
Shreyas Satardekar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue4 (Part -III) April 2018, pp51-55

www.ijera.com DOI: 10.9790/9622-0804035155 51 | P a g e

Distracted Driver Detection and Classification

Shreyas Satardekar*, Dharmin Shah*, Rohit Badugu*, Abhishek Pawar*, Prof.

Pramila M. Chawan**
*B. Tech. Student (Department of Computer Engg and Info. Tech., V.J.T.I., Mumbai, Maharashtra, India

**Associate Professor (Department of Computer Engg. and Info. Tech., V.J.T.I., Mumbai, Maharashtra, India.

Corresponding Auther : Shreyas Satardekar

ABSTRACT
The number of road accidents due to distracted driving has been on a rise in the recent years. As per the Union

Road Transport and Highways Ministry Report 2016, 17 people were killed each hour in India due to road

accidents. This makes it imperative to take measures to curb the number of road fatalities. The major cause of

these accidents is driver error. This paper proposes solution to detect the distraction of driver, thus averting the

possible accidents. The use of different Convolutional Neural Network (CNN) models namely: Small CNN,

VGG16, VGG19, Inception for classification of distracted drivers according to State Farm Distracted Driver

Detection challenge on Kaggle are depicted in this paper. The deep learning library used for the purpose is Keras

running on top of TensorFlow. Our best result is a categorical cross entropy loss of 0.899 on the validation set.

Keywords- Classification, CNN, Keras, Transfer Learning, VGG.

--- ----------

Date of Submission: 10-04-2018 Date of acceptance: 24-04-2018

--- ----------

I. INTRODUCTION
According to the report compiled by the

ministry Transport Research Wing [1], there has

been a 3.2% rise in road fatalities which corresponds

to the death of 1,50,785 people across the country in

2016. The number of road accidents in 2016 and

2015 was 4,80,652 and 5,01,000 respectively. Our

project aims to mitigate the above problem by

correctly identifying whether the driver is distracted

or not. The software, if integrated with hardware can

warn the driver if he gets distracted and thus prevent

an accident from happening.

We input images of the driver to our model.

Each image belongs to one of the 10 classes

mentioned in the dataset section. The model then

predicts the class of an image by giving as an output

a probability for each class.

II. RELATED WORK
This problem was a public challenge hosted

on Kaggle by State Farm insurance company two

years ago [2]. Some of the solutions were based on

SVM model that detect the use of mobile phone

while driving [3]. Others were based on face and

hand segmentation using RCNN [4]. Some

approaches included the use of handcrafted features

(HOG and BoWs) [5]. There are quite a few

approaches based on Deep CNN models which are

pre-trained on ImageNet such as AlexNet, ResNet-

152, VGG-16. Some solutions consist of genetically-

weighted ensemble of convolutional neural

networks.

 Techniques lacking in some the previous include

data augmentation which augments more data to the

dataset by zooming, rotating, shear, etc. help reduce

overfitting. Some of them have not used ensemble

and applied only a single model to the dataset.

Others have not used dropout which is a

regularization technique which helps reduce

overfitting. Batch Normalization, which normalizes

output of previous activation layer was also found

missing in some implementations. Including batch

normalization aids in faster learning and increased

accuracy.

III. DATASET
State Farm is a large group of insurance and

financial services companies throughout the United

States. They released their dataset of 2D dashboard

camera images for a Kaggle challenge. The dataset

had 22400 training images and 79727 testing

images. Resolution was 640 x 480 pixels.

The training images had corresponding

labels attached. Labels belonged to one of the ten

classes as mentioned below:

c0: normal driving

c1: texting - right

c2: talking on the phone - right

c3: texting - left

c4: talking on the phone - left

c5: operating the radio

c6: drinking

c7: reaching behind

RESEARCH ARTICLE OPEN ACCESS

http://www.ijera.com/

Shreyas Satardekar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue4 (Part -III) April 2018, pp51-55

www.ijera.com DOI: 10.9790/9622-0804035155 52 | P a g e

c8: hair and makeup

c9: talking to passenger

A sample input image

is shown in Fig 1.

