On The Heptic Diophantine Equation With Three Unknowns

$$
7\left(x^{2}+y^{2}\right)-13 x y=28 z^{7}
$$

R.Anbuselvi ${ }^{1}$, S.A. Shanmugavadivu ${ }^{2}$
1. Associate Professor of Mathematics, ADM College for women (Autonomous), Nagapattinam, Tamilnadu, India
2. Assistantt Professor of Mathematics, Thiru. Vi. Ka. Government Arts College, Thiruvarur, Tamilnadu, India. Corresponding Auther : S.A.Shanmugavadivu

Abstract

We obtain two different patterns of non-zero integral solutions of the Heptic Diophantine equation with three unknowns $7\left(x^{2}+y^{2}\right)-13 x y=28 z^{7}$ by employing suitable transformations.

KEYWORDS: Heptic equation with three unknowns, Integral solutions.

I INTRODUCTION

Diophantine equations, homogeneous and non- homogeneous have aroused the interest of numerous mathematicians since antiquity as can be seen from [1-2]. The problem of finding all integral solutions of on Interminate equation with three or more variables in general presents a good deal of difficulties. Cubic equations in two variables fall into the theory of elliptic curves which is a very developed theory but still an important topic of current research [3-9]. For equations with degree at least three very little is known. In this communication a Heptic Polynomial equation with three variables represented by $7\left(x^{2}+y^{2}\right)-$ $13 x y=28 z^{7}$ is considered and two different patterns of non-zero integral solutions have been presented.

II METHOD OF ANALYSIS:

The equation under consideration is

$$
7\left(x^{2}+y^{2}\right)-13 x y=28 z^{7}
$$

(1)

Assigning the transformations
$x=u+v, y=u-v$
in (1) leads to

$$
u^{2}+27 v^{2}=28 z^{7}
$$

(3)

The equation (3) is solved through different approaches and they, one obtains distinct sets of solutions is (1)

Pattern 1:

Assume that $\quad z=a^{2}+27 b^{2}$

$$
\text { Write } \quad 28=(1+i \sqrt{27})(1-i \sqrt{27})
$$

(5)
use (5) \& (4) in (3) and applying the method of factorization, define

$$
\begin{equation*}
u+i \sqrt{27} v=(1+i \sqrt{27})(a+i \sqrt{27} b)^{7} \tag{6}
\end{equation*}
$$

Equating the real and imaginary parts, we have

$$
\begin{gathered}
u=u(a, b)=a^{7}-189 a^{6} b- \\
567 a^{5} b^{2}+25515 a^{4} b^{3}+25515 a^{3} b^{4} \\
-413343 a^{2} b^{5}- \\
137781 a b^{6}+531441 b^{7} \\
v=v(a, b)=a^{7}+7 a^{6} b-567 a^{5} b^{2}- \\
945 a^{4} b^{3}+25515 a^{3} b^{4} \\
\quad+15309 a^{2} b^{5}- \\
137781 a b^{6}-19683 b^{7}
\end{gathered}
$$

Substituting the above values of u and v in equation (2), and hence the non-zero integral solutions of (1) are

$$
x=2 a^{7}-182 a^{6} b-1134 a^{5} b^{2}+
$$

$$
24570 a^{4} b^{3}+51030 a^{3} b^{4}
$$

$$
-398034 a^{2} b^{5}-275562 a b^{6}+
$$

$$
511758 b^{7}
$$

$$
y=
$$

$$
-196 a^{6} b+26460 a^{4} b^{3}-428652 a^{2} b^{5}+
$$

$$
\begin{equation*}
551124 b^{7} \tag{7}
\end{equation*}
$$

$$
z=a^{2}+27 b^{2}
$$

Pattern 2:

Equ (3) can be written as

$$
\begin{equation*}
u^{2}+27 v^{2}=28 z^{7} * 1 \tag{8}
\end{equation*}
$$

Write $\quad 28=\frac{(2+2 i \sqrt{27})(2-2 i \sqrt{27})}{4}$
and also 1 as

$$
\begin{equation*}
1=\frac{(3+i \sqrt{27})(3-3 i \sqrt{27})}{36} \tag{10}
\end{equation*}
$$

use (4), (10), (9) in (8) and applying the method of factorization, define
$u+i \sqrt{27} v=\frac{1}{12}\{(2+2 i \sqrt{27})(3+i \sqrt{27})(a+$
$i 27 b 7$
Equating the real and imaginary part, we have

$$
\begin{gathered}
\begin{array}{c}
u=u(a, b)=\frac{1}{12}\left\{-48 a^{7}-1512 a^{6} b\right. \\
\\
+27216 a^{5} b^{2}+204120 a^{4} b^{3} \\
-1224720 a^{3} b^{4}-
\end{array} \\
\left.3306744 a^{2} b^{5}+6613488 a b^{6}+4251528 b^{7}\right\} \\
v=v(a, b)=\frac{1}{12}\left\{8 a^{7}-336 a^{6} b-\right. \\
4536 a^{5} b^{2}+45360 a^{4} b^{3}+204120 a^{3} b^{4} \\
-734832 a^{5} b^{5}- \\
\left.1102248 a b^{6}+944784 b^{7}\right\}
\end{gathered}
$$

