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ABSTRACT 

Hard real-time systems are usually required to provide an absoluteguarantee that all tasks will always complete 

by their deadlines.Inthis paper we address fault tolerant hard real-time systems, and intro-

ducethenotionofaprobabilisticguarantee.Schedulabilityanalysisisused together with sensitivity analysis to 

establish the maximum faultfrequency that a system can tolerate. The fault model is then used toderivea 

probability(likelihood)that,duringthelifetimeofthesystem,faults will not arrive faster than this maximum rate.The 

frameworkpresented is a general one that can accommodate transient 

„software‟faults,toleratedbyrecoveryblocksorexceptionhandling;ortransient„hardware‟faultsdealtwithbystateresto

rationandre-execution. 

 

I. INTRODUCTION 
Scheduling work in hard real-time systems 

is traditionally dominated by the no-tion of 

absolute guarantee.Static analysis is used to 

determine that all deadlinesare met even under the 

worst-case load conditions.With fault-tolerant hard 

real-time systems this deterministic view is usually 

preserved even though faults are,by their very 

nature, stochastic. No fault tolerant system can, 

however, cope withan arbitrary number of errors in 

a bounded time. The scheduling guarantee is 

thuspredicated on a fault model. If the faults are no 

worse than that defined in the faultmodel then all 

deadlines are guaranteed.The disadvantage of this 

separation ofscheduling guarantee and fault model 

is that it leads to simplistic analysis; 

eitherthesystemis schedulableoritisnot. 

In this paper we bring together scheduling issues 

and errors to justify the notionof a probabilistic 

guarantee even for a hard real-time system.By 

„probabilisticguarantee‟wemeanaschedulingguarant

eewithanassociatedprobability.Hence, 

a guarantee of 99.95% does not mean that 99.95% 

of deadlines are met. Rather 

itimpliesthattheprobabilityofalldeadlinesbeingmetdu

ringagivenperiodofoper-

ationis99.95%.Insteadofstartingwiththefaultmodela

ndusingschedulingteststo see if this is feasible, we 

start with the scheduling analysis to derive a 

thresholdinterval between errors that can be 

tolerated and then employ the fault model 

toassignaprobabilitytothisthresholdvalue. 

To provide the flexibility needed to program fault 

tolerance, fixed priority pre-emptive scheduling 

will be used [13]. The faults of interest are those 

that are tran-

sient.Castilloatal[6]intheirstudyofseveralsystemsind

icatethattheoccurrencesof transient faults are 10 to 

50 times more frequent than permanent faults. In 

someapplicationsthisfrequencycan 

bequitelarge;oneexperimentonasatellitesystemobser

ved35transientfaultsina15minuteintervalduetocosm

icrayions[5]. 

We attempt to keep the framework as general as 

possible by accommodating„software‟ faults 

tolerated by either exception handling or some 

form of recoveryblock, and „hardware‟ faults dealt 

with by state restoration and re-execution. 

Errorlatencieswillbeassumedtobeshort. 

Other authors have studied the probability of 

meeting deadlines in fault-

tolerantsystems.However, only some facets of this 

problem have been 

considered.Forinstance,HouandShin[9]havestudied

arelatedproblem,theprobabilityofmeet-

ingdeadlineswhentasksarereplicatedinahardware-

redundantsystem.However,they only consider 

permanent faults without repair or recovery. A 

similar 

problemwasstudiedbyShinetal[18].Kimetal[12]cons

ideranotherrelatedproblem:theprobability of a real-

time controller meeting a deadline when subject to 

permanentfaultswithrepair. 

Therestofthepaperisorganisedasfollows.Section2bri

eflydescribestheschedulinganalysisthatisapplicablet

onon-fault-tolerantsystems.Section3presentsthe 

faultmodel andthe frameworkfor the subsequent 

analysis.InSection4thescheduling analysis for a 

fault tolerant system is presented. This enables the 

thresh-

oldfaultinterval(TFI)tobederived.Section5thenusest

hefaultmodelandtheTFItoassignaprobabilitytothethr

eshold.ConclusionsarepresentedinSection6. 
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Standard Scheduling Analysis 

Forthestandardfixedpriorityapproach,itisas

sumedthatthereisafinitenumber(N)oftasks(1..N).Each

taskhastheattributesofminimuminterarrivaltime, 

T,worst-case execution time, C, deadline, D and 

priority P . Each task undertakes 

apotentiallyunboundednumberofinvocations;eachm

ustbefinishedbythedeadline(which is measured 

relative to the task‟s invocation/release time). All 

tasks aredeemed to start their execution at time 0. 

