
Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-0805057785 77 | P a g e

A Study of Tools for Behavior-Driven Development

Meenakshi Panda, Saishraddha Ray
Gandhi Institute of Excellent Technocrats, Bhubaneswar,India

Shibani Institute of Technical Education, Bhubaneswar, Odisha, India

ABSTRACT

Behavior-Driven Development (BDD) has obtained a lot of attention in recent years from both

research and practice points of view. As a new Agile development approach, it is aimed to increase

the likelihood of success of a software project by adopting best practices and concepts from Test-

Driven Development and Acceptance Test-Driven Develop-

mentandcorrectingtheirdrawbacks.Therearealotoftools that were developed in the last few years to

assist software developers in BDD. While this study describes underlying concepts and BDD itself,

the main goal of the research is to develop criteria for identifying relevant tools which can be applied

in BDD, evaluate and compare them and provide guidelines on which toolkit to choose in order to

achieve success in a project. The research approach employed in this study is composed of reviewing

relevant literature and analyzing current BDD toolkits for JVM-basedlanguages.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.9 [Software Engineering]: Management—productivity,

programming teams, software configuration management

Keywords

Behavior-Driven Development, Test-Driven Development, Au- tomated Acceptance Testing

I. INTRODUCTION
Behavior-Driven Development (BDD)

was introduced re- cently as one of the

methods in Agile software develop- ment.

BDD differs from other approaches in its

family by describing a behavior of the system

from the perspective of its stakeholders, at

all levels of granularity [21]. BDD assures that

focusing on such description of the behavior

of the system gives better communication and

produces a bigger asset for stakeholders when

compared to other Ag-

iledevelopmentmethods.Itwasoriginallydevelo

pedand

Permission to make digital or hard copies

of all or part of this work for personal or classroom

use is granted without fee provided that copies are

not made or distributed for profit or commercial

advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise,to

republish,topostonserversortoredistributetolists,req

uirespriorspecific permission and/or afee.

Full-scale Software Engineering Seminar 2015/16

RWTH AachenUniver- sity,Germany.

describedby D. North in his post [28] as a

response tothe issuesinTest-

DrivenDevelopment(TDD).BDDisbasedon

Test-

DrivenDevelopmentandAcceptanceTest-

DrivenDe- velopment [27]. D. Astels in [19]

declared that eventhose

peoplewhoapplyTDDalotdonotmakeuseofall

benefits from TDD and important aspects of

TDD are overlooked and simply ignored. He

suggested that a big part of de-

velopersarefocusedonwritingverificationtests

insteadof thinking in terms of behavior

specifications. Taking into

accountbehaviorspecificationsallowssoftwaree

ngineersto

thinkmoreclearlyabouteachbehavior,relyingl

essontest-

ingbyaclassorbyamethod,andhavingbetterexe

cutable documentation.

The paper is structured as follows. Section 2

describes the concepts of BDD and other

inherited approaches which are needed to

understand the requirements for BDD tools.

Section 3 gives an overview of the research

approach which was used to identify relevant

tools for this study. In ad- dition, Section 3

defines diverse dimensions for comparing

BDD tools, describes each analyzed toolkit in

terms ofthose

dimensionsandprovidestheoverallsummaryofc

omparison. The last section gives

theconclusions.

UNDERLYING CONCEPTS OFBDD

BDD is generally regarded as the evolution of

TDD and ATDD. This section will briefly

describe relevant aspects of TDD and ATDD

RESEARCH ARTICLE OPEN ACCESS

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-080505XXX 78 | P a g e

in terms of BDD.

Test-DrivenDevelopment

Test-Driven Development is a

development practice that involves writing

tests before writing the code being tested. One

should begin by writing a very small test for

code that does not yet exist [21]. TDD is an

evolutionary ap- proach that relies on very

short development cycles and the agile

practices of writing automated tests before

writ- ing functional code, refactoring, and

continuous integration [24]. Each development

cycle consists of three steps: the creation of

unit test, implementation, refactoring [23]. The

aforementioned approach is named TDD since

tests, writ- ten during the first steps of each

iteration, drive the design and implementation.