Fig. 1- Example input image

The training set consists of 22400 images

which are split into 2 parts i.e. train and validation

sets. The images are split in such a manner that the

same driver will not appear in both train and test set.

This is due to the fact that the images are highly

correlated to each other. In our initial approach, we

randomly selected 150 images from each class to

form the validation set consisting of 1500 images.

However, this resulted in false high validation

accuracy due to the high correlation between the

images. Thus, we had to select images belonging to

specific drivers to be a part of validation set such

that the same drivers will not be part of the training

set. The training set was thus split in this manner to

ensure that validation set is not related to the training

set.

 The evaluation metric used for all the models is

categorical cross-entropy or log loss. This is given as

logloss=

 The logloss was used as the metric to judge the

efficiency of the models. Here N stands for number

of predictions and M is the number of classes which

is 10 in our case. The value of yij is 1 if the image i

belongs to class j with the probability value of pij.

IV. LITERATURE STUDY
4.1 Transfer Learning

Pre-trained models were used as a starting

point instead of starting from scratch [6]. It had

several benefits. The pretrained models we used,

have been trained on a very large dataset

(ImageNet), which contains 1.2 million images with

1000 categories. To adapt the model weights to our

dataset we roughly fixed first 70 percent of the

layers (made them untrainable) and trained last 30

percent. The reason being that the initial layers of

the model include edge detection and shape

detection modules, which are generalized for any

image recognition application and these become

increasingly more abstract in the final layers, making

it more specific to the application. In the distracted

driver scenario, the last layer gives an output one of

the 10 classes for a given image.

4.2 Convolutional Neural Network
Neural network is a layered architecture

containing neurons. We input certain data to the

network, the layers are interconnected to each other

and have some initial weights. As we train the

network the weights get updated and this means that

the model has learnt the features of our dataset.

Convolutional neural network is same as neural

networks but for images. So, we provide images as

input to the CNN model. It consists of input layer,

output layer and number of hidden layers. Hidden

layers include the Convolution layer, Pooling layer,

Rectified Linear Units layer, Dropout layer and

Fully Connected layer. [7]

4.2.1 Input Layer

The input layer holds raw pixel values of

the images. In our case, images are colored with

resolution of 640*480 pixels which are scaled down

to 224*224 to reduce training time.

4.2.2 Conv Layer

The Conv layer contains a set of learnable

filters of small dimensions. These filters are moved

throughout entire region of input image and at each

location a dot product is taken with the weights of

filter and small region beneath the filer. For our

project if 12 filters are used then output dimension

would be 224*224*12.

4.2.3 Pooling Layer

The Pooling layers reduced the 2D dimensions of

input volume to prevent from overfitting or to avoid

computation inefficiencies. This is done by applying

a small filter to input data on each depth slice. There

various types of pooling filters like max pooling

which select max value under filter, average pooling,

etc.

4.2.4 ReLu Layer

It applied activation function to each

element to increase non-linearity of the model.

max(0,x) is an example of activation function.

4.2.5 Dropout Layer

The Dropout layer is added to prevent the

model from overfitting. It is a regularization method

which randomly sets some activation values to zero

to remove some feature detectors. In our models we

have added a dropout layer with value of 0.5.

4.2.6 FC Layer

In this layer each neuron is connected to

outputs from previous layer. This layer gives the

final prediction for each class. In our project there

are 10 classes, so FC layer contains 10 neurons.

V. APPROACH
4.3 Small CNN

http://www.ijera.com/

Shreyas Satardekar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue4 (Part -III) April 2018, pp51-55

www.ijera.com DOI: 10.9790/9622-0804035155 53 | P a g e

Initially we created a small CNN model

from scratch. This model had 5 convolution blocks

of 20 layers. Each block consists of layer of CNN

with 32 filters and filter size of 3*3. After CNN

layer, block contains ReLu layer, which is followed

by MaxPooling layer with pool size of 2*2. After

these 5 conv blocks the last block consists of 2 dense

layers and dropout layer with dropout value of 0.5.

