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ABSTRACT 
The number of road accidents due to distracted driving has been on a rise in the recent years. As per the Union 

Road Transport and Highways Ministry Report 2016, 17 people were killed each hour in India due to road 

accidents. This makes it imperative to take measures to curb the number of road fatalities. The major cause of 

these accidents is driver error. This paper proposes solution to detect the distraction of driver, thus averting the 

possible accidents. The use of different Convolutional Neural Network (CNN) models namely: Small CNN, 

VGG16, VGG19, Inception for classification of distracted drivers according to State Farm Distracted Driver 

Detection challenge on Kaggle are depicted in this paper. The deep learning library used for the purpose is Keras 

running on top of TensorFlow. Our best result is a categorical cross entropy loss of 0.899 on the validation set.  
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I. INTRODUCTION 
According to the report compiled by the 

ministry Transport Research Wing [1], there has 

been a 3.2% rise in road fatalities which corresponds 

to the death of 1,50,785 people across the country in 

2016. The number of road accidents in 2016 and 

2015 was 4,80,652 and 5,01,000 respectively. Our 

project aims to mitigate the above problem by 

correctly identifying whether the driver is distracted 

or not. The software, if integrated with hardware can 

warn the driver if he gets distracted and thus prevent 

an accident from happening. 

We input images of the driver to our model. 

Each image belongs to one of the 10 classes 

mentioned in the dataset section. The model then 

predicts the class of an image by giving as an output 

a probability for each class. 

 

II. RELATED WORK 
This problem was a public challenge hosted 

on Kaggle by State Farm insurance company two 

years ago [2]. Some of the solutions were based on 

SVM model that detect the use of mobile phone 

while driving [3]. Others were based on face and 

hand segmentation using RCNN [4]. Some 

approaches included the use of handcrafted features 

(HOG and BoWs) [5]. There are quite a few 

approaches based on Deep CNN models which are 

pre-trained on ImageNet such as AlexNet, ResNet-

152, VGG-16. Some solutions consist of genetically-

weighted ensemble of convolutional neural 

networks. 

     Techniques lacking in some the previous include 

data augmentation which augments more data to the 

dataset by zooming, rotating, shear, etc. help reduce 

overfitting. Some of them have not used ensemble  

and applied only a single model to the dataset. 

Others have not used dropout which is a 

regularization technique which helps reduce 

overfitting. Batch Normalization, which normalizes 

output of previous activation layer was also found 

missing in some implementations. Including batch 

normalization aids in faster learning and increased 

accuracy.  

 

III. DATASET 
State Farm is a large group of insurance and 

financial services companies throughout the United 

States. They released their dataset of 2D dashboard 

camera images for a Kaggle challenge. The dataset 

had 22400 training images and 79727 testing 

images. Resolution was 640 x 480 pixels.  

The training images had corresponding 

labels attached. Labels belonged to one of the ten 

classes as mentioned below: 

c0: normal driving             

c1: texting - right             

c2: talking on the phone - right                               

c3: texting - left                                                       

c4: talking on the phone - left                                      

c5: operating the radio                                             

c6: drinking                                                             

c7: reaching behind                                                 
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c8: hair and makeup                                                

c9: talking to passenger 

A sample input image 

is shown in Fig 1. 

 
Fig. 1- Example input image 

 
The training set consists of 22400 images 

which are split into 2 parts i.e. train and validation 

sets. The images are split in such a manner that the 

same driver will not appear in both train and test set. 

This is due to the fact that the images are highly 

correlated to each other. In our initial approach, we 

randomly selected 150 images from each class to 

form the validation set consisting of 1500 images. 

However, this resulted in false high validation 

accuracy due to the high correlation between the 

images. Thus, we had to select images belonging to 

specific drivers to be a part of validation set such 

that the same drivers will not be part of the training 

set. The training set was thus split in this manner to 

ensure that validation set is not related to the training 

set.  

     The evaluation metric used for all the models is 

categorical cross-entropy or log loss. This is given as 

logloss=  

     The logloss was used as the metric to judge the 

efficiency of the models. Here N stands for number 

of predictions and M is the number of classes which 

is 10 in our case. The value of yij is 1 if the image i 

belongs to class j with the probability value of pij. 

