxiliary function is 
2

1 2( , ) ...ip C pC p C                                        (6) 

 Next, the unknown function x p    is 

expanded in the usual way as  

1

1

, , ) , ,..., ) .k

i k k

k

x p C v x v x C C p






               (7) 

Plugging in Eq.(6) and Eq.(7) into Eqs.(2) and (3), 

and then equating the like powers of p , the 

following linear problems are obtained:  

Zeroth-Order Problem:  

, .n iv x x v     

          

First-Order Problem: 

.

n

x
i

v x C x v x

C v x C x v d v



  

  

  

  

     


         

             
  

Second-Order Problem:  

2

n

x

x
i

v x C v x C v x C x

C x v v d

C x v d v



   

  

   

     

   


 

  


            

        

          





 

Where the nonlinear term x    has been 

decomposed in the following manner:     

2 ...

v x v x p v x v x

p v x v x v x

    

   

              

         
 

Higher order problems can be constructed easily in 

the similar way.  

For 1p  , if the series (7) converges then  

1

1

, ) , ,..., ).i i k k

k

x C v x C v x v x C C






           

Practically, the truncated series is taken and the 

approximate solution is sought. The Mth  order 

approximation is: 

1

1

, ) , ,..., ),
M

i k

k

v x C v x v x C C



        

where 'iC s are to be determined.  

In most of the cases approximate solution upto the 

second order i.e,  

1 2 1 1 2, , ) , ) , , )v x C C v x v x C v x C C         ,        (8)                                                

is enough to produce excellent results. For the rest of 

OHAM procedure, second order solution is 

considered. For computational efficiency, solution 

(8) is expressed in power series with order of 

approximation 14( )O x . 

To determine 'iC s , we plug in Eq.(8) into Eq.(1), 

and obtain the following residual: 

) , )
x

n

i i iR x C v x C x x v C d    


            

Generally, 0R  , but it can be minimized over the 

domain of the problem. The authors reported many 

methods to achieve this goal. For this purpose, the 

method of least squares or the Galerkin’s method is 

considered. According to these methods the 

following system is to be solved for 
1 2 and .C C

 
For themethodof least squares:

1 20 0

0,         0.

b b
R R

R dx R dx
C C

 
 

  

1 20 0

For Galerkin's procedure:

0,         0.

b b
v v

R dx R dx
C C

 
 

  
  

 Having these values the second order approximate 

solution is determined. 

 

III.    ADOMIAN DECOMPOSITION  

           METHOD(ADM) 
Consider equation (1) again     

,
x

nv x x x v d    


                                                 

with boundary conditions: .v 


     

Eq.(1) can be written as 

( ) ,
x

L v x x x v d   


                            (9) 

where L  is linear operator and   is nonlinear 

operator. 

In Adomian decomposition method, solution v x   is 

given as 

0 1 2

0

. . . m

m

v x v x v x v x v x




                      (10)                                          

The nonlinear operator   is decomposed as 

0

k k

k

A




   ,                                                        (11)                                                       
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where 
kA   are Adomian polynomials that are given 

as 

0 0

1

!

k
j

k jk
i

d
A F v

k d







 

 
  

 
  0,1,2,...,j k       (12) 

Using Eqs. (1), (9), (10), (11) and (12), an iteration 

is established: 

0 0( ) , (13) L v x v 

           

1

1 , 0,1,2, . . .
x

k kv x L x d k 




        

1

0

where (.) , is -fold integral.

x

L d n    

Solution of problem (13) is: 
1

1

0 0 ( )
n

i

i

i

v x x L x  


      

The above equation plays the role of starting value 

for the above scheme.  

 

IV.  NUMERICAL IMPLEMENTATIONS 

Example1: 
0

 

x

x xdv
v e ve dx

dx

    , (0) 1.v    

Exact solution of this problem is:  coshxv e x   

Solution using OHAM: Following the procedure 

described in section 2 and confining it to only 

second order approximate solution, the following 

problems are obtained: 

Zeroth Order Problem:            

0 0 0( ) ( ) 0,  (0) 1.v x v x v     

First Order Problem: 

1 2 0 1 0 0

0 0

1 0 2 0 1 0 1 0

2 0 1

( ) ( ) ( ) ( )

( )  ( ) ( ) ( )  ( )

  ( ), (0) 0.

x x

x x x

x

x

v x C e v x dx C e e v x dx v x

C v x C e v x v x v x C v x

C e v x v

    

     

 

 

 