For compiling SGD optimizer with learning rate of

0.01 and momentum of 0.9 value is used. The batch

size is kept as 32. The images are augmented to

prevent overfitting. The model is run for 20 epochs.

The output of model is as follows:

After 20 epochs, the training accuracy reached

91.2% while validation accuracy is 54.45%. The

training loss is 0.3084 and validation loss is 2.379.

Figure 2-Training and Validation loss of Small

CNN

These results show that training accuracy is

much higher than validation accuracy which implies

overfitting. To reduce overfitting dropout layer was

added, even after this model was overfitting. The

reason for overfitting is small number of layers for

large size of training data, due to which model is not

able to fit accurately on training set.

This can be avoided by adding large

number of layers but that would lead to very high

computation cost, to solve this problem we used Pre-

trained models which are trained on ImageNet

dataset. These models have large number of layers

and complex architecture which is suitable for

classification of our data.

4.4 VGG-16 and VGG-19

VGG-16 and VGG-19 are part of VGG

network architecture which was introduced in the

paper Very Deep Convolutional Networks for Large

Scale Image Recognition in 2014 by Simonyan and

Zisserman [8]. The number of weight layers in

VGG-16 and VGG-19 are 16 and 19 respectively.

For training purposes, we had to make use of Google

Cloud Platform. Due to unavailability of GPU, we

selected a batch size of 32. The next hyperparameter

which we had to decide on was the learning rate.

The model did not perform well at learning rate of

0.001 and we decided to set the learning rate as

0.0001. VGG-16 consists of 5 blocks and we chose

to train the top block of VGG-16 i.e. we froze the

first 15 layers and unfroze the rest. We did not

include the top i.e. we removed the last softmax

layer of VGG-16 and added a Global Average

Pooling Layer after the 5th block. These values are

fed into a dense layer of 256 output dimension and

„relu‟ activation function. Then a dropout layer was

added to combat overfitting and finally a Fully

connected layer to output the final prediction values.

We trained the model for 2-4 epochs and reached a

validation accuracy of around 80-83%.

Figure 3-Training and validation accuracy of VGG-

16

Since the data for training is very less, the

model faced overfitting. To overcome overfitting,

we decided to create an ensemble of VGG-16

models. We trained another VGG-16 model with

batch size 64. This was the largest batch size which

we could set while training on CPU. The rest of the

hyperparameters were kept unchanged. This model

gave a validation accuracy of around 75-77%

The same procedure was followed for

VGG-19. In this model, we froze the top 17 layers

and trained the rest. The learning rate was 0.0001

and the batch size was 32. The same set of layers

which were used to replace the original softmax

layer in the previous VGG-16 model were used in

this case. This model gave a validation accuracy of

75-77%. Data Augmentation was used in both the

models.

Figure 4-Training and validation accuracy of VGG-

19

4.5 InceptionV3

http://www.ijera.com/

Shreyas Satardekar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue4 (Part -III) April 2018, pp51-55

www.ijera.com DOI: 10.9790/9622-0804035155 54 | P a g e

The InceptionV3 model is pretrained on the

ImageNet database introduced in the paper- Going

deeper with convolutions [9]. These final layers need

to be trained as per the requirement of the

application. The inception base model has 313

layers. In the distracted driver scenario, initial 172

layers are set as non-trainable, while training the

remaining final layers i.e. the top two blocks of the

model. Adams Optimizer was used to compile the

model. However, better results were obtained by

replacing it with SGD optimizer with a learning rate

of 0.0001.

The base model seemed to overfit the data

to a great extent. due to availability of only 22400

images.

Therefore, the data fed to model for training

is augmented. Data augmentation makes the model

become more robust and prevent overfitting. The

different augmentation techniques used were

rescaling the image, rotating, random vertical and

horizontal shift, shear intensity and random channel

shift. Dropout layers were also added. Dropout helps

in ignoring a few random neurons while training of

the model on the dataset. Regularizers help reducing

the weight of non-relevant features. In our model,

regularizers were added to the layers over the base

model.
 Batch Normalization is the pre-processing

step to solve the issue of "internal covariate shift".

