
Pramila M. Chawan Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -III) May 2018, pp 48-52

www.ijera.com DOI: 10.9790/9622-0805034852 48 | P a g e

Recommendation System for Dining

Pramila M. Chawan* Kaushal Suvarna**, Yash Goyal**, Jay Thakker**,

Advait Bandiwadekar**
 *Associate Professor (Department of Computer Engg. and Info. Tech. VJTI, Mumbai, Maharashtra, India.
**B. Tech. Students (Department of Computer Engg. and Info. Tech., VJTI, Mumbai, Maharashtra, India.

Corresponding auther : Pramila M. Chawan

ABSTRACT
In the advent of a smartphone dependent world, applications have become an integral part of life. Existing apps

are providing information which is missing a connection to get to the goal of having a good plan. Planning is one

of the most time consuming activities and all existing applications focus on single services (be it a movie, or a

dine-out etc.) while a complete plan requires a combination of such services. (What if we had to plan a movie

AND a dine-out). Into the frame comes the Service Oriented Architecture that puts together all the needed

services in a single place (application) from where users can very conveniently plan out an evening based on the

recommendations provided. A weighted k-Nearest Neighbours(kNN) algorithm sorts out the recommendations

based on filter parameters provided by the user (such as their location, budget etc.), while API services provided

by the respective single service applications allow us to bring together multiple services on one platform to

provide a complete planning experience.

Keywords – API, kNN, Recommendations, Service, Service Oriented Architecture,

Date of Submission:03-05-2018 Date of acceptance: 19-05-2018

I. INTRODUCTION
How many times have we backed out on an

outing just because we couldn’t narrow down on a

plan. We have a lot of mobile applications which

answer a single or a subset of the aforementioned

questions but not all. To answer all these, you would

probably spend hours on already existing services

like Zomato, Uber, Tapzo, Google Maps or

BookMyShow etc. but indecisiveness, a

characteristic, inherent in humans, leads to a lot of

switching in between single service applications.

Our application aims at combining a set of these

services, providing a feature rich interface to set a

number of filter parameters (like location, number of

people, budget, time to spare etc.) and get restaurant

and movie recommendations tailored to these

parameters.

The following article focuses on the

methodology used to bring together a set of services

(namely services provided by Google, Uber, Zomato

etc) to develop an all-in-one evening planner in a

strictly Service Oriented Architecture. A weighted k-

Nearest Neighbours algorithm decides the plan

recommendations to be returned to the user based on

the parameters.

II. PREVIOUS SCENARIO
All along we have missed out on a platform

which could not only bring multiple services

together but also provide us with a satisfactory plan

combining them. The evolution began with menu

cards being circulated around the city advertising the

cuisine of the restaurants. Later on, these menus

were published online for the purpose of reaching a

larger audience. Applications began with reviewing

and rating the restaurants. Restaurants were forced to

excel in a competitive sphere to maintain a good

rating. Travelling was addressed by providing online

cab services making the restaurants easily

accessible. The issue was that there was no common

platform to integrate all these applications to make

these tasks simple and accessible at a single click.

 Several single service applications have

addressed issues in one sphere of a complete plan

(For eg. Zomato, Uber, BookMyShow) while other

service oriented architecture based applications have

concentrated on a different domain (For. Eg

Trivago). Therefore our aim is to propose a service

oriented system that brings together a set of single

services to recommend a personalized and

customized plan.

III. LITERATURE SURVEY
1.1 Service Oriented Architecture

The term service-oriented architecture

expresses a perspective of software architecture that

defines the use of loosely coupled software services

to support the requirements of the business processes

and software users. In an SOA environment,

RESEARCH ARTICLE OPEN ACCESS

Pramila M. Chawan Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -III) May 2018, pp 48-52

www.ijera.com DOI: 10.9790/9622-0805034852 49 | P a g e

resources on a network are made available as

independent services that can be accessed without

knowledge of their underlying platform

implementation. A service-oriented architecture is

not tied to a specific technology. It may be

implemented using a wide range of interoperability

standards, including Web Services. The key is

independent services with defined interfaces that can

be called to perform their tasks in a standard way,

without the service having pre-knowledge of the

calling application, and without the application

having or needing knowledge of how the service

actually performs its tasks. These services inter-

operate based on a formal definition (or contract)

that is independent of the underlying platform and

programming language.