Substituting the values of u and v in equ
(2), then the values of x and y are given by

$$
\begin{align*}
& x=\frac{1}{12}\left\{-40 a^{7}-1848 a^{6} b+\right. \\
& 22680 a^{5} b^{2}+249480 a^{4} b^{3} \\
& \quad-1020600 a^{3} b^{4}-4041576 a^{2} b^{5}+ \\
& \left.5511240 a b^{6}+5196312 b^{7}\right\} \tag{12}\\
& y= \\
& \frac{1}{12}\left\{-56 a^{7}-1176 a^{6} b+31752 a^{5} b^{2}+\right. \\
& 158760 a^{4} b^{3} \\
& \quad-1428840 a^{3} b^{4}-2571912 a^{2} b^{5}+ \\
& \left.7715736 a b^{6}+3306744 b^{7}\right\}
\end{align*}
$$

As our interest is on finding integer solutions, we choose a and b suitably so that the values of x and y are in integers.

Replace a by 12 A and b by 12B in (4) and (12) we get

$$
x=12^{6}\left\{-40 A^{7}-1848 A^{6} B+\right.
$$

$22680 A^{5} B^{2}+249480 A^{4} B^{3}$

$$
\begin{equation*}
-1020600 A^{3} B^{4}-4041576 A^{2} B^{5}+ \tag{13}
\end{equation*}
$$

$\left.5511240 A B^{6}+5196312 B^{7}\right\}$
$31752 A^{5} B^{2}+158760 A^{4} B^{3}$

$$
-1428840 A^{3} B^{4}-2571912 A^{2} B^{5}+
$$

$\left.7715736 A B^{6}+3306744 B^{7}\right\}$
$z=A^{2}+27 B^{2}$

III CONCLUSION:

In this paper we have presented two different patterns of non-zero integral solutions of the Heptic Diophantine equation with three unknown (1). One may search for other patterns of solutions and their corresponding properties.

REFERENCE:

[1]. L.E. Dickson, History of Theory of Numbers, Vol. 2 Chelsea Publishing Company, New York (1952).
[2]. Mordell, L.J."Diophantine equations", Academic Press, New York 1969.
[3]. M.A. Gopalan, S. Vidhyalakshmi and S. Devibala, Integral solutions of $49 x^{2}+$ $50 y^{2}=51 z^{2} \quad$ Acta Ciencia Indica, XXXIIM, No.2, 839(2006).
[4]. M.A. Gopalan, Note on the Diophantine Equation $x^{2}+x y+y^{2}=3 z^{2}$, Acta Ciencia Indica, XXVI M, No.3, 265, (2000).
[5]. M.A. Gopalan and Manju Somanath and N. Vanitha, Ternary Cubic Diophantine Equation $\quad 2^{2 a-1}\left(x^{2}+y^{2}\right)=z^{3}, \quad$ Acta Ciencia Indica, Vol.XXXIV M, No.3, 11351137 (2008).
[6]. 6. M.A. Gopalan and G. Sangeetha, Integral solutions of Ternary nonhomogeneous biquadratic equation $\mathrm{x}^{4}+$ $x^{2}+y^{2}-y=z^{2}+z$, Acta Ciencia Indica Vol.XXXVII M.No.4, 799-803 (2011).
[7]. M.A. Gopalan, Manju Somanath and G. Sangeetha, Integral solutions of nonhomogeneous quadratic equation $\mathrm{x}^{4}-\mathrm{y}^{4}=$ $\left(k^{2}+1\right)\left(z^{2}-w^{2}\right)$, Archimedeas journal of mathematics 1(1), 51-57, 2011.
[8]. M.A. Gopalan and G. Janaki, Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=$ $2\left(z^{2}-w^{2}\right) p^{3}$, Impact. J. Sci. Tech., Vol.4, No.97-102, 2010.
[9]. M.A. Gopalan and G. Sangeetha, On the Sextic Diophantine equation with three unknowns $\quad X^{2}-X Y+Y^{2}=\left(K^{2}+3\right)^{n} z^{6}$, impact. J. Sci. Tech., Vol.4, No.4, 89-93, 2010.

[^0]
[^0]: R.Anbuselvi " On The Heptic Diophantine Equation With Three

 Unknowns."International Journal of Engineering Research and Applications (IJERA), vol. 8, no.5, 2018, pp. 24-29