Second Order Problem: 

2 2 1 1 1 1

0 0

1 1 2 1 2 1 1 1

2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) '( ) '( )

 '( ),  (0) 0.

x x

x x x

x

x

v x C e v x C e e v x v x

C v x C e v x v x v x C v x

C e v x v

    

    

 

 

 

Solutions of the above problems are given in 

respective order: 

0 ( ) xv x e   

2

1 2 2 2 1( ) 0.5 (2 - 2 2 )x x xv x e C C e C xe C x      

2 2 1 2 2

2 2 2

1 2 2 2 1 2

2 2 2 2

2 2 1 1

2 2 3 2 4

1 2 1 2 1 2 1

( ) (1/ 24) (24 48 24

48 24  24 48

24 24 12 12 

12 12 4 )

x x

x x x

x x

x x

v x e C C C C e

C C e C e C e C C x

C e x C e x C x C x

C C x C C e x C C e x C x

   

   

   

   
    

Second order approximate solution to be sought is: 
14

0 1 2( ) ( ) ( ) ( ) ( )v x v x v x v x O x    . 

Following the procedure for finding 
1C  and 

2C ,      

values for 
1 2andC C  are:  

1

2

0.95942910 

0.03308793.

C

C

 

 
  

Using these values, the approximate solution is: 
2 3 4

5 6 7

8 9

6 10 6 11

6 12 7 1413

1 0.999972 0.666474 0.332321

0.130974 0.0416759 0.0108206

0.00232884 0.000423353 

6.6180 10 9.0402 10

1.0940 10 1.1865 1 (0 )

x x x x

x x x

v x x

x x

x x O x

 

 

    

  


  

   
   

Solution using ADM: The numerical scheme is: 

 
0 0

1 1

1

( ) 0, 1

( ) ) ,
x

x

k k

L v v

v x L v L e x d



   




     



        
 

1

0

0,1,2, . . ., where (.) .

x

k L d    

Using the above scheme, the following components 

of the solution are obtained: 

0 1v  , 1 1xv e  , 2 1 (1  )xv e x   , 

2

3 (1    / 2) 1xv e x x    , 

2 3

4 1/ 6 ( 6 6 6 3 )x xv e e x x x      , 

2 3 4

5 1/ 24 (24 24 24 12 4 )x xv e e x x x x      , . . . 

Combining the components for the approximate 

solution of order five: 

0 1 2 3 4 5 ,v v v v v v v       

and now expressing it in power series with order of 

approximation 
14( )O x , the following series solution 

is obtained:  
2 3 4 5

6 7 8

9 10

6 11 7 12

7 13

1 2 / 3 / 3 2 /15

31 / 720 19 /1680 11 / 4480

163 / 362880 / 14175

9.6701 10 1.1691 10

1.2751 10

x x x x x

x x x

v x x

x x

x

 



     

  


   


  
 

 

Table 1: Numerical results for example 1 

x Error-OHAM Error-ADM 

0.0 0.0000 0.0000 

0.1 1.6712E-7 1.25694E-9 

0.2 5.9483E-7 7.28281E-8 

0.3 1.4288E-6 7.51285E-7 

0.4 2.6201E-6 3.82429E-6 

0.5 3.7860E-6 1.32215E-5 

0.6 4.4121E-6 3.57925E-5 

0.7 4.1623E-6 8.18567E-5 

0.8 3.1600E-6 1.65479E-4 

0.9 2.1691E-6 3.04477E-4 

1.0 2.64903E-6 5.20181E-4 

   Error=Exact-Approx. 

http://www.ijera.com/


Javed Ali   Journal of Engineering Research and Application                                            

www.ijera.com              ISSN : 2248-9622, Vol. 8, Issue5 (Part -V) May 2018, pp 15-19 

 
www.ijera.com                             DOI: 10.9790/9622-0805051519                               18 | P a g e  

 

 

Example 2: Consider the second order equation: 
12

2

0

xd v
e x x xv dx

dx
    ,  (0) 1,  (0) 1v v   

Exact solution of this problem is:  xv e  

 

Solution using OHAM: Following the procedure of 

OHAM, the second order approximate to be sought 

is: 
15

0 1 2( ) ( ) ( ) ( ) ( )v x v x v x v x O x     

The optimal values for the convergence control 

parameters are: 

1 21.01709526, 4.06867327C C    

Having these values, the approximate solution is: 