1.2 Service

A web service is a service offered by an

electronic device to another electronic device,

communicating with each other via the World Wide

Web. In a web service, the Web technology such

as HTTP—originally designed for human-to-

machine communication—is utilized for machine-to-

machine communication, more specifically for

transferring machine-readable file formats such

as XML and JSON. In practice, a web service

typically provides an object-oriented web- based

interface to a database server, utilized for example

by another web server, or by a mobile app, that

provides a user interface to the end user. We can

identify two major classes of web services:

1. REST-compliant web services, in which the

primary purpose of the service is to manipulate

XML representations of web resources using a

uniform set of ―stateless‖ operations, and

2. Arbitrary web services, in which the service may

expose an arbitrary set of operations.

3.3 REST Services

Representational state transfer (REST) or

RESTful web services are a way of providing

interoperability between computer systems on the

Internet. REST-compliant Web services allow

requesting systems to access and manipulate textual

representations of Web resources using a uniform

and predefined set of stateless operations. Other

forms of Web services exist which expose their own

arbitrary sets of operations such as WSDL and

SOAP. In a RESTful Web service, requests made to

a resource’s URI will elicit a response that may be

in XML, HTML, JSON or some other defined

format. The response may confirm that some

alteration has been made to the stored resource, and

it may provide hypertext links to other related

resources or collections of resources. Using HTTP,

as is most common, the kind of operations available

include those predefined by the HTTP methods GET

POST, PUT, DELETE and so on. By using a

stateless protocol and standard operations, REST

systems aim for fast performance, reliability, and the

ability to grow, by re-using components that can be

managed and updated without affecting the system

as a whole, even while it is running.

3.4 Spring Framework

The Spring Framework is an application

framework and inversion of control container for

the Java platform. The framework’s core features

can be used by any Java application, but there are

extensions for building web applications on top of

the Java EE (Enterprise Edition) platform. Although

the framework does not impose any specific

programming model, it has become popular in the

Java community as an addition to, or even

replacement for the Enterprise JavaBeans (EJB)

model. The Spring Framework is open source.

3.5 k-Nearest Neighbours

In pattern recognition, the k-nearest

neighbours algorithm (k-NN) is a non-

parametric method used

for classification and regression. In both cases, the

input consists of the k closest training examples in

the feature space. The output depends on whether k-

NN is used for classification or regression. Our

methodology requires a way to classify whether to

recommend a restaurant to the user or not.

In k-NN classification, the output is a class

membership. An object is classified by a majority

vote of its neighbors, with the object being assigned

to the class most common among its k nearest

neighbors (k is a positive integer, typically small).

k-NN is a type of instance-based learning,

or lazy learning, where the function is only

approximated locally and all computation is deferred

until classification. Both for classification and

regression, a useful technique can be to assign

weight to the contributions of the neighbours, so that

the nearer neighbours contribute more to the average

than the more distant ones which is what we’ve done

in the paper by setting priorities to the filter

parameters entered by the users.

IV. APPROACH
The application being developed is meant

for public usage on a day to day basis the number of

users accepting service is vast hence the system to

be developed should fulfill these requirement a

scalable approach using service oriented architecture

has been developed and deployed.

4.1 Spring Framework

Spring framework was used to implement

services. Spring enabled to loosely follow MVC

Model in implementation of the framework with the

help of annotations denoting various aspects of

MVC in the code. Loose coupling was achieved

using Inversion of Control. The objects gave their

own dependencies instead of creating or looking for

dependent objects. We made sure to use Spring

Framework to make the services lightweight with

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Feature_space
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Lazy_learning

Pramila M. Chawan Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -III) May 2018, pp 48-52

www.ijera.com DOI: 10.9790/9622-0805034852 50 | P a g e

respect to size and transparency. Spring Framework

itself created and managed the life cycle and

configuration of application objects.