As a code base increases in size, more

attention is consumed by the refactoring step.

The design is constantly evolving and under

constant review though it is not predetermined.

This is emergent design at a granu- lar level

and is one of the most significant by-products

of Test-Driven Development[21].

The evaluation [26] by R. Jeffries and G.

Melnik claims that the overall quality of a

system in terms of the densityof defects

improves, although the required effort often

in- creases. A study described in [25] suggests

that developers are able to produce a better

design of a system with well- focused units

with a help of TDD.

Acceptance Test-DrivenDevelopment

AcceptanceTest-

DrivenDevelopment(ATDD)isonetype of TDD

where the development process is driven by

accep- tance tests that are used to represent

stakeholders’ require- ments [29]. M. Wynne

and A. Hellesoy in [30] justify the name of

acceptance tests as such tests express what the

software needs to do in order for the

stakeholder to find it acceptable. In the

same book they state that in ATDD instead of

a business stakeholder providing requirements

to the developers without any discussion, the

developer and stakeholder work together to

write automated tests to sat- isfy

thestakeholder.

ATDDassistsdevelopersinthecreationo

ftestcasesbased on initial requirements of a

system. There is a set of tests or acceptance

criteria that correspond to one specific re-

quirement. One can say that a requirement is

satisfied if all its associated tests or acceptance

criteria are satisfied. In ATDD acceptance tests

can be automated. ATDD empha- sizes

automation of acceptance tests and the

specification of customer-readable

requirements through concrete exam- ples,

which is also referred to as specification by

example [18]. Automated acceptance tests

encourage all people in- volved into the

process to be focused on the aims of the

software projects. Automated acceptance tests

help your team to focus, ensuring the work

you do each iteration is the most valuable

thing you could possibly be doing[30].

TDD and ATDD are adopted widely by the

industry be- cause they improve software

quality and productivity [19] [25].

Behavior-DrivenDevelopment

ThemaingoalofBDDistogetexecutablespecifica

tionsof

asystem[28][19].DanNorthstatedthatthemainre

asonfor introducing Behavior-Driven

Development was the fact that Test-Driven

Development was often perceived as a testing

technique. He replaced the word ”test” in the

name of TDD with ”behavior” in order to

emphasize that TDD is about design,

nottesting.

BDD has adopted the concept of a

ubiquitous language fromDomain-

DrivenDesign[21].Asuccessfulsoftwareproject

requiresgoodcommunication,whichinturnrelies

onashared language. Domain experts think and

reason in terms of their domain language.

Developers do the same, using concepts from

the domain of software development. Analysts

and de- velopers translate between these

domains, mapping domain concepts to design.

However, information can be lost in this

translation, which causes different people to

have different interpretations of concepts [27].

As Eric Evans describes in his book [22],

many software projects suffer from low-

quality communication between the domain

experts and program- mers on the team. Tests

written with a help of tools for BDD are

usually defined using a language that business

stakehold- ers canunderstand.

One of the key concepts of the BDD is

involvement of all stakeholders which is

possible via ubiquitous language. Business

analysts write down behavioral requirements

in the way that will also be understood by

developers who later transform these

requirements into executable tests.By

workingtogethertowritethesetests,teammemb

ersdecide what behavior they need to

implement next. They learn how to describe

that behavior in a common language that

everyone understands[30].

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-0805057785 79 | P a g e

Currently, the understanding of BDD is far

from clear and unanimous.Thereisnoonewell-

accepteddefinitionofBDD [29].

COMPARATIVESTUDYOFBEHAVIOR-

DRIVEN DEVELOPMENTTOOLS

This section is aimed to compare BDD

tools as well as to describe a research approach

that was used to select certain frameworks

from a huge number of tools that are present

now. The final comparison can be found in

table 1. The full support of a specific feature is

marked by ”+”. By ”+/-” or ”+/- -” is marked

partial support depending on the extent.