 

IV. LITERATURE STUDY 
4.1 Transfer Learning           

Pre-trained models were used as a starting 

point instead of starting from scratch [6]. It had 

several benefits. The pretrained models we used, 

have been trained on a very large dataset 

(ImageNet), which contains 1.2 million images with 

1000 categories. To adapt the model weights to our 

dataset we roughly fixed first 70 percent of the 

layers (made them untrainable) and trained last 30 

percent. The reason being that the initial layers of 

the model include edge detection and shape 

detection modules, which are generalized for any 

image recognition application and these become 

increasingly more abstract in the final layers, making 

it more specific to the application. In the distracted 

driver scenario, the last layer gives an output one of 

the 10 classes for a given image.  

4.2  Convolutional Neural Network         
Neural network is a layered architecture 

containing neurons. We input certain data to the 

network, the layers are interconnected to each other 

and have some initial weights. As we train the 

network the weights get updated and this means that 

the model has learnt the features of our dataset. 

Convolutional neural network is same as neural 

networks but for images. So, we provide images as 

input to the CNN model. It consists of input layer, 

output layer and number of hidden layers. Hidden 

layers include the Convolution layer, Pooling layer, 

Rectified Linear Units layer, Dropout layer and 

Fully Connected layer. [7] 

4.2.1 Input Layer 

The input layer holds raw pixel values of 

the images. In our case, images are colored with 

resolution of 640*480 pixels which are scaled down 

to 224*224 to reduce training time. 

4.2.2 Conv Layer 

The Conv layer contains a set of learnable 

filters of small dimensions. These filters are moved 

throughout entire region of input image and at each 

location a dot product is taken with the weights of 

filter and small region beneath the filer. For our 

project if 12 filters are used then output dimension 

would be 224*224*12. 

4.2.3 Pooling Layer 

The Pooling layers reduced the 2D dimensions of 

input volume to prevent from overfitting or to avoid 

computation inefficiencies. This is done by applying 

a small filter to input data on each depth slice. There 

various types of pooling filters like max pooling 

which select max value under filter, average pooling, 

etc. 

4.2.4 ReLu Layer 

It applied activation function to each 

element to increase non-linearity of the model. 

max(0,x) is an example of activation function. 

4.2.5 Dropout Layer 

The Dropout layer is added to prevent the 

model from overfitting. It is a regularization method 

which randomly sets some activation values to zero 

to remove some feature detectors. In our models we 

have added a dropout layer with value of 0.5. 

4.2.6 FC Layer 

In this layer each neuron is connected to 

outputs from previous layer. This layer gives the 

final prediction for each class. In our project there 

are 10 classes, so FC layer contains 10 neurons. 

V. APPROACH 
4.3 Small CNN 
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Initially we created a small CNN model 

from scratch. This model had 5 convolution blocks 

of 20 layers.  Each block consists of layer of CNN 

with 32 filters and filter size of 3*3. After CNN 

layer, block contains ReLu layer, which is followed 

by MaxPooling layer with pool size of 2*2. After 

these 5 conv blocks the last block consists of 2 dense 

layers and dropout layer with dropout value of 0.5. 

For compiling SGD optimizer with learning rate of 

0.01 and momentum of 0.9 value is used. The batch 

size is kept as 32. The images are augmented to 

prevent overfitting. The model is run for 20 epochs. 

The output of model is as follows: 

After 20 epochs, the training accuracy reached 

91.2% while validation accuracy is 54.45%. The 

training loss is 0.3084 and validation loss is 2.379. 

 

 
Figure 2-Training and Validation loss of Small 

CNN 

      

These results show that training accuracy is 

much higher than validation accuracy which implies 

overfitting. To reduce overfitting dropout layer was 

added, even after this model was overfitting. The 

reason for overfitting is small number of layers for 

large size of training data, due to which model is not 

able to fit accurately on training set. 

This can be avoided by adding large 

number of layers but that would lead to very high 

computation cost, to solve this problem we used Pre-

trained models which are trained on ImageNet 

dataset. These models have large number of layers 

and complex architecture which is suitable for 

classification of our data. 

4.4 VGG-16 and VGG-19 

VGG-16 and VGG-19 are part of VGG 

network architecture which was introduced in the 

paper Very Deep Convolutional Networks for Large 

Scale Image Recognition in 2014 by Simonyan and 

Zisserman [8]. The number of weight layers in 

VGG-16 and VGG-19 are 16 and 19 respectively. 

For training purposes, we had to make use of Google 

Cloud Platform. Due to unavailability of GPU, we 

selected a batch size of 32. The next hyperparameter 

which we had to decide on was the learning rate. 