 
2

3

4

5

6

7

8

6 9

1 0.49999999999202993

0.16666666667772267

0.041666666666002494

0.008333333333200499

0.00138888888886675

0.00019841269840953569

 0.00002480158730119

2.75573192235466 10

2.7557319

x x

x

x

x

x

x

v x

x

 











 

 

 6 10

6 11

6 12

6 13

6 14

22354662 10

2.50521083850424 10

2.08767569875353 10

1.6059043836566 10

1.1470745597546877 10

x

x

x

x

x

























 

 

 
 

 

 

Solution using ADM: Starting with 
3

0 / 6xv e x  , 

fifth order approximate solution  
15

0 1 2 3 4 5 ( )v v v v v v v O x        

becomes: 

 
2 3

4

5

6

7

8

6 9

7 10

1 0.5 0.166666659807956

0.041666666666666664

0.0083333333333333

0.001388888888888889

0.0001984126984126984

0.0000248015873015873

2.755731922398589 10

2.75573192239859 10

2.

x x x

x

x

x

x

x
v

x

x





  












 

 

 8 11

9 12

10 13

11 14

505210838544172 10   

2.0876756987868 10

1.605904383682161 10  

1.147074559772972 10

x

x

x

x























 

 

 
 

 

 

 

Table 2: Numerical results for example 2 

x Error-OHAM Error-ADM 

0.0 0.0000 0.0000 

0.1 6.8612E-14 6.8585E-12 

0.2 2.3137E-13 5.4870E-11 

0.3 4.2433E-13 1.8519E-10 

0.4 5.8612E-13 4.3896E-10 

0.5 6.5659E-13 8.5734E-10 

0.6 5.7931E-13 1.4815E-09 

0.7 3.0109E-13 2.3525E-09 

0.8 -2.0917E-13 3.5117E-09 

0.9 -9.0950E-13 5.0002E-09 

1.0 -1.4477E-12 6.8595E-09 

   Error=Exact-Approx. 

 

Example 3: Consider the third order equation: 
/23

3

0

sin
d v

x x x xv dx
dx



    ,  

(0) 0,  (0) 0, (0) 1v v v     .  

Exact solution of this problem is:  cosv x  

 

Solution using OHAM: Following the procedure of 

OHAM, and considering second order approximate 

solution:    
15

0 1 2( ) ( ) ( ) ( ) ( )v x v x v x v x O x     

1 20.87079378 and 0.01669417.C C      

Having these values, the approximate solution is: 
2 4 6

8 7 10

9 12 11 14

1 / 2 0.0416667 0.00138889 

0.0000248016 2.75573 10

2.08768 10 1.14707 10

x x x

v x x

x x



 

   


   

   

 

 

Solution using ADM: Starting with 
4

0 cos / 24v x x  , fifth order approximate solution 

15

0 1 2 3 4 5 ( )v v v v v v v O x        

becomes:  
2 4

6 8

7 10 9 12

11 14

1 0.5 0.0418038 

0.00138889 0.0000248016

2.75573 10 2.08768 10

1.14707 10

x x

x x
v

x x

x

 



  

 

 
   
 

 

 

V. CONCLUSION 
In this work, the author compared OHAM with 

ADM for the solution of integro-differential 

equations. It is observed that second order solution 

of OHAM produced more accurate results than fifth 

order solution of ADM. This accuracy is linked with 

the use of homotopy and auxiliary function in 

OHAM. On other hand, ADM is simpler and its 

computational cost is low as compared to OHAM. 

Both methods are effective and reliable for the 

solution of a wide class of functional equations. 
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Table 3: Numerical results for example 3 

x Error-OHAM Error-ADM 

0.0 0.0000 0.0000 

0.1 4.1300E-14 -1.3714E-8 

0.2 6.5581E-13 -2.1943E-7 

0.3 3.2750E-12 -1.1109E-6 

0.4 1.0151E-11 -3.5109E-6 

0.5 2.4157E-11 -8.5716E-6 

0.6 4.8512E-11 -1.7774E-5 

0.7 8.6433E-11 -3.2928E-5 

0.8 1.4071E-10 -5.6174E-5 

0.9 2.1322E-10 -8.9981E-5 

1.0 3.0442E-10 -1.3714E-4 

1.1 4.1274E-10 -2.0080E-4 

1.2 5.3420E-10 -2.8438E-4 

1.3 6.6214E-10 -3.9170E-4 

1.4 7.8788E-10 -5.2686E-4 

1.5 9.0332E-10 -6.9430E-4 

   Error=Exact-Approx. 
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