Approach for Identifying RelevantTools

The need to involve all stakeholders in

the development process spawned a number of

new tools which are aimed to assist all types of

stakeholders in applying BDD. Particu- larly,

new tools were needed to help non-technical

people to read and understand acceptance

tests, although the old

toolscouldstillbeusedandmanystillcontinuetodo

so.

The goal of this research is to create

an approach to iden- tify the tools and

frameworks which are relevant and can be

applied successfully in BDD. BDD is just a

technique which can be used without any tools

and frameworks. This means that developers

can try to utilize not only BDD spe- cific

frameworks but also most of the tools for

TDD. How- ever, TDD tools tend to be quite

free-format and it will take a different amount

of time and effort to benefit from those TDD

tools in BDDcontext.

Support to some extent of ubiquitous

language is themain criterion and BDD

characteristic that was used to distin-

guishrelevanttoolsforBDDinthisstudy.

Alotoftoolsfromdifferentlanguageswer

eanalyzeddur- ing the research. Due to the

aforementioned selection ap- proach, the

following frameworks were considered as

those that cannot be used standalone as BDD

frameworks: strictly unit-testing tools for all

languages (JUnit [9], etc.), tools for

mocking(EasyMock[6],Mockito[10],etc.),most

UI-testing tools (Selenium [13]), frameworks

for testing Web Services and databases. On the

other hand, they are often combined with real

BDDtools.

ThisstudyfocusesonBDDtoolsforJVM-

basedprogram- ming languages (Java, Groovy,

Scala) with a strong support of ubiquitous

language. To determine the relevant BDD

frameworks to compare, the Wikipedia list [1]

was used as the initial source. The most

frequently mentioned tools were

selectedwithahelpofasearchbytagsonstackoverf

low.com. The last step was to filter the

frameworks for JVM-based languages since

they can be directly and fairly compared. As a

result the following tools were included in

theanalysis: Concordion [3], Spock [15],

Cucumber [4], JBehave [8] and

easyb[5].Inaddition,Serenity(previouslyknown

asThucy

dides)[14]frameworkwasconsideredbutnotincl

udedinthe comparison. It is less popular with

the small community and the main benefit of

it is reporting. Selected frameworks satisfy all

main BDD requirements and match

specificneeds of the study. Therefore, these

frameworks were further com- pared.

Dimensions forComparison

DifferentdimensionforcomparingBDD

frameworkswere found during the study. BDD

is a technique which is per- fectly applicable at

various levels. For instance, it can be ap- plied

at the code/unit level and at the

acceptance/integration level as well.

Moreover, these usages are not exclusive and

can becombined.

ComparisonBasedonaPrimaryTargetGroupOne

dimension for comparison was inspired by J.

BandwhodifferentiatesthefollowingflavorsofBD

Dtoolsbased

on their origins and target groups in [20]:

1. Tools with a business readableoutput

2. Tools with a business readableinput

Frameworksfromthefirstcategoryareusuallyfo

cusedon

thedevelopers.Allartifactsinvolvedareownedb

ythede- velopers and are typically code. This

does not make such frameworks useless since

responsible and committed devel-

opersareoftenthemainstakeholdersinsuccessf

ulsoftware

projects.Otherstakeholdersgetonlyreportswhi

chtheycan

understand[20].Suchkindofframeworksisusu

allyseenas a replacement/extension for TDD

at a unit-testinglevel.

Tools from the second category (business

readable input) try to widen the focus of the

BDD process by enabling the bigger

involvement of all other stakeholders:

customers, business analysts, testers maybe

even operations. This in- volvementis possible

upfront, meaning before the develop- ershave

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-080505XXX 80 | P a g e

done their work [20]. Such kind of tools is

usually aimed atATDD.

Comparison Based on Support ofCharacteris- tics

ofBDD

Another dimension for comparing tools comes

from char- acteristics of BDD. The following

main characteristics were identified during the

study:

3. Ubiquitouslanguage

ThisconceptisanintegralpartofBDD.Therefor

e,sup-

portofthischaracteristicwasusedasaselectionc

riterionfor

toolsthatwerecomparedinthestudy.Creatingth

eubiqui-

touslanguageneedstoinvolveanyone(domaine

xpertsand developers) who will use

thelanguage.

