K.M. Odunfa Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 8, Issue4 (Part -11) April 2018, pp67-78

RESEARCH ARTICLE OPEN ACCESS

Development of an Interactive Finite Element Solution Module
for 2d Stress Problem Analysis Using Isoparametric Element

www.ijera.com

K.M. Odunfa, O.P. Akinmolayan

Mechanical Engineering Department, University Of Ibadan, Ibadan, Oyo State
Corresponding Auther: K.M. Odunfa

ABSTRACT

Finite Element Method Has Been Established As One Of The Most Versatile Tool Commonly Employ In
Solving Complex Engineering Problems. In This Work, Finite Element Analysis Module For Stress Problem
Using Isoparametric Element Was Developed And Utilized In Some Selected Engineering Problems. Two-
Dimensional Standard Deflection (Flexural) Equation Was Used In The Modelling. Isoparametric 8-Noded
Element With 16 Degree Of Freedom Was Also Adopted In The Model. The Domain Was Discretized Into Six
And Nine Elements For The Cases Analyzed. Matlab Code Was Written Based On The Developed Model.
Graphic User Interface (Gui) Was Also Developed In Other To Make The Analysis Easier For The User. A
Windows Application Was Created From Matlab Standalone App In Gui For Easy Access Of The Module. Case
Studies For Curvilinear Structural Element Were Used To Test-Run The Developed Program. Windows
Application Was Then Run With The Required Input Data. Global Displacement Were Obtained For Each
Nodal Element (For Case One, Node 8 Experienced - 0.3371m And - 0.6663m In X And Y Direction,
Respectively While For Case Two, Node 8 Experienced - 0.021m And 0.14m, Respectively). Also, The Global
Node Reactions Were Obtained For Each Nodal Element (For Case One, Node 8 Experienced Nodal Reactions
Of -29.07kn And 19.98kn In X And Y Direction, While For Case Two, Node 8 Experienced Nodal Reactions Of
2.6kn And 9.7kn, Respectively). Stresses For Each Element (Case One, Element One Experienced 1.81kn/M,
21.28kn/M And -3.36kn/M And For Case Two, Element One Experienced -6.32kn/M, -5.64kn/M And -
12.08kn/M). Developed Finite Element Analysis Module For Stress Problem Using Isoparametric Element
Established An Improvement Over Previous Result Obtained From The Same Case Studied; Hence The Module
Can Be Used For Other Related Problems.
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I. INTRODUCTION Classical Elasticity. For Problems Involving Non
Finite Element Method In The Last Three Isotropic  Material Properties And Complex

To Four Decades, Has Received Much Attention
Due To The Increasing Use Of High-Speed
Computers And The Growing Emphasis On
Numerical Methods For Engineering Analysis. This
Is Completely Understandable, Since It Is Not
Possible To Obtain Analytical Solutions For Many
Practical Engineering Problems. An Analytical
Solution Is A Mathematical Or Functional
Expression That Can Give The Values Of The
Desired Unknown Variables At Any Location In A
Continuum, And As A Consequence It Is Valid For
An Infinite Number Of Locations In The Body.
However, Analytical Solutions Can Be Obtained
Only For Certain Simple Problems. This Difficulty,
However, Can Be Overcome With The Application
Of The Finite Element Method. The Finite Element
Method Is An Efficient Tool To Numerically Solve
The Engineering Problems. In Fact, Finite Element
Method Has Been Applied To Complex
Geometries And Orthotropic Problems In The

Boundary Conditions, One Has To Resort To
Numerical Methods That Provide Approximate
Solutions With Reasonable Accuracies. In Most Of
The Numerical Methods, The Solutions Yield
Approximate Values Of The Unknown Variables
Only At A Discrete Number Of Points In The
Continuum. The Process Of Selecting Finite
Number Of Discrete Points In The Continuum Can
Be Termed "Discretization". One Way Of
Discretizing An Entire Body Or Structure Is To
Divide It Into A Set Of Small Bodies, Or Units.
The Assemblage Of Such Units Then Represents
The Original Body. Instead Of Solving The
Problem For The Entire Body In One Operation,
The Solutions Could Be Formulated For Each
Constituent Unit And Then Combined To Obtain
The Solution For The Original Body Or Structure.
The Finite Element Method Is Applicable To A
Wide Range Of Boundary Value Problems In
Engineering. In Boundary Value Problems,
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Solutions Are Sought In The Region Of The Body,
While On The Boundaries The Values Of The
Unknown Variables (Or Their Derivatives) Are
Prescribed.