We assume a single processor platformand restrict 

the model to tasks withD       T .For this 

restriction,an optimal setof priorities can be 

derived such that Di<Dj ) Pi>Pjfor all tasks i; 

j[15].Tasksmaybeperiodicorsporadic(aslongastwoc

onsecutivereleasesareseparatedby at least T ).Once 

released, a task is not suspended other than by the 

possibleactionofaconcurrencycontrolprotocolsurrou

ndingtheuseofshareddata.Atask, 

however,maybepreemptedatanytimebyahigherpriori

tytask.Systemoverheadssuch as context switches 

and kernel manipulations of delay queues etc can 

easilybeincorporatedintothemodel[11,4]butareignor

edhere. 

The worst-case response time (completion time) 

Rifor each task (i) is 

obtainedfromthefollowing[10,1]: 

 

 

R = C+B 

+ 
X

&
Ri

'

C
 

 

(1) 

 

The most common and effective 

concurrency control protocol assigns a 

ceilingpriority to each shared data area. This ceiling 

is the maximum priority of all tasksthat use the 

shared data area. When a task enters the protected 

object that containsthe shared data, its priority is 

temporarily increased to this ceiling value.As 

aconsequence(onasingleprocessorsystem): 

1. Mutualexclusionisassured(bytheprotocolit

self). 

2. Eachtaskisonlyblockedonceduringeachinv

ocation. 

3. Deadlocksareprevented(bytheprotocolitsel

f). 

ThevalueofBiissimplythemaximumcomputationtim

eofanyprotectedobjectthathasaceilingequalorgreater

thanPiandisusedbyataskwithaprioritylowerthanPi. 

 

Table 1 describes a simple 4 task system, 

together with the response times thatare calculated 

by equation (2).Priorities are ordered from 1, with 

4 the 

lowestvalue,andblockingtimeshavebeensettozerofor

simplicity.Schedulinganalysisis independent of 

time units and hence simple integer values are used 

(they can beinterpretedas milliseconds). 

To illustrate how these values are obtained 

consider4; r
0
is given the 

initialvalueof30,r
1
isthenjusttheadditionofallthecom

putationtimes(30+35+25+30=120),sor
2
isassigned1

20.Withthisvalue1givesrisetoanotherhit(of30) 

 

Task P T C D B R Schedulable 

1 1 100 30 100 0 30 TRUE 

2 2 175 35 175 0 65 TRUE 

3 3 200 25 200 0 90 TRUE 

4 4 300 30 300 0 150 TRUE 

 

Table1:ExampleTaskSet 

 

andhencer
3
is150.Thisvalueisthenstableandhenceisth

erequiredresponse 

time. 

All tasks are released at time 0. For the purpose of 

schedulability analysis, wecan assume that their 

behaviour is repeated every LCM, where LCM is 

the leastcommon multiple of the task periods. 

When faults are introduced it will be neces-sary to 

know for how long the system will be executing. 

Let L be the lifetime ofthe system. For convenience 

we assume L is an integer multiple of the LCM. 

Thisvaluemayhoweverbeverylarge(forexampleLC

Mcouldbe200ms,andLfifteenyears!). 

 

FaultModel 

We assume that a single transient fault 

will cause just one error, and that 

thiserrorwillmanifestitselfinjustasingletask.With„so

ftware‟faultsthisisareason-

ableassumption.With„hardware‟faultsweareconcern

edwitherrorsthatmanifestthemselves in the 

processing unit (including internal busses, cache 

etc) rather thanin memory where the error latencies 

may be very large. We assume that only 

theexecuting task is affected
1
. Faults that affect the 

kernel must either be masked orlead to permanent 

i 

j2hp(i) 

T 

j 

j 
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damage that can only be catered for by replication 

at the systemlevel. To make the subsequent 

analysis simpler we assume perfect error recogni-

tion coverage; a probabilistic (non zero) measure of 

coverage could be used with astraightforwardeffect 

upontheanalysis. 

WemakethecommonhomogeneousPoissonprocess(

HPP)assumptionsthatthefaultarrivalrateisconstantan

dthatthedistributionofthefault-

countforanyfixedtimeintervalcanbeapproximatedusi

ngaPoissonprobabilitydistribution.Thisis an 

appropriate model for a random process where the 

probability of an 

eventdoesnotchangewithtimeandtheoccurrenceofon

efaulteventdoesnotaffecttheprobability of another 

such event. A HPP process depends only on one 

parameter,viz, the expected number of events,, in 

unit time; here events are transient 

faultswith=1=MTBF,whereMTBFistheMeanTime

BetweentransientFaults
2
. 

PerthedefinitionofaPoissonDistribution, 

e
t
(t)

n
 

Prn(t)  = 
n!