The important point at this moment is to

distinguish the ability of tools for creating a

ubiquitous language based on the business

domain and ability to use a predefined version

of such language which is domain

independent. BDD itself

alsoincludesapredefinedsimpleubiquitouslangu

ageforthe analysis process[29].

4. Automated AcceptanceTesting

All scenarios must be run

automatically. This requires automatic import

and analysis of acceptance criteria. The code

responsible for the execution usually has to

read the

plaintextspecificationsandprocesstheminacorre

sponding way. Such approach lets stakeholders

have executable plain text scenarios. In this

case, there also should be a standard

mechanismofmappingscenariostotestcodewhic

hexecutes them. However, scenarios can be

simply defined directly in code.

5. Templates for plain text description

of user stories and scenarios

Descriptions of features, user stories and

scenarios cannot be done in an arbitrary form

in BDD. All of them should follow the

existing templates and guidelines.

Each user story describes an activity done by a

user, clar- ifies a role of the user and which

feature of a system allows the user to perform

this activity. Moreover, each user story

outlines the benefit which the user acquires

after perform- ing the activity. Such template

contributes to a clear way of representing

features the system should support and why

they should be supported by the system. In

addition, such approach helps to understand

what features are more im- portantby

comparing the benefits which they provide.

De- velopers may use this information to

adjust their strategy, priorities, anddeadlines.

A scenario describes how the system that

implements a feature should behave when it is

in a specific state and an event happens. The

outcome of the scenario is an action that

changes the state of the system or produces a

system output[29].

 Comparison Based on Specific Features of Se-

lectedTools

The last but not least dimension to compare

BDD tools isbased on specific additional

features that each tool provides.It is a good

idea to combine other useful features with

BDDones since such kind of tools can be used

standalone to cover more cases without any

need to integrate other frameworks.

The following specific features of analyzed

frameworks were considered important:

6. Unit-testingfacilities.

There are some TDD techniques that may be

helpful in BDD as well. For instance, mocking.

It is not a good idea to make use of mocks in

acceptance tests on a regular basis. Such tests

are supposed to cover the whole system and to

test each aspect ofit.

By mocking some parts of the system, you

exclude them

fromcoverage.However,therearecertaincaseswh

enmock- ing is really appropriate: for instance,

a module or compo- nent of a system can

communicate with a 3rd party system. In this

case, the scenario depends on the 3rd party

system which is out of the control. Therefore,

running such scenar- ios may be difficult and

not stable, and the best option here is to mock

or simulate that 3rd party system so that your

application or product can stillbe tested.

Another useful application of mocking is to

follow”test as soon as possible” technique.

Developers can mock unimple- mented parts

with predefined behavior and test small parts

really early in the development cycle. This

approach helps to spot all potential bugs

during initial implementation. At

thispointoftime,itisrequiredlessamountoftimeto

inves- tigate and fix the issue than when you

have a full complex and

comprehensivemodule.

7. Facilities for testing Webapplications.

Web applications are extremely popular

nowadays. Most of the new applications are

developed for usage in Web. Moreover, there

is an emerging strategy for applicationsoft-

ware companies is to provide web access to

software pre- viously distributed as local

applications. Depending on the

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-0805057785 81 | P a g e

Table 1: Comparison of BDD Tools

Support of Features Cucumber Concordion Spock JBehave easyb

Business readable input + + - + -

Business readable output + + + + +

Creation of a ubiquitous

language

- + - - -

Support of a predefined

ubiquitous language

+ - + + +/-

Automated acceptance tests + + + + +

Plain text description of user

stories and scenarios

+ + +/- + -

Unit-testing facilities - - + +/- - +/-

Facilities for testing Web

applications

+ + + + +

typeofapplication,itmayrequirethedevelopment

ofanen- tirely different browser-based

interface, or merely adapting an existing

application to use different presentation tech-

nology [17]. Therefore, it is important for

BDD tools to cover Web development and

provide correspondingfacilities to make this

processeasier.