We used PostgreSQL database for storing

the

data. The communication between the framework

and database was separated by multiple layers. We

implemented Repository Classes which handled all

the layers. The repositories were extension of JPA

(Java persistence API).

The Java Persistence API (JPA) is a Java

specification for accessing, persisting, and managing

data between Java objects / classes and a relational

database. JPA was defined as part of the EJB 3.0

specification as a replacement for the EJB 2 CMP

Entity Beans specification. JPA is now considered

the standard industry approach for Object to

Relational Mapping (ORM) in the Java Industry.

We then configured Hibernate and c3p0

properties in the application property file of the

spring framework. Hibernate is a high-performance

Object/Relational persistence and query service,

which is licensed under the open source GNU Lesser

General Public License (LGPL). Hence the code was

not needed to be specific to any particular RDMS.

Hibernate is already implemented inside JPA. c3p0

is an easy-to-use library for making traditional

JDBC drivers "enterprise-ready" by augmenting

them with functionality defined by the jdbc3 spec.

Its mainly used for pooling and handling the volume

of interaction with Database. c3p0 was also

inherently implemented.

Communication between various other

service APIs was through RestTemplate package

provided by the spring

framework. RestTemplate makes interacting with
most RESTful services a one-line incantation. And it

can even bind that data to custom domain types.

Performance of spring when compared with other

server side implementations :

Figure 1

Figure 2

Figure 3

Figure 4

4.2 PostgreSql

Seamless integration of the application with

the postgresql database has been provided.

PostgreSQL was majorly used because of it being

Open Source. Over the time because of open source

community postgresql has become one of the most

efficient database available. For our case we used a

single database instance for all the tables. The data is

backed up periodically. Indexing was used to

improve the efficiency of the DB. The sensitive data

was hidden to prevent direct access and breach of

security.
4.3 Security

User security being compromised for

authentication OAuth2 has been implemented to

match the current standards in security.

Pramila M. Chawan Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -III) May 2018, pp 48-52

www.ijera.com DOI: 10.9790/9622-0805034852 51 | P a g e

OAuth 2.0 is the industry-standard protocol

for authorization also is an open standard for access

delegation, commonly used as a way for Internet

users to grant websites or applications access to their

information on other websites but without giving

them the passwords. This mechanism is used by

companies such as Amazon, Google, Facebook,

Microsoft and Twitter to permit the users to share

information about their accounts with third party

applications or websites.

We implemented OAuth 2.0 using spring

security which comes part of spring framework. We

secured most of the APIs with OAuth 2.0. For the

APIs which were not secured by OAuth 2.0 we made

sure that they did not communicate or were

connected to any secured API in any way.

4.4 Android Studio

Considering the context of the application

and wide popularity of smart phone app is

implemented in Android Studio.

The UI provides current location and

location filling with appropriate details leading to

appropriate results. A layout has been created to

display results.

We Implemented Google APIs and our own APIs

and communicated through it using volley.

4.5 Web Scraping

For necessary real time data we are using

Beautiful Soup library is used along with request

library to pull out the data from websites. Tag based

matching and attribute extraction and data

typecasting has been used to filter the data and make

it available for further processing.

4.6 Modified k-NN

We modified the k-nn algorithm to fit our

requirements of result. Regular k-NN algorithm

returns as the k-closest points to the user’s specified

constraints. But as the user preference is strictly

constrained, we reduce the data space by bounding it

by the user’s preference. By doing this, we restrict

the results to lie within the user constraints. We have

normalized the axes of time, distance and cost.