 

givestheprobabilityofneventsduringanintervalofdur

ationt.Ifwetakeaneventtobeanoccurrenceofatransient

faultandYtobetherandomvariablerepresentingthe 

number of faults in the lifetime of the system (L), 

then the probability of zerofaultsis givenby 

Pr(Y=0)=e
L

 

andtheprobabilityofatleastonefault 

Pr(Y>0)=1  e
L

 

 

Otherusefulvaluesare: 

Pr(Y=1)= e
L

L 

Pr(Y<2)  =  e
L

(1+ L) (3) 

 

Weareconcerned,inthispaper,withtheprobabilityofth

esystembeingschedu-lable. We shall write P r(S) 

and P r(U ) to denote the probability of 

schedulabilityand 

unschedulability.OfcoursePr(S)=1Pr(U). 

Theanalysisgiveninthenextsectionwilldeterminethet

hresholdfaultinterval.This gives the sustainable 

frequency at which faults can occur and the system 

stillmeet all its deadlines.Let this frequency be 

represented by the minimum timeinterval allowed 

between faults, TF.It follows that if Wis the shortest 

intervalbetweenfaultarrivalsduringamissionthen
3
 

Pr(U)=Pr(Ujnofaults):Pr(nofaults) 

+Pr(UjWTFandtherearefaults):Pr(W  

TFandtherearefaults) 

+Pr(UjW<TFandtherearefaults):Pr(W<TFandtherear

efaults) 

Since we are dealing with systems which are 

schedulable „under no faults‟ we canassume 

Pr(Ujnofaults)iszero.AlsoTFhasbeendefinedsothatP

r(UjWTF)iszero.Hence 

 

Pr(U)=Pr(UjW<TF):Pr(W<TF) 

 

In this paper we will make the conservative 

assumption that P r(U jW< TF ) 

isone.AndhenceweareleftwiththeevaluationofPr(W

<TF),i.e.theprobability 

that at least two faults arrive so close together in 

time that they cannot both betolerated.This is done 

in Section 5.Although this assumption is 

conservative(and hence safe) it is clearly possible 

to give less pessimistic values.The 

aboveformulation will allow such values to be 

combined with the estimates of P r(W 

<TF)giveninSection5. 

Issues concerned with implementing the features 

suggested by the Fault Modelare 

welladdressedbyFetzerandCristian[8]. 

 

TypicalValuesofKeyParameters 

Before proceeding with the analysis it is worth 

noting the ranges in value of thekey parameters of 

the model. In most applications of interest, the 

“lifetime” overwhich a probability of failure is 

required is the duration of one mission. 

Missiontimes for civil aircraft are typically 3-20 

hours, but for satellites 15 years of ex-ecution may 

be expected.The iteration periods for control loops 

are as short as20ms, other loops and signals may 

have T values of a few seconds. Precise valuesfor 

MT BF are not generally known, but in a friendly 

operating environment per-

haps100hoursisnotunreasonable.Inmorehostilecond

itions,20secondsmaybemore typical. Although TFis 

derived from the characteristics of the task set 

underconsideration, it is worth noting that very 

small values are unlikely (as a task willnot make 

progress if it suffers repetitive faults), and faults 

spaced out beyond theLCM of the task periods will 

easily be catered for; hence: 200ms < TF<5 Sec-

onds.Table2summarizestheseviablerangesforthekey

parameters(inhoursandhours
1
). 
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X 
j 

T 
j 

i Tf
 

lm 

 

Parameter Range 

L 

T 

3  10
5
 

10
6   

10
2

 

 
10

2   
10

2
 

TF 
10

5   
10

2
 

 

Table2:TypicalValuesofKeyParameters 

 

 

SchedulabilityAnalysisforFaultTolerantExecutio

n 

Let Fkbe the extra computation time needed bykif 

an error is detected 

duringitsexecution.Thiscouldrepresentthere-

executionofthetask,theexecutionofanexceptionha

ndlerorrecoveryblock,orthepartialre-

executionofataskwithcheckpoints. In the 

scheduling analysis the execution of taskiwill be 

affected 

byafaultinioranyhigherprioritytask.Weassumethatan

yextracomputationforataskwillbeexecutedatthetas

k‟s(fixed)priority. 

Henceifthereisjustasinglefault,equation(1)willbeco

me[16,2]
4
: 

 

Ri=Ci 

 

+Bi 

 

+ 

j2hp(i) 

&
Ri

'

C
 

 

 

+  maxFkk2hep(i) 

 

(4) 

 

 

wherehep(i)isthesetoftaskswithpriorityequalorhighe

rthani,thatishep(i)=hp(i)+i. 

This equation canagain be solved forRiby forming 

arecurrencerelation.Ifall Rivalues are still less than 

the corresponding Divalues then a 

deterministicguaranteeis furnished. 

Giventhatafaulttolerantsystemhasbeenbuiltitcanbea

ssumed(althoughthiswouldneedtobeverified)thatitw

illbeabletotolerateasingleisolatedfault.Andhencethe

morerealisticproblemisthatofmultiplefaults;atsomep

ointallsystemswillbecomeunschedulablewhenfaced

withanarbitrarynumberoffaultevents. 