There are a lot of high-level

frameworks that allow the definition of

acceptance tests in natural language. But when

it comes to the technical implementation of the

test cases, developers often have to use the

rather low-level WebDriverAPI directly. Thus,

it is important to consider to which extent

modern BDD tools can be used for developing

Web applications and how much effort it might

require.

Functionalwebstoriesareapowerfulmechanismt

overify the proper behavior of web

applications from a user’s stand- point.

Combining a framework that supports stories

and scenarios with other tools for UI tests

yields an easy way to deliver software more

quickly andcollaboratively.

Comparison of SelectedTools

The following section describes each of

analyzed frame- works independently in terms

of developed criteria in the previous section.

Cucumber

Cucumber is definitely a framework

with a business read- able input since it

supports writing plain text user stories and

scenarios which can be later utilized as a basis

for cre- ating automated acceptance tests.

Analysis of BDD-related questions on

stackoverflow.com during this study confirms

that Cucumber is one of the most popular and

widely used frameworks of thistype.

Cucumber supports various readable

report formats. The basic output prints the

whole content of the feature which is not

always necessary. Luckily, you can easily

customize the output to match your needs.

Cucumber has a set of built-in formatters.

They allow you to visualize the output from

your test run in different ways. There are

formatters that produce HTML reports,

formatters that produce JUnit XML for

continuous integration servers like Jenkins,

and many more. Moreover, there are a lot of

custom formatters

whicharedevelopedbyahugecommunityofdevel

operswho use thisframework.

Cucumber does not allow you to create

your own domain dependent ubiquitous

language. However, it supports a pre- defined

version of a ubiquitous language called

Gherkin. It is plain text with a little extra

structure. Gherkin is de- signed to be easy to

learn by non-programmers, yet struc- tured

enough to allow the concise description of

examples toillustratebusinessrulesinmostreal-

worlddomains.A Gherkin file is given its

structure and meaning using a set of special

keywords. There is an equivalent set of these

key- words in each of the supported spoken

languages [30]. This means that developers

can write specifications not only in English but

also in more than 60 other spoken languages

and allows to widen the targetgroup.

Cucumber supports automated acceptance

tests. In ad- dition, it is flexible in defining

scenarios and it gives you an opportunity to

write scenario outlines, share short setup steps

or assertions. You can even call step

definitions from other stepdefinitions.

Cucumbereasilyallowstotransformplain-

textspecifica- tions into the code out of the

box. However, it does have much to offer in

terms of unit-testing due to its main aim

andorigins.

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-080505XXX 82 | P a g e

Cucumber doesn’t know how to talk to

databases, web apps, or any external system.

People install other libraries and use them in

their step definitions and support code to

connecttothoseexternalsystems[30].Forinstance

,youcan integrate Selenium or Capybara [2].

The latter framework poses special interest in

combination with Cucumber since both of

them are written in Ruby. This language fits

BDD since it is natural to read. There is no

specifically suited framework for UItesting.

Serenity has also a separate module for

integrationwith Cucumber. It is an easy way

to get incredible reports that are

automatically generated for the BDDtests.

Concordion

Concordion is also a tool with a

business readable output.

DespitethefactthatConcordionrequiresbasicsof

HTML,it is still a framework from the second

category since it allows to write specifications

in a highly customway.

Concordionalsoprovidesreadableoutputfromtes

tswhich can beunderstood and used by all

stakeholders. If all tests

areexecutedthenframeworkproducesacomple

tesetofcol-

oredoutputHTMLfiles,whichdevelopersorthe

irmanagers can publish on a web-server.

There is also a possibility to use custom CSS

or JavaScript, or include images or other

resources,intheConcordionoutputbymeansofs

impleex-

tensions.Moreover,therearesomeexistingexte

nsions.For

instance,oneofthemaddsscreenshotstoConcor

dionout-

puttodiagnoseproblemsorimprovethedocume

ntation.