All Stress Problems Are, In Theory,
Capable Of Being Solved Using The Finite
Element Method. (E.G. Pressure Vessels, Cooling
Towers, Rocket Nozzles). Limitations To The
Finite Element Method Occur When Numerous
Elements Are Required To Achieve A Desired
Degree Of Accuracy Thus Resulting In Large
Computer Core Requirements And/Or Excessive
Cost. Prior To 1968, Finite Elements Having Only
Linear Variation Of Boundaries Were Available.
Thus, When A Curved Geometric Boundary Was
To Be Modelled, One Was Forced To Introduce
Large Numbers Of Elements To Achieve
Acceptable Results. This Required The Solution Of
A Greatly Increased Number Of Equilibrium
Equations And Was Recognized As A Limiting
Factor In The Application Of The Finite Element
Method To This Type Of Problem. The
Introduction Of The Isoparametric Concept By
Ergatoudis Enabled Development Of Elements
With Polynomic Variation Of Boundaries And Led
To A Reduction In The Number Of Elements
Necessary To ldealize Curved Boundaries.

Mathematical Formulation Of A Problem
For Continuous Body Is Usually Made Up Of
Differential Equations Where Mechanical And
Physical Quantities Of The Continuous Body Such
As Displacement, Stress, Strain Etc., Are Assumed
To Be Continuous Functions Of The Space
Coordinate. These Mathematically Governing
Differential Equations Must Be Solved To Find
Values Of The Desired Quantities At Various
Points Within The Continuum. Majority Of Design
Problems Fall Outside The Reach Of Closed
Solution Due To Complex And Irregular Geometric
Forms Of The Continuum, Complexity Of The
Loading Pattern, Non-Linearity And
Inhomogeneity In Properties Of The Material.
Thus, A Developer Must Certainly Resort To An
Approximate Numerical Analysis That Provide
Approximate  Solutions ~ With  Reasonable
Accuracies. In Most Of The Numerical Methods,
The Solutions Yield Approximate Values Of The
Unknown Variables Only At A Discrete Number
Of Points In The Continuum. More So, Finite
Element With Curved Edges And Boundaries Are
Best Solved Using Isoparametric Element. Hence,
There Are Great Ambiguity In Analyzing
Isoparametric Element Problem Due To The
Complexity Of The Governing Equation And
Methods Used In Analyzing The Problem.
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Il. LITERATURE REVIEW

The Original Concept Of Finite Element
Method For Continual Solid Developed In The
Mid- 1950s And Had Been Attributed To Turnel Et
Al (1956) Who Applied The Matrix Displacement
Technique To Plane Stress Problems Using
Triangular And Rectangular Elements. They
Derived The Stiffness Matrices Without Basing
The Formulation On The Field Equation Of The
Continuum. Courant (1943), One Of The
Pioneering Mathematician In The Development Of
Fem Presented An Approximate Solution Of The
Saint-Venant Torsion Of An Irregular Cross
Section Based On The Principle Of Minimum
Potential Energy Using An Assembly Of
Triangular Elements.

Since The Publication Of These Results In
Literature, Lots Of Work Have Gone Into
Perfecting The Method So As To Attain Both
Simplicity And Accuracy In Obtaining Solution To
Various Problems In Engineering. The Fem Is Now
Widely Accepted As A Method Of Stress Analysis.
Progress In The Method Has Been On Three
Fronts. All Of Which Contributes To The Strength
And Flexibility Of The Method. First Of All, The
Relationship Of Fem To Previous Well Established
Methods In Continuum Mechanics Has Given It A
Firm Foundation. Secondly, The Search For, And
Development Of The Many Consistent Elements
Has Given It A Wide Area Of Application. And
Finally, Extension Of The Methods To The Study
Of Nonlinear Behavior In Both Materials And
Geometric Non Linearity’s Has Resulted In More
Realistic Models And Design Methods.

Li Et Al, (2001) Presented A Quadratic
Finite Element And Quadratic Finite Strip With
Generalized Degrees Of Freedom Based On The
Fact That The Local Displacement Fields Of The
Elements Should Be Compatible With The Global
Displacement Field For The Corresponding
System. Though Quadratic Elements And Strips
Were Used, They Found Results With Good
Accuracy And Desirable Convergence. Compared
To The Traditional Finite Elements And Strips This
Method Yielded Similar Results With Less Degrees
Of Freedom. They Also Found That, When
Compared To The Linear Element, This Method
Can Yield Results With Better Accuracy. Kikuchi
Et Al, (1999) Presented A Modification Of An 8-
Node Quadrilateral Element Which Is Widely Used
In Finite Element Analysis. They Proposed This
Element Which Can Represent Any Cartesian And
Isoparametric Quadratic Polynomials When It Is Of
Bilinear Isotropic Shape. They Found That The
Results Were In Good Agreement With The Basic
Formulation Of An 8-Node Element. Moreover,
This Element Gave Good Results For Higher Order
Elements And For Three-Dimensional (3-D)
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Elements. Long Et Al, (2004) Investigated The
Effect Of Modified Reduced Quadrature Rules On
The Presence Of Spurious Modes In The Stiffness
Matrices Of The Q8 Serendipity And Q9 Lagrange
Membrane Finite Element. The Alternative Five-
And Eight-Point Schemes Were Proposed For Q8
And Q9 Elements, Respectively, That Allowed For
The Elimination Of Spurious Modes While
Element Accuracy Was Maintained. They Found
That The Q8 Element Yielded More Economical
Results Using The Five-Point Rule When
Compared To The Eight Point Rule. The Q9
Element, However, Produced Inadequate Results
Using The Five-Point