To consider maximum arrival rates, first assume 

that Tfis a known 

minimumarrivalintervalforfaultevents.Alsoassumeth

eerrorlatencyiszero(thisrestrictionwillberemovedsho

rtly).Equation(4)becomes[16,2]: 

 

Ri=Ci 

+Bi+ 
X
 

&
Ri

'

C
 

+

&
Ri

'

maxF 

 

(5) 

 

j2hp(i)  
Tj 

Tf k2hep(i) 

 

Thus in interval (0 R ] there can be at most
Rifault 

events, each of which caninduce Fkamount of each 

computation. The validity of this equation comes 

fromnotingthatfaulteventsbehaveidenticallytosporad

ictasks,andtheyarerepresentedin the scheduling 

analysis in this way [1]. Note the equation is not 

exact (but it 

issufficient):faultsneednotalwaysinduceamaximumr

e-executionload. 

There is a useful analogy between release jitter and 

error latency. If a fault canlie dormant for time Af, 

then this may cause two errors to appear to come 

closertogetherthanTf.Thiswillincreasetheimpactofth

efaultrecovery.Equation 

(5) can be modified to include error latency in the 

same way that release jitter 

isincorporatedintothestandardanalysis[1]: 

 

Ri=Ci 

+Bi+ 
X
 

&
Ri

'

C
 

+

&
Ri+Af

'

maxF 

 

(6) 

 

j 

k 
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lowerbound 

j2hp(i)  
Tj 

Tf k2hep(i) 

 

As before, this equation can be solved for Riby 

forming a recurrency 

relationship.Table3givesanexample 

ofapplyingequation(6).Herefullre-

executionisrequiredfollowingafault.Twodifferentfa

ultarrivalintervalsareconsidered.Foronethesystemre

mainsschedulable,butfortheshorterintervalthefinalta

skcannotbeguaranteed.Inthissimpleexample,blockin

ganderrorlatencyareassumedtobe 

zero.Notethatforthe first threetasks, 

thenewresponsetimes areless thantheshorterTfvalue, 

andhencewillremainconstantforallTfvalues 

greaterthan200.Theabove 

analysishasassumedthatthetaskdeadlines,Ds,rema

inineffectevenduringafaulthandlingsituation.Som

e systemsallowarelaxeddeadline 

 

Task P T C D F R 

Tf=300 

R 

Tf=200 

1 1 100 30 100 30 60 60 

2 2 175 35 175 35 100 100 

3 3 200 25 200 25 155 155 

4 4 300 30 300 30 275 UNSCH 

 

Table3:ExampleTaskSet-Tf=300/200 

 

whenfaultsoccur(aslongasfaultsarerare).Thisiseasily

accommodatedintotheanalysis. 

 

LimitstoSchedulability 

Havingformedtherelationbetweenschedulabilityand

Tf,itispossibletoapplysensitivityanalysistoequation(

6)tofindtheminimumvalueofTfthatleadstothesystem 

being just schedulable. As indicated earlier, let this 

value be denoted as TF(itis thethresholdfault 

interval). 

Sensitivity analysis [19, 14, 13, 17] is used with 

fixed priority systems to inves-tigate the 

relationship between values of key task parameters 

and 

schedulability.Foranunschedulablesystemitcaneasil

ygenerate(usingsimplebranchandboundtechniques) 

factors such as the percentage by which all Cs must 

be reduced for thesystemtobecomeschedulable. 

Similarlyforschedulablesystems,sensitivityanalysis

canbeusedtoinvestigatethe amount by which the 

load can be increased without jeopardising the 

deadlineguarantees.Hereweapplysensitivityanalysis

toTftoobtainTF. 

When the above task set is subject to sensitivity 

analysis it yields a value of TFof 275. The 

behaviour of the system with this threshold fault 

interval is shown 

inTable4.Avalueof274wouldcause4tomissitsdeadlin

e. 

 

 

Task P T C D R 

TF=275 

1 1 100 30 100 60 

2 2 175 35 175 100 

3 3 200 25 200 155 

4 4 300 30 300 275 

Table4:ExampleTaskSet-TFsetat275 

 

2 EvaluatingPr(W<TF) 

Weneedtocalculatetheprobabilitythatduringthelifeti

me,L,ofthesystemnotwo faults will be closer than 

TF.Two approaches are considered. The attractionof 

the first is that it shows that a relatively intuitive 

and uncomplicated approachyields upper and lower 

bounds on P r(W <TF ) which, for a wide range of 

parame-

tervalues,provideamaximumapproximationerrorwhi

chcannotbemuchgreater 

thanafactorof3(since
upperbound

3).Withtheseconda

pproachamorecum- 

bersome but exact formulation is derived. Despite 

the inclusion of this latter exactformulation, we 

believe that, given that it is often rather the order of 

magnitude ofthe failure probability that is the 

j 

k 
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i 

i 

i 

primary concern (rather than an exact value), 

themathematicallysignificantlyeasierreasoningofthef

irst,boundingapproachretainssomeimportance. 