Rather than forcing product owners to

use a specially structured language for

specification by example, Concor- dion lets

you write the specifications in a normal

language using paragraphs, tables, and proper

punctuation. This makes them much more

natural to read and write and helps everyone

understand and agree about what a feature is

sup- posed to do [3]. However, Concordian

requires basic knowl-edge of HTML which

can be a significant drawback. This framework

also does not support predefined ubiquitous

lan- guages such as Gherkin.

Concordion allows to write automated

acceptance tests. It

alsoprovidesabiglevelofflexibilityindoingitasC

ucumber. Moreover, Concordion allows to

have and edit plain text descriptions of stories

andscenarios.

Concordion does not offer a lot in terms of

unit-testing. It as well as Cucumber does not

have any specific framework for UI testing

that suits particularly well only for it. How-

ever, Concordion can be used to test Web

applications since it is commonly used with

Selenium.

Spock

Spock is a good example of tools with

a strictly business readable output. It is not

only as powerful as strictly unit- testing

frameworks in terms of applicability at

code/unit level, but it also supports writing

specifications. Spock can not only fully

replace JUnit but also provide the extended set

of features with mocking and

stubbingmechanisms.

Spock does not support the creation of

a ubiquitous lan- guage. Moreover, it out of

the box supports the concept of a ubiquitous

language with some significant restrictions.

For instance, developers have to mix the story

descriptions and code. There is an extension

called Pease that creates Spock tests from

Gherkin specifications. With Pease, you are

able to separate your requirements and your

test code and still access the full power of the

Spock framework [11].

Spock allows you to write automated

acceptance tests.

Spockcanbeusedasareplacementorextensionfor

standard unit-testing frameworks, such as

JUnit. Moreover, Spock has the widest range

of features in terms of unit-testing. It is a

complete testing framework with mocking,

stubbing, and other helpfultechniques.

Spock provides simple integration and takes

advantage of Geb framework. Geb is a browser

automation framework

writteninGroovybasedonSeleniumWebDriver.I

tisaimed

tomakeallcodeformodelingbehaviorofauseron

UIpages concise and clear. Spock has also a

great support for testing RESTfulAPIs.

JBehave

JBehaveissimilartoConcordionandC

ucumbersinceit is a tool with business

readable input. It lets execute text-

baseduserstorieswithahelpofGherkinoritsown

syntax.

JBehaveprovidesdifferentoutputformats.Fori

nstance,it canprintatext-

basedconsoleoutput,produceatext-based

output file, an HTML file or an XMLfile.

JBehave does not provide an ability to define a

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-0805057785 83 | P a g e

ubiquitous language, but it supports the

aforementioned Gherkin. In addition, you can

make use of its own syntax to describe

scenarios.

JBehave can be used to implement automated

acceptance tests. It also lets transform plain-

text specifications into the code out of the box.

JBehave has limited unit-testing facilities. For

instance, this tool bundles a mocking

framework known as a Mini- mock. JBehave

has an extension called JBehaveWeb which

providessupportforweb-

relatedaccessorfunctionality.JBe- have

integration with Selenium and WebDriverAPIs

aims to facilitate common tasks. Amongst

these, one of the most common is the

management of the lifecycle, e.g. starting and

stopping the browser[8].

JBehave works well with Serenity

since there is a sepa- rate module in Serenity

for combining with JBehave. Seren- ity uses

simple conventions to make it easier to get

started writing and implementing Serenity

stories and reports on both JBehave and

Serenity steps, which can be seamlessly

combined in the same class, or placed in

separate classes, depending on your

preferences.

Easyb

Easyb is one more example of tools with an

only business readable output. It is similar to

Spock in this respect.

Easyb does not allow to create a ubiquitous

language. This framework provides the

worst support of theconcept

ofubiquitouslanguagesincethecodeandspecifi

cationare

mixedtogetherandtherewasnopluginorextensi

ontosup-

port,forinstance,Gherkinoranypredefinedlang

uageatthe

momentofstudy.However,thecodewithgiven/

when/then

sectionshelpsallstakeholderstogetinsightabou

tthetested scenario easilyenough.

