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ABSTRACT 
We obtain two different patterns of non-zero integral solutions of the Heptic Diophantine equation with three 

unknowns 7 𝑥2 + 𝑦2 − 13𝑥𝑦 = 28𝑧7 by employing suitable transformations. 
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I INTRODUCTION 
Diophantine equations, homogeneous and 

non- homogeneous have aroused the interest of 

numerous mathematicians since antiquity as can be 

seen from [1-2]. The problem of finding all integral 

solutions of on Interminate equation with three or 

more variables in general presents a good deal of 

difficulties. Cubic equations in two variables fall 

into the theory of elliptic curves which is a very 

developed theory but still an important topic of 

current research [3-9]. For equations with degree at 

least three very little is known. In this 

communication a Heptic Polynomial equation with 

three variables represented by 7 𝑥2 + 𝑦2 −
13𝑥𝑦 = 28𝑧7 is considered and two different 

patterns of non-zero integral solutions have been 

presented. 

 

II METHOD OF ANALYSIS: 
The equation under consideration is 

 7 𝑥2 + 𝑦2 − 13𝑥𝑦 = 28𝑧7 
     --- 

 (1) 

Assigning the transformations  

𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑢 − 𝑣    

   --- (2) 

 

in (1) leads to 

 𝑢2 + 27𝑣2 = 28𝑧7  
     ---

 (3) 

 The equation (3) is solved through 

different approaches and they, one obtains distinct 

sets of solutions is (1) 

Pattern 1: 

Assume that  𝑧 = 𝑎2 + 27𝑏2   

   --- (4) 

 Write 28 =  1 + 𝑖 27 (1 − 𝑖 27)
     ---

 (5) 

use (5) & (4) in (3) and applying the method of 

factorization, define 

 𝑢 + 𝑖 27𝑣 =  1 + 𝑖 27 (𝑎 + 𝑖 27𝑏)7

    --- (6) 

 Equating the real and imaginary parts, we 

have 

 𝑢 = 𝑢 𝑎, 𝑏 = 𝑎7 − 189𝑎6𝑏 −
567𝑎5𝑏2 + 25515𝑎4𝑏3 + 25515𝑎3𝑏4 

                                         −413343𝑎2𝑏5 −
137781𝑎𝑏6 + 531441𝑏7  

 𝑣 = 𝑣 𝑎, 𝑏 = 𝑎7 + 7𝑎6𝑏 − 567𝑎5𝑏2 −
945𝑎4𝑏3 + 25515𝑎3𝑏4 

                                         +15309𝑎2𝑏5 −
137781𝑎𝑏6 − 19683𝑏7  
  

Substituting the above values of u and v in equation 

(2), and hence the non-zero integral solutions of (1) 

are 

        𝑥 = 2𝑎7 − 182𝑎6𝑏 − 1134𝑎5𝑏2 +
24570𝑎4𝑏3 + 51030𝑎3𝑏4  

                   −398034𝑎2𝑏5 − 275562𝑎𝑏6 +
511758𝑏7  

         𝑦 =
−196𝑎6𝑏 + 26460𝑎4𝑏3 − 428652𝑎2𝑏5 +
551124𝑏7     (7) 

     𝑧 = 𝑎2 + 27𝑏2    
      

 

Pattern 2: 

Equ (3) can be written as  

 𝑢2 + 27𝑣2 = 28𝑧7 ∗ 1   
    --- (8) 

Write     28 =
 2+2𝑖 27  2−2𝑖 27 

4
   

    --- (9) 
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and also 1 as 

1 =
 3+𝑖 27  3−3𝑖 27 

36
    

    --- (10) 

use (4), (10), (9) in (8) and applying the method of 

factorization, define 

𝑢 + 𝑖 27𝑣 =
1

12
 (2 + 2𝑖 27) 3 + 𝑖 27  𝑎 +

𝑖27𝑏7   --- (11) 

Equating the real and imaginary part, we have 

𝑢 = 𝑢 𝑎, 𝑏 =
1

12
{−48𝑎7 − 1512𝑎6𝑏

+ 27216𝑎5𝑏2 + 204120𝑎4𝑏3 

                                              −1224720𝑎3𝑏4 −
3306744𝑎2𝑏5 + 6613488𝑎𝑏6 + 4251528𝑏7}     

      𝑣 = 𝑣 𝑎, 𝑏 =
1

12
{8𝑎7 − 336𝑎6𝑏 −

4536𝑎5𝑏2 + 45360𝑎4𝑏3 + 204120𝑎3𝑏4  

                                                −734832𝑎5𝑏5 −
1102248𝑎𝑏6 + 944784𝑏7}  
 Substituting the values of u and v in equ 

(2), then the values of x and y are given by 

               𝑥 =
1

12
{−40𝑎7 − 1848𝑎6𝑏 +

22680𝑎5𝑏2 + 249480𝑎4𝑏3  

                      −1020600𝑎3𝑏4 − 4041576𝑎2𝑏5 +
5511240𝑎𝑏6 + 5196312𝑏7}      (12) 

             𝑦 =
1

12
{−56𝑎7 − 1176𝑎6𝑏 + 31752𝑎5𝑏2 +

158760𝑎4𝑏3  

                     −1428840𝑎3𝑏4 − 2571912𝑎2𝑏5 +
7715736𝑎𝑏6 + 3306744𝑏7}   
  

 As our interest is on finding integer 

solutions, we choose a and b suitably so that the 

values of x and y are in integers. 

 Replace a by 12A and b by 12B in (4) and 

(12) we get 

               𝑥 = 126{−40𝐴7 − 1848𝐴6𝐵 +
22680𝐴5𝐵2 + 249480𝐴4𝐵3  

                       −1020600𝐴3𝐵4 − 4041576𝐴2𝐵5 +
5511240𝐴𝐵6 + 5196312𝐵7}      (13) 

              𝑦 = 126{−56𝐴7 − 1176𝐴6𝐵 +
31752𝐴5𝐵2 + 158760𝐴4𝐵3  

                     −1428840𝐴3𝐵4 − 2571912𝐴2𝐵5 +
7715736𝐴𝐵6 + 3306744𝐵7}    

𝑧 = 𝐴2 + 27𝐵2    
   

 

 

III CONCLUSION: 
In this paper we have presented two 

different patterns of non-zero integral solutions of 

the Heptic Diophantine equation with three 

unknown (1). One may search for other patterns of 

solutions and their corresponding properties. 
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