 

5.1   

UpperandLowerBoundsforEvaluatingPr(W<T

F) 

WeareconcernedwithtwofaultsbeingcloserthanTFov

erthemissiontime 

L.Since in practice L       TFwe can assume, without 

loss of generality, that L isan even integer multiple 

of TF. Let mishap be the undesirable event of two 

faultsindeedoccurringcloserthanTFi.e. 

Pr(mishapduringL)   Pr(W<TF) 

Wederivetherequiredupperandlowerboundsviathefo

llowingtheorems: 

 

Theorem 1IfL=(2TF)isapositiveintegerthen 

 

Pr(mishapduringL)<1+

h

e
TF 

(1+TF 

L 

)
TF 

1
2

h
e
2 T 

(1+2TF 

L 

)
2TF 

 

 

Theorem 2IfL=(2TF)isapositiveintegerthen 

 

Pr(mishapduringL)>1

h

e
 TF(1+ T 

ProofofTheorem1 

L 

)
TF 

 

Letthemissiontimebesplitintoaseriesof„even‟timeint

ervalswithboundaries0,2TF,4TF,:::,L,asshowninFigu

re1.Similarlyasetof„odd‟intervalsstartingat times 

TF, 3TF, 5TF, : : : , LTFcan be defined (extending 

the lifetime slightlyto L+TF, the end point of the 

last odd interval, by continuing the same HPP 

faultmodel). Each set has L=2TFintervals. Let a 

mishap be said to lie in an interval ifboth of its 

faults occur during that interval. It follows from the 

geometry of theseintervalsthat 

mishapduringL) mishapinsomeeveninterval[s]; 

ormishapinsomeoddinterval[s] 

 

Thispropertycomesdirectlyfromthedefinitionofthein

tervals;ifamishap(twofaultscloserthanTF)occursit 

mustlieineitheranevenoranoddinterval
5
. 

Pr(mishapduringL)<Pr(mishapinsomeeveninterval[

s] 

ormishapinsomeoddinterval[s]) 

F 

F 
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F T 
F 

F F 

i 

i 

F F F F F T 
F 

2 

2 

 

 
Figure1:Definitionsof„evenintervals‟,„oddintervals‟and„half-intervals‟ 

 

 

Actually the intersection of the two events on the 

right hand side has non-

zeroprobability.Onewaythattheycanoccurtogetherist

hatasinglemishapcouldlie in the overlap between an 

even and an odd interval. Call these overlaps „half-

intervals‟: they are of length T, and there are
6L 

1 of 

them, respectively startingat timesTF,2TF,:::,LTF.So 

from thebasicaxiomsofprobability 

 

Pr(mishapinsomeeven interval[s];or  mishapin 

someodd interval[s])< 

Pr(mishapinsomeeveninterval[s])+P 

r(mishapinsomeoddinterval[s])Pr(mishapinsome 

half-interval[s]) 

Now,giventhesymmetryoftheconstructionandtheHP

Pprocessassumption, 

Pr(mishapinsomeeveninterval[s])=Pr(mishapinsom

eoddinterval[s]) 

Hence 

 

Pr(mishapduringL)<2Pr(mishapinsomeeveninterval

[s]) 

Pr(mishapinsomehalf-interval[s]) (7) 

Theevent“mishapinaparticulareveninterval”isindepe

ndentofeventsinallotherevenintervals,andithasthesa

meprobabilityforeveryeveninterval.Thus 

LPr(mishapinsomeeveninterval[s])=1Pr(nomishapi

n2TF)2TF: 

(8) 

 

Foranintervaloflength2TFnottocontainamishap,itiss

ufficient(butnotneces-

sary)thatitcontain0or1fault.Hence,fromequation(3) 

Pr(nomishapin2T )>e
2TF (1+2T ):

 (9)Combiningequations(8)and(9)yields 

 

Pr(mishapinsomeeveninterval[s])<1

h

e
2 TF(1+2 

T 

Byasimilarargumentforthehalf-intervals 

L 

)
2TF:

 

 

(10) 

Pr(mishapinsomehalf-interval[s])=1

h

e
 TF 

 

(1+TF 

 

L  1 

)
TF ; 

 

 

(11) 

andnowcombiningequations(7),(10),and(11)deliver

sthetheoremstatement. 

2 

 

ProofofTheorem2 

In a similar way to the previous proof, consider the 

series of intervals of lengthTstarting at times 0, T, 

2T, 3T, : : :, L   T. There are
L 

of these, a 

mishapinanyoneofwhichimpliesamishapduring 

L(but notviceversa).Hence 

Pr(mishapduringL)>Pr(mishapinsomeinterval[s]) 

but 

Pr(mishap insomeinterval[s])=1   Pr(nomishap 

inanyinterval) 

Prooffollowsdirectly(asinproofofTheorem1). 