Easyb provides functionality

forautomatedacceptancetests, but there is no

way to support plaintextdescriptions.Easyb has

fewer features at the unit-

testinglevelthanSpock, but more than other

analyzed frameworks.Italsocan be used

together with Selenium [13],

Selenide[12]andTellurium[16].Moreover,easyb

canbecombinedwithFEST

[7]frameworktoenabletestingofSwing-

basedapplications.

TelluriumisbuiltonUImoduleconcept,whichma

kesitpos- sible to write reusable and easy to

maintain tests against the

dynamicRIAbasedwebapplications.Selenideiss

impleand powerful in use wrapper-library over

Selenium intended to

shortthelinesofcodetomakethewholetestsmorer

eadable and understandable. There is a special

plug-in for working withdatabases.

Summary ofComparison

AllanalyzedtoolsaresuitableforBDDbuttheya

reaimed

atdifferentlevels.Spockandeasybarefocusedo

ntheunit-

testinglevel,whileJBehave,Concordion,andC

ucumberare more suitable for

acceptance/integrationtesting.

Only Concordion supports to some

extent creation of a specific ubiquitous

language for a project. JBehave, Cucum- ber

support predefined ubiquitous languages,

while Spock and easybhave some significant

restrictions in this regard. For instance,

developers mix the story description and corre-

sponding code using these tools. Even despite

the fact that you can use a plain text to define

all method names, story and code are very

tightly coupled and reside in one file.

All analyzed frameworks support

automated acceptance tests. However,

Concordion, JBehave, and Cucumber have

more ways to define the scenarios. These tools

also provide a clear separation between the

code and scenarios allowing to define user

stories and scenarios in plain text. Hence,

these tools are more flexible and powerful for

this particular task. Spock has the

aforementioned Pease extension which

provides the ability to define scenarios in

Gherkin, but there is no such solution for

easyb.

Both Spock and easyb have much

more to offer than Cu- cumber, Concordion,

and JBehave from the unit-testing point of

view. However, there are a lot of standalone

specific tools such as Mockito, EasyMock

which can be integrated into all analyzed

frameworks to add needed functionality.

Other toolkits that can be easily combined

with analyzed frameworks were mentioned per

each framework. Those tools were selected by

review of the literature, tutorials, and

documentation.

II. CONCLUSIONS
BDD inherits main concepts from

TDD and automated acceptance testing

augmenting them with other ones such as

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-080505XXX 84 | P a g e

ubiquitous language. This combination is

aimed to make use of all benefits provided by

each inherited approach and address their

drawbacks. BDD can be adapted and applied

at various levels of development. It puts the

strong focus on

behaviorinsteadofstructureateachlevel.BDDch

angesthe way all stakeholders think about

testing. Its main goal to verify what a tested

object does and not what the internal structure

of the object is. This difference makes a huge

impact on the overall development process

since behavior is much more significant than

the internalstructure.

The main intends of the study were to

provide all under- lying concepts of BDD,

develop the research approach for identifying

relevant tools for applying BDD and to

compare the selected tools for JVM-based

languages from different perspectives. One of

the most important features of BDD is

involvement of all stakeholders in the

development process. Therefore, the special

attention was paid to the concept of the

ubiquitous language. Support to some extent

of a pre- defined ubiquitous language or

creation of a new domain specific one was

chosen as the criterion to select relevant tools

for comparison. The study defines three

dimensions for comparing BDD frameworks:

based on a target group, on the support of

characteristics of BDD and based on spe- cific

features of selectedtools.

The results of the performed

comparison indicate that there is a strong

support of main BDD concepts by analyzed

toolswhichmakesBDDpossiblewithJVM-

basedlanguages. However, the study also

shows that tools with better sup- port of unit-

testing facilities usually require some tuning to

pose an interest for all stakeholders. All

analyzed tools have a nice integration with a

vast varietyof other tools. This is crucial

since it enables applying BDD for different

kinds of applications. For instance, there is a

set of frameworks for each analyzed tool that

makes possible BDD for Web applications.

REFERENCES
[1] Behavior-driven development.

https://en.wikipedia.org/wiki/Behavior-

driven_development. Retrieved November

20,2015.