The model did not perform well at learning rate of 

0.001 and we decided to set the learning rate as 

0.0001. VGG-16 consists of 5 blocks and we chose 

to train the top block of VGG-16 i.e. we froze the 

first 15 layers and unfroze the rest.  We did not 

include the top i.e. we removed the last softmax 

layer of VGG-16 and added a Global Average 

Pooling Layer after the 5th block. These values are 

fed into a dense layer of 256 output dimension and 

„relu‟ activation function. Then a dropout layer was 

added to combat overfitting and finally a Fully 

connected layer to output the final prediction values. 

We trained the model for 2-4 epochs and reached a 

validation accuracy of around 80-83%.  

 

 
Figure 3-Training and validation accuracy of VGG-

16 

 

Since the data for training is very less, the 

model faced overfitting. To overcome overfitting, 

we decided to create an ensemble of VGG-16 

models. We trained another VGG-16 model with 

batch size 64. This was the largest batch size which 

we could set while training on CPU. The rest of the 

hyperparameters were kept unchanged. This model 

gave a validation accuracy of around 75-77% 

The same procedure was followed for 

VGG-19. In this model, we froze the top 17 layers 

and trained the rest. The learning rate was 0.0001 

and the batch size was 32. The same set of layers 

which were used to replace the original softmax 

layer in the previous VGG-16 model were used in 

this case. This model gave a validation accuracy of 

75-77%. Data Augmentation was used in both the 

models. 

 
Figure 4-Training and validation accuracy of VGG-

19 
 

4.5 InceptionV3 
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The InceptionV3 model is pretrained on the 

ImageNet database introduced in the paper- Going 

deeper with convolutions [9]. These final layers need 

to be trained as per the requirement of the 

application. The inception base model has 313 

layers. In the distracted driver scenario, initial 172 

layers are set as non-trainable, while training the 

remaining final layers i.e. the top two blocks of the 

model. Adams Optimizer was used to compile the 

model. However, better results were obtained by 

replacing it with SGD optimizer with a learning rate 

of 0.0001.  

The base model seemed to overfit the data 

to a great extent. due to availability of only 22400 

images.  

Therefore, the data fed to model for training 

is augmented. Data augmentation makes the model 

become more robust and prevent overfitting. The 

different augmentation techniques used were 

rescaling the image, rotating, random vertical and 

horizontal shift, shear intensity and random channel 

shift. Dropout layers were also added. Dropout helps 

in ignoring a few random neurons while training of 

the model on the dataset. Regularizers help reducing 

the weight of non-relevant features. In our model, 

regularizers were added to the layers over the base 

model. 
 Batch Normalization is the pre-processing 

step to solve the issue of "internal covariate shift". 

The batch size was set to 32. The first step was to 

train only the top layers since their weights were 

randomly initialized. In this step all convolution 

InceptionV3 layers are set as non-trainable.  

     The aforementioned steps helped achieve 

validation accuracy of 0.73.  
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Figure 4- Training and validation accuracy of 

InceptionV3 

4.6 Ensemble 
It was found out that using an ensemble of 

different models will yield better results than using a 

single model as overfitting is a major concern in this 

problem. Thus, instead of relying on the predictions 

of one single model, we averaged the results of all 

the 3 of our models namely VGG-16, VGG-19 and 

InceptionV3 to get the final prediction values. The 

best VGG-16 model had a log loss value of 0.8157. 

Similarly, VGG-19 and InceptionV3 had the log loss 

values of 0.9631 and 1.0972 respectively. 

Creating an ensemble of these models gave us a log 

loss value of 0.795. 

 

VI. CONCLUSION 
Thus, after trying out several CNN models, 

our best ensemble was created after averaging the 

probabilities generated by VGG-16, VGG-19 and 

InceptionV3. The final log loss which we got was 

0.795. 

We only used CPU provided by Google 

Cloud Platform for this project. If we would have 

had access to more computing resources, we could 

have tried to improve our results with the help of the 

following: 

1. Using KNN to find out the K nearest neighbors 

of an image and then generating the final 

probability by considering the average of the 

probabilities of these images. This approach 

works well because of high correlation between 

the images. 

2. Trying ResNet-50 and ResNet-152. These two 

CNN models are widely used for image 

classification problems and could provide good 

results in this scenario. 

3. Cropping out parts from the images which 

provide more information such as hands, eyes, 

etc. to improve accuracy. 
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