2 

Both the upper and lower (exact) bounds are in 

mathematically non-intuitiveforms, but simple 

approximations can be derived for most of the 

parameter 

rangewithinwhichtheprobabilityofmishapis 

smallenoughtobeofinterest. 

 

Corollary3  
AnapproximationfortheupperboundonPr(W<TF)giv

enbyTheorem1is 
32

LTF,providedthatTF,  
2
LTFaresmall,andL  TF. 

 

Corollary4  
AnapproximationforthelowerboundonPr(W<TF)giv

enbyTheorem2is 
12

LTF,providedonlythatTF,  
2
LTFaresmall. 

 

ProofofCorollary3 

F 
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! 

! 

i 

2T 

L 

T 

2 

2T 

2T F 

lowerbound 

TF  
1 1

TF 

2 

F 

1   
L  TF 

2T 

T 

 

Theterme
TF  

(1+TF)canbeapproximatedbyaTaylorseries,whereter

ms 

(TF)
3
andbeyondareignored.Thus 

 

e
TF (1+T 

2T2 

)    1
 F

 

2 

Anotherapproximationcomesfromnotingthatforsmal

lxz
2
 

 

1 

z2 x 

  
2 

 

1 

xz
2
 

  
2 

 

wheretermsz
4
andhigherpowersofzcanbeignored.He

nce,underassumptions 

TF,
2
LTFsmall,andL  TF,wecanwrite 

 

L  1 

L 2   2 2 2 

F 

Under justthefirstassumptions thatTF,
2
LTFaresmall 

wehaveequally 

L L
2
T 

2
 

 

 

h

e
2 TF(1+2 T 

)  
2TF       1

 F 

TF 

(13) 

Applying(12)and(13)totheconclusionofTheorem1,C

orollary3isproved. 

2 

 

Corollary4followsbyasimilarargument. 

Strictly, the bounds in Theorems 1 and 2 have only 

been proved here for L aneven multiple of TF. 

However, the realistic assumption LTFallows the 

approx-

imationsgiveninthetwocorollariesstilltoextendtooth

ervaluesofTFandL. 

 

Infact,where
L

 

F 

isanexactinteger,thisL   

TFassumptionisnotactuallyre- 

 

quired, either for the derivation of the exact bounds 

in Theorems 1 and 2, nor forthe lower-bound 

approximation of Corollary 4. For high accuracy in 

Corollary 4,we need only the assumption of 

smallTF,
2
LTF.Corollary 3 is the exception,relying 

on the LTFassumption at one place in its derivation: 

the exponent to thesquare-bracketed term in (12) is 

„out by 1‟ and we needed
TF to be small in orderto 

justify effectively ignoring this fact. For very short 

mission times, such that wedonothaveL  

TF,wecaninfact„retreatslightly‟toaslackerupperboun

dforPr(mishapduringL)byusing1asanupperboundfor

thissquare-bracketedterm 

inamodifiedversionofTheorem1,thusavoidingtheaw

kwardexponent
L  

1. 

F 

Then,forpositiveintegral
L

,the 

resultingequivalentofCorollary 3produces an 

F 

accurateapproximation2
2
LTFtothisslackerupperbou

ndonPr(W<TF),with- 

outanyrequirementthatL   

TF;i.e.,undertheassumptionsonlythatTF,  
2
LTF 

aresmall,andthat
L  

isapositiveinteger,butwithoutnowtherequirementtha

t 

L   

TF,themethodsofthissubsectionareabletoprovidebou

ndsonPr(W<TF) 

whichareapproximatelyintheratio
upperbound

4. 

The important upper bound approximation of 

Corollary 3 can be written in theform 
3
( L)( TF ).It 

will often be the case thatTF< 10
2

; indeed this 

con-straint allowed the approximations to deliver 

useful values. ButL can vary 

quiteconsiderablyfrom10
2

orlessinfriendlyenvironm

entsto10
3
ormoreinlong-

life,hostiledomains.Clearly,lowprobabilitylevelsfort

hislattercasewillbeextremelydifficulttoachievebythe

schedulingapproachdefinedinthispaper. 
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 1.110
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4
 1 

1.110
4

 1.110
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Table5:UpperboundonNon-SchedulabilityduetoFaults. 

 

 

TheexampleintroducedinSection4hadaTFvalueof27

5ms.Table5givestheupperboundontheprobabilitygu

aranteeforvariousvaluesofandL. 

WhenL<10
2

,L approximates the probability of any 

fault happening duringthe mission of duration L. 

So, 
2
( TF )

1 
represents the gain that is achieved by 

theuseoffaulttolerance,undertheotherassumptionssta

ted.So,forexampleinTable5,when=10
2

andL 

=1thegainisapproximately10
6
. 