The batch size was set to 32. The first step was to

train only the top layers since their weights were

randomly initialized. In this step all convolution

InceptionV3 layers are set as non-trainable.

 The aforementioned steps helped achieve

validation accuracy of 0.73.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Accuracy, InceptionV3

Training Accuracy Validation Accuracy

Figure 4- Training and validation accuracy of

InceptionV3

4.6 Ensemble
It was found out that using an ensemble of

different models will yield better results than using a

single model as overfitting is a major concern in this

problem. Thus, instead of relying on the predictions

of one single model, we averaged the results of all

the 3 of our models namely VGG-16, VGG-19 and

InceptionV3 to get the final prediction values. The

best VGG-16 model had a log loss value of 0.8157.

Similarly, VGG-19 and InceptionV3 had the log loss

values of 0.9631 and 1.0972 respectively.

Creating an ensemble of these models gave us a log

loss value of 0.795.

VI. CONCLUSION
Thus, after trying out several CNN models,

our best ensemble was created after averaging the

probabilities generated by VGG-16, VGG-19 and

InceptionV3. The final log loss which we got was

0.795.

We only used CPU provided by Google

Cloud Platform for this project. If we would have

had access to more computing resources, we could

have tried to improve our results with the help of the

following:

1. Using KNN to find out the K nearest neighbors

of an image and then generating the final

probability by considering the average of the

probabilities of these images. This approach

works well because of high correlation between

the images.

2. Trying ResNet-50 and ResNet-152. These two

CNN models are widely used for image

classification problems and could provide good

results in this scenario.

3. Cropping out parts from the images which

provide more information such as hands, eyes,

etc. to improve accuracy.

REFERENCES
[1] Report on Road Accidents in India 2016-

Ministry of Road Transport & Highways

(MoRTH), Government of India pp. 1-2

 http://morth.nic.in/showfile.asp?lid=2904

[2] Kaggle. A brief summary

 https://www.kaggle.com/c/state-farm-

distracted-driver-detection

[3] Yehya Abouelnaga, Hesham M. Eraqi, and

Mohamed N. Moustafa, “Real-time Distracted

Driver Posture Classification”, arXiv preprint

arXiv:1706.09498

[4] T. H. N. Le, Y. Zheng, C. Zhu, K. Luu and M.

Savvides, "Multiple Scale Faster-RCNN

Approach to Driver‟s Cell-Phone Usage and

Hands on Steering Wheel Detection," 2016

IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW),

Las Vegas, NV, 2016, pp. 46-53

[5] Hssayeni, Murtadha D; Saxena, Sagar;

Ptucha, Raymond; Savakis, Andreas,

“Distracted Driver Detection: Deep Learning

vs Handcrafted Features”, Society for

Imaging Science and Technology, Imaging

and Multimedia Analytics in a Web and

Mobile World 2017, pp. 20-26(7)

[6] dImageNet: VGGNet, ResNet, Inception, and

Xception with Keras

https://www.pyimagesearch.com/2017/03/20/i

http://www.ijera.com/
http://morth.nic.in/showfile.asp?lid=2904
https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/

Shreyas Satardekar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue4 (Part -III) April 2018, pp51-55

www.ijera.com DOI: 10.9790/9622-0804035155 55 | P a g e

magenet-vggnet-resnet-inception-xception-

keras/

[7] CS231n Convolutional Neural Networks for

Visual Recognition

 http://cs231n.github.io/convolutional-

networks/

[8] Karen Simonyan, Andrew Zisserman, “Very

Deep Convolutional Networks for Large-

Scale Image Recognition”, arXiv preprint

arXiv:1409.1556

[9] Christian Szegedy, Wei Liu, Yangqing Jia,

Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent

Vanhoucke, Andrew Rabinovich, “Going

Deeper with Convolutions”, arXiv preprint

arXiv:1409.4842

Shreyas Satardekar "Distracted Driver Detection and Classification "International Journal of

Engineering Research and Applications (IJERA) , vol. 8, no. 4, 2018, pp.51-55

http://www.ijera.com/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