Huang (1986) Developed Finite Element
Analysis Program For Isotropic And Orthotropic
Axisymmetric  Micropolar (Cosserat) Elastic
Solids. Isoparametric Elements Of 8- And 20-Node
Are Used To Solve General Three-Dimensional
Problems, And Both 4-And 8-Node Elements Are
Used For Two-Dimensional Cases. Three-
Dimensional Finite Element Formulation For
Cylindrical Coordinate System Is Derived.
Corresponding  Fortran Programs Are Then
Developed. Patch Tests Are Performed For Two-
Dimensional Cases To Verify The Applicability Of
The Finite Element Method To Non-Rectangular
Geometries. Several Two-Dimensional And Three
Dimensional Problems For Micropolar Elastic
Solids Are Solved To Verify The Formulations
And Computer Program. Good Agreements Were
Obtained In All Cases, Confirming The Validity Of
The Finite Element Method.

Gautam (2006) On Stiffness Matrices Of
Isoparametric Four-Node Finite Elements By Exact
Analytical Integration Presented An Explicit
Algebraic Expressions Needed To Compute
Element Stiffness Matrices Using Procedural
(Fortran) And Object Oriented (C++) Computer 10
Programs. Numerical Illustrations For A Convex
Quadrilateral And A Triangle With A Side Node
Are Included. The Wide Controversy Due To
Conventional Element Level  Approximate
Numerical Quadrature Within The Computational
Square Domain, In H And Z Coordinates, Is
Completely Resolved Here By The Closed Form
Analytical Integration Within The Physical
Element, In X And Y Coordinates. Janucik (1974)
On Development And Applications Of A Quadratic
Isoparametric Finite Element For Axisymmetric
Stress And Deflection Analysis Presented The
Theory And Computer Program For An
Axisymmetric Finite Element For Static Stress And
Deflection Analysis. The Element Is An Eight
Node Isoparametric Quadrilateral Based On The
Displacement Method Which Is Capable Of
Representing Quadratic Variation Of Element
Boundaries And Displacements. Element Stiffness
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Properties Are Developed For Linear Elastic Small
Displacement Theory Using Homogeneous
Isotropic Material. Test Cases Are Compared With
Theoretical Solutions From The Theory Of
Elasticity To Identify Program Capabilities And
Limitations.

Akpan, (1990) On Finite Analysis Of Two
Dimensional Stress Problems Using Isoparametric
Developed Used Principle Of Virtual Work With
Two Dimensional Isoparametric Element To
Develop Finite Element Matrix Equation For Plane
Stress Problems. The Overall Equations Are
Integrated Numerically Using Gaussian Quadrature
Integration Rule. The Resultant Set Of Equation
Are Solved On Digital Computer Using Gaussian
Elimination Method

Barlets Et Al (2004) Implemented A
Short Matlab Program To Incorporate A Flexible
Isoparametric  Finite Element Method. Two-
Dimensional Domains With Curved Boundaries Of
Elastic Problems Having Quadratic Order Were
Considered. They Incorporated Triangular And
Quadrilateral Elements Equipped With Varying
Quadrature Rules Which Allowed For Mesh
Refinement. They Provided Numerical Examples
For The Laplace Equation With Mixed Boundary
Conditions To Indicate The Flexibility Of The
Isoparametric Finite Elements.

IHl. METHODOLOGY

The Primary Objective Of This Study Is
To Develop A Finite Element Analysis Program
Utilizing  Isoparametric  Elements.  Different
Element Types, However, Influence The Response
Of A Structure In Varying Fashions. This Effect
Depends On Various Factors Such As The Number
Of Nodes Per Elements, The Degrees Of Freedom
Associated With That Element, The Displacement
Field And The Material Properties. As Such, One
Element Is Not Always Superior To Another With
Respect To Any Given Analysis. Often, It Is The
Experience Of The Finite Element Analyst That
Determines The Appropriate Element To Be Used
Based On Past Solved Problems. The Purpose Of
This Study Is Not To Determine The Appropriate
Element To Be Used In An Analysis, But To
Develop The Capabilities For The Analyst To
Create A Module For Analysis. To Develop Model
For The Finite Element Analysis For Stress
Problem Using Isoparametric Element, An
Understanding Of The Theoretical Development Of
Finite Elements Is Necessary. Finite Elements Are
Discrete Pieces Of The System That Are
Interconnected At Nodal Points. In A Structural
Sense, Each Element Contributes To The Stiffness
Of The System. The Stiffness, In Conjunction With
The Boundary (Or Support) Conditions As Well As
Prescribed Loadings, Determines The
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Deformations Of The System. Numerical
Procedures Are Utilized To Determine The
Stiffness For Each Element. Furthermore,
Algorithms For Combining Each Element Into An
Assembly Of Finite Elements Is Needed To
Determine The Structural Stiffness. Finally,
Solution Techniques Are Needed To Solve The
Structural  Equations From A Numerical
Perspective.