 

ExactFormulationforEvaluatingPr(W<TF) 

Unliketheboundingargumentusedinthelas

tsection,ourexactderivationofthe probability P 

r(W <TF ) proceeds in two stages, first conditioning 

on the totalnumber n of faults seen in the lifetime L 

of the system. It is a well known 

propertyoftheHPPprocess[7]thatifweconditionont

henumbernofeventsoccurringwithinaspecifiedtime

intervalandthendefineX1;X2;:::;Xnasorderedposition

softhesenpointswithinthatinterval,expressedaspro

portionsofitslength,thentheXiare 

(conditionallygivenn) 

jointlydistributedastheorderstatisticsofan 

i.i.d. random sample from a uniform distribution on 

the unit interval[0; 1].Thisbeing accepted, we now 

first fix u with 0u1 and ask the question „What is 

theprobability,Psay,thatnotwoofthesepointsarecloser

thanu(conditionallygivenn)?‟. We can obtain the 

answer by n-dimensional integration. This is 

reported inan extended version of this paper 

available as a technical report [3], which 

saysessentially that Pis just the n
th

 power of the 

total amount of „slack‟ 

remainingwithintheunitintervalafterouru-

separationconstraintisimposed. 

Thissolutionconditionalgivennenablesustocomplete

theexactderivationof the final, unconditional P r(W 

<TF ) relatively straightforwardly by using 

the„chain rule‟ of conditional probability to 

„uncondition on n‟. Another 

fundamentalpropertyofthehomogeneousPoissonpro

cessisthatthedistributionofn,thecountof the number 

of events occurring within a fixed time interval, 

upon which 

theprobabilitiesareconditioned,isPoissonwithparam

eterequaltoitsmean,whichinourcaseisL.Then,workin

gforconveniencewiththe„probabilityofnomishap 

 

inatimeintervalof length L‟,wehave 

 

Pr(W    TF)  = 

 

1 

P 

n=0 

 

n;(TF=L) 

:e
L

:
( L)

n
 

=e
 L

8

<>

1+ L+ 
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dLeF 

n
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dLe 
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: 
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=e
 L
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1+ L+ 

>: 

n

X

=2 

(L   (n 1)TF)
n
 

n! 

(14) 

 

 

A few remarks about this exact expressionWe 

remark firstly that (14) is essentially afunction of 

just two arguments,L,TF, rather than three (as are 

the bounds de-rived in Section 5.1). Thinking now 

of the function mathematically in these 
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X 

terms,withoutmuchconcerningourselvesaboutphysi

calinterpretationofthearguments,if we agree to 

confine ourselves to the ranges 0 <L <1, and 

0TF<1,thenweremarkthattheexpression(14)continu

estogivethecorrectmathematicalPoissonprocesspro

babilityatallpointsofthisdomain,includingthevalu

eof1obtained atTF =0.(This is on the understanding 

that the d1e occurring as theupper limit of a sum 

denotes a sum to infinity in the usual sense of a 

mathematicallimit.) The purpose of stating this last 

point about the argument domain now to 

beassumed for this function is related to the 

practical computation problem associ-ated with 

(14) which we address briefly in [3].Note that, 

apart from thisTF =0case, the expression (14) 

represents a finite sum throughout the domain 

identified,although, for certain argument values, 

the number of terms summed can be astro-

nomically large, which can make a simple-minded 

numerical computation ratherslow. Moreover, 

some of these awkward parameter ranges may be of 

real 

practicalinteresttousinourapplication(seeendofSec

tion3). 

Notethatwecanusethecommonnotationforthe„positiv

epartfunction‟h+, 

associatedwithanyreal-

valuedfunctionh,toobtainthefollowingslightlydiffere

ntexpression,validthroughouttheargumentdomainwe

havejustspecified(including 

TF=0). 

( 
1

(L(n 1)TF)
n
)
 

Pr(W    TF 

)=e
L 

1+ L+ 

n=2 

+ 
(15) 

n! 

 

SomeNumericalResultsonPr(W<TF) 

Wedecidedtotesttheaccuracyofournumerica

lapproximationsexperimentally,and found that, over 

the physically realistic parameter ranges of concern 

to us, 

theapproximationsdefinedareextremelyaccurate,eve

natveryloworderintheTaylorseries.This enabled us 

to produce Figure 2, a contour plot indicating the 

depen-dence of the exact value of P r(W <TF ) on 

its two argumentsL,TF. The func-

tionplottedis,infact,thelogoddsofPr(W<TF),choseni

nordertoensurethat 

 

there are some contours near each extreme, P r(W 

<TF ) = 0 and P r(W <TF ) = 1.In the top right hand 

corner the contours bunch too closely as the 

probability of a„mishap during L‟ becomes 

extremely close to absolute certainty. (It is difficult 

toimagineasituationinwhichtheprecisevaluesofthese

largeprobabilitieswouldbeof practical interest.) The 

rectangular box indicates a subdomain of the 

argumentsoverwhichwehavealsoplottedtheaccuracy

ofourTaylorseriesapproximationtothis exact P r(W 

<TF ) function. The technical report[3] contains 

plots of the per-centage inaccuracy that results 

from the truncation of the approximation after 

oneortwoterms. 