[2] Capybara.

https://rubygems.org/gems/capybara.

Retrieved December 2,2015.

[3] Concordion.

http://concordion.org/.Retrieved

November 23,2015.

[4] Cucumber. https://cucumber.io/. Retrieved

December 9,2015.

[5] Easyb. http://easyb.org/. Retrieved

December 9, 2015.

[6] Easymock. http://easymock.org/.Retrieved

December 9,2015.

[7] Fest. https://code.google.com/p/fest/.

Retrieved December 2,2015.

[8] Jbehave. http://jbehave.org/. Retrieved

December 2,2015.

[9] Junit.http://junit.org/.RetrievedDecembe

r9, 2015.

[10] Mockito. http://mockito.org/. Retrieved

December 9,2015.

[11] Pease. http://pease.github.io/.Retrieved

December 1,2015.

[12] Selenide. http://selenide.org/. Retrieved

December 2,2015.

[13] Selenium. http://www.seleniumhq.org/.

Retrieved December 2,2015.

[14] Serenity bdd.

http://www.thucydides.info/.Retrieved

December 9,2015.

[15] Spock. https://code.google.com/p/spock/.

Retrieved December 2,2015.

[16] Tellurium. https://code.google.com/p/aost/.

Retrieved December 2,2015.

[17] Web application.

https://en.wikipedia.org/wiki/Web_applicatio

nt. Retrieved December 2,2015.

[18] G. Adzic. Specification by Example:

How Successful Teams Deliver the Right

Software. Manning Publications,2011.

[19] D. Astels. A new look at test-driven

development. Technical report,2005.

[20] J. Bandi. Classifying bdd

tools.http://blog.jonasbandi.net/2010/03/

classifying-bdd-tools-unit-test-driven.html,

2010.

[21] D. Chelimsky, D. Astel, B. Helmkamp,

D.North,Z. Dennis, and A. Hellesoy.The

RSpec Book: Behaviour Driven

Development with RSpec, Cucumber,

and Friends. Pragmatic Bookshelf, 2010.

[22] E. Evans and M. Fowler. Domain-Driven

Design. Addison-Wesley Publishing

Company,2004.

[23] M. Fowler, K. Beck, J. Brant, W.

Opdyke,andD. Roberts. Refactoring:

Improving the Design of Existing Code.

Addison-Wesley Publishing Company,

1999.

[24] D. Janzen and D. H. Saiedian. Test-

driven development: concepts,

taxonomy, and future directions.

Computer, 38(9):43–50,

September2005.

http://concordion.org/
http://easyb.org/
http://easymock.org/
http://jbehave.org/
http://junit.org/
http://mockito.org/
http://pease.github.io/
http://selenide.org/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://www.thucydides.info/
http://blog.jonasbandi.net/2010/03/
http://blog.jonasbandi.net/2010/03/
http://blog.jonasbandi.net/2010/03/

Meenakshi Panda Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 5, (Part -V) May 2018, pp.77-85

www.ijera.com DOI: 10.9790/9622-0805057785 85 | P a g e

[25] D. Janzen and D. H. Saiedian. Does test-

driven development really improve

software designquality? Software, IEEE,

25(2):77–84, March-April2008.

[26] R. Jeffries and G. Melnik. Guest editors

introduction: Tdd - the art of fearless

programming. Software, IEEE,

24(3):24–30, May-June2007.

[27] J. H. Lopes. Evaluation of behavior-

driven development. Master’s thesis,

Faculty EEMCS, Delft University of

Technology,2012.

[28] D. North. Introducing

bdd.http://dannorth.net/introducing-bdd/,

2006. Retrieved November 1,2015.

[29] C. Solis and X. Wang. A study of the

characteristics of behaviour driven

development. In Proceedings of the 7th

EUROMICRO Conference on Software

Engineering and Advanced Applications,

pages 383–387,2011.

[30] M. Wynne and A. Hellesoy. The

Cucumber Book: Behaviour-Driven

Development for Testers and Developers

(Pragmatic Programmers). The

Pragmatic Bookshelf,2012.

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