Assumptions:

The Material Are Homogenous And Isotropic

The Material Is Two Dimensional

All Body And Surface Forces Acting On The Body
Act In The X-Y Plane, That Is, They Have No Z
Component.

A 8node Isoparametric Plane Stress Is Used For
Analysis

General Deflection Equation

From The Euler-Bernoulli Theory Of Bending, At
A Point Along A Beam, We Know

t_m L
R EI
Where:

R Is The Radius Of Curvature Of The Point And
1/R Is The Curvature

M Is The Bending Moment At The Point

E Is The Elastic Modulus

I Is The Second Moment Of Area At The Point.
Mathematically, It Can Be Shown That For Large

Where W Is The Deflection At The Point And X Is
The Distance Of The Point Along The Beam.
Hence, The Fundamental Equation In Finding
Deflection Is

d'w _ My

dx®  EIL,

3
In Which The Subscripts Show That Both M And
Ei Are Function Of X And So May Change Along
The Length Of The Beam

Basic Relation
The Displacement (U,,U,) Of A Structural

Element Particle P(x, V) Is Given By
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dw dw dw
v =— U =— U,=—
* dx”’ ¥ dy’ * dx
4
Relating Strain And Deflection, We Have
__dll, _ d Uy, 2 _
€ox = g Cyy = dy Cxy =
v | ly
dy dx
5
Then,
a5 w dow dow
K:rx T ogxt’ K}'}' - dy® Kx}' - dxdy

Are The Curvatures Of The Deflected Surface.
Calculation Of Moments And Shear Forces

Consider A Structural Element Of dx X dv And

With Thickness T. The Element Is Subjected To
And External Uniformly Distributed Load P.
Normal Stress Varies Linearly Along Thickness Of

Element From The Equation ¢ = D{Vw). Hence,

The Moment On The Cross Section Can Be
Calculated By Integration.

MI
t/2

M={M; = D(Vw)dt

MI}.

7
On Expansion, We Have
Et? d2w d2w d2w
M, = 12{1—;:5'-}(.:515'- tv ri_}':") =D, (rix:" +
" rizwj
dy?

) = Et? dzw_l_ d*w D dgw_l_ d*w
YT Ra-)\d? A P\

£t [dw
Mx =M . =— (—) =
¥ ¥ 12(140) \dxdy

4 R
D1 L}(d W )
2 dxdy

&
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Where, J’J?J Is Known As Flexural Rigidity Of An

Element And It’s Given By

D = Et®
P 12{1—»%)

9
Considering Equilibrium Of The Element, The
Equations For Forces Can Be Obtained As

dQ, dq,
—_ —_ — ﬂ
dx dy P
dM, . dM,,

dx dy Qx
EMyy | @My _

dx + dy Q}'

10
Substituting The Equation For The Moments, We
Have

- p d d2w+ d*w
©= g\ @ TV ey

0, =D, (L2 ++2Y)

P oy \ dx? dy

11
Finite Element Analysis Using Isoparametric
Element
For Two Dimensional Quadratic Isoparametric
Element With N Nodes, The Geometric Is
Expressed As

(@) = ) NEmx

v(&n) =Xy N(En) v

12

Where, Are The Standard Displacement
N (f:n

Shape Functions. Equation 3.14 Relates The
Cartesian And The Natural Coordinates At Each
Point. Such A Relationship Must Be Unique And
This Is Satisfied If The Jacobian Of The
Transformation Of The Partial Derivatives Of A
Function In The Natural And Cartesian Coordinate
Systems Has A Constant Positive Sign Over The
Element. It Can Be Shown That This Condition Is
Satisfied For Linear Quadrilateral Elements If No

Internal Angle Between Two Element Sides Is
Equal Or Greater Than180%. For Quadratic

Elements It Is Additionally Required That The Side
Nodes Are Located Within The “Middle Third" Of
The Distance Between Adjacent Corners. There
Are No Practical Rules For Higher Order
Quadrilateral Elements And The Constant Sign Of
The Determinant Of The