 

Contoursof log10[P(W<TF)/P(W>TF)] 
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Figure2:PlotsofExactValue.Noticethelog-logscale. 

 

We can illustrate in more detail the 

interpretation of our numerical results andplots 

briefly by examining one particular case.  

Assume  L= 10
2  

and  TF  

=10
5

.Thatis,oursystemencountersfaultswithanMTB

Fof100timesitslifetime.It is guaranteed to be 

schedulable provided that it does not, during its 

lifetime, ex-perience two faults separated by less 

than one thousandth of the lifetime duration.In such 

circumstances, we would clearly expect the system 

to be schedulable 

withahighprobability,Psay.Thisisalog-

oddscontourplot,sotheproximitytothe-7contour 

indicates that the odds in favour of a system being 

schedulable with theseparameter values are 

approximately 10
7
to 1. In fact, the bounds on the 

probabilityof schedulability, in this situation, 

obtained by the „order-of-magnitude‟ argumentof 

Section 5.1, are 0:499996710
7 

and 1:50047710
7

. 

The approximations tothese bounds, obtained in 

the two corollaries in Section 5.1, are 0:510
7 

and1:510
7
, exactly. The Taylor series 

approximation allows, in this case, almost ar-

bitrarilyaccuratecalculationofthetruevalueofPwithco

mparativelyfewtermsoftheseries.Infactweprovedtha

talleven-orderpartialsums,uptothe1000
th
-order sum, 

are lower bounds on P , and all odd-order partial 

sums, up to the 1001
th

-

ordersum,areupperbounds.Withtheseparticularargu

ments,themodulusofthefourthorder term in the 

series is less than 10
19

, so the sum to only three 

terms wouldgive an accuracy guaranteed to be 

better than approximately 11 or 12 

significantdecimal figures.To eight significant 

figures, the value of P is 

:9994849610
7
,correspondingtoalog-

oddsverycloseto7inFigure2(atcoordinates(2;5)).The 

seriesapproximation gives first andsecond order 

Taylor approximations of10
7 

and :9994849510
7
, 

respectively. (These numbers are both exact.) See 

[3]foradetailedderivationoftheseresultsconcerninghi

ghnumericalaccuracy. 

 

II. CONCLUSION 
Wehavedevelopedthenotionofaprobabilisti

cschedulingguaranteeandshownhowitcanbederivedf

romthestochasticbehaviouroffaultevents.Itisreasona

bleto assume that a fault tolerant system will be 

designed so as to remain 

schedulablewhendealingwithasinglefault.Themainr

esultofthepaperisthusthederivationof a probabilistic 

guarantee for systems experiencing multiple faults. 

To do this ithas been necessary to formulate a 

prediction of the likelihood of faults 

occurringcloser together than some specified 

distance in time. It has also been necessary touse 

sensitivity analysis to determine the limits to 

schedulability; that is, the mini-
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mumtolerableintervalbetweenfaults. 

Although exact analysis is given for the likelihood 

of faults occurring quickerthan the rate obtained 

from the sensitivity analysis, perhaps the main 

result of 

thispaperisasimplederivedupperboundforthisprobab

ility(asgiveninCorollary3).Atypicaloutcomeofthisa

nalysisisthatinasystemthathasalifetimeof10hourswit

h a mean time between transient faults of 1000 

hours and a tolerance of 

faultsthatdonotappearcloserthan1/100ofanhour,thep

robabilityofmissingadeadlineis upper bounded by 

1.510
7

.A lower bound is also derived (Corollary 4) 

andthisyieldsavalueof0.5 

10
7
.Fortheseparameterstheexactanalysisproducesav

alueverycloseto1.010
7

. 

Interestingly(and 

perhapsnottotallyintuitively)theupper, lowerand 

exact for-mulations for the probabilistic scheduling 

guarantee all indicate that the thresholdvalue 

derived from the scheduling and sensitivity 

analysis has a linear 

relationshiptotheprobabilisticguarantee.Ifthethresho

ldvalueTFishalved,theprobabilityofmissing a 

deadline is halved. Similarly the length L of 

execution of the system hasalinearimpact. 

Themainobstacletotheuseofsomeoftheanalysisgiven

inthispaperisthelackofempiricaldataconcerningfault

arrivaltimes.Inthefutureweaimtoaddressfaultclusteri

ngandlessfavourablefaultprocessmodels.Wealsoaimt

omoveawayfromthe conservative assumption that 

the system is unschedulable (with probability 

1)whenfaultsarrivecloserthanthethresholdvalue. 
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