Using these axes, we can easily find out the k-closest

points to the user specified data point. We have also

modified the behavior of final functions according to

our requirements.The graph for a normalized

function:

Figure 5

V. ACQUIRED DATA
The data of all the restaurants and their

details including the average cost per person, the

location (i.e. the latitude and the longitude) and the

cuisines have been taken from the Zomato API – a

free to use API. The data is returned to the user in a

JSON object, is accurate and doesn’t require any

preprocessing. For real time cab fares, we use the

Uber API. Frequent calls to API are time intensive

and hence, to reduce the overhead, a grid has been

created which divides the entire region of Mumbai

into hotspots from which the estimated travel costs

are evaluated by computing the cost from the center

of every hotspot to the center of every other. Each

restaurant is allocated to a grid and hence cost to

every restaurant can be calculated in O(1) time.

VI. RESULTS AND CONCLUSION
We surveyed our Application with a

hundred users – (hundred college students who are

familiar with using such mobile applications) and

had the following results:-

1.) Majority of the users found that the App

significantly reduced the time to search relevant

options.

2.) Users found out many undiscovered places

which they weren’t aware of but did fit their

criteria. (budget, distance, time)

3.) Made planning group outings easier than before.

Illustrated below are the results for searching a

number of restaurants normally and via our App:-

Figure 6

We haven’t considered the application

starting time as it will be similar in both (as good as

deducting the values from both). App-switching time

is considered to be negligible even though it might

play a role in the user effort.

Furthermore we can improve the estimate

latency by having a paid partnership with Uber while

also integrating an Uber widget to allow users to

book a cab directly from our application while at the

same time promoting Service Oriented Architecture

based applications.

 Further modifications and improvements which

can be implemented in the future:

Pramila M. Chawan Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue5 (Part -III) May 2018, pp 48-52

www.ijera.com DOI: 10.9790/9622-0805034852 52 | P a g e

1. User patterns can be analyzed and better results

can be provided using content based filtering.

This helps us find a relation between similar

users and provide them with better results.

2. Support for advertisement pushing can benefit

the recommended places as well as increase the

revenue and provide bettervisibility.

3. Addition of movies, events, etc. in the planning

phase which will result in a complete plan for

the entire day. This can be done using a real

time scraper on the data of a suitable website.

REFERENCES
Web Links:

[1]. https://developer.android.com -

Implementation of the android application.

[2]. https://maven.apache.org/guides/intr-

oduction/introduction-to-repositories.html -

For packages and their reference links.

[3]. https://spring.io/guides

[4]. https://spring.io/docs - For server side

implementation.

Proceedings Papers:
[1]. http://cogprints.org/2124/3/wang_ICML2000.

pdf - Reference for multiple instance kNN

algorithm.

[2]. http://citeseerx.ist.psu.edu/viewdoc/do-

wnload?doi=10.1.1.139.2168&rep=rep1&typ

e=pdfA Service Oriented Architecture

Framework for Collaborative Services

[3]. http://www.joebm.com/papers/154-

W00025.pdf - A Decision Making

Framework for SOA Adoption in e-Banking:

A Case Study Approach

Pramila M. Chawan "Recommendation System for Dining "International Journal of

Engineering Research and Applications (IJERA) , vol. 8, no.5, 2018, pp. 48-52

https://developer.android.com/
https://maven.apache.org/guides/intr-oduction/introduction-to-repositories.html
https://maven.apache.org/guides/intr-oduction/introduction-to-repositories.html
https://spring.io/guides
https://spring.io/docs
http://cogprints.org/2124/3/wang_ICML2000.pdf
http://cogprints.org/2124/3/wang_ICML2000.pdf
http://citeseerx.ist.psu.edu/viewdoc/do-wnload?doi=10.1.1.139.2168&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/do-wnload?doi=10.1.1.139.2168&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/do-wnload?doi=10.1.1.139.2168&rep=rep1&type=pdf
http://www.joebm.com/papers/154-W00025.pdf
http://www.joebm.com/papers/154-W00025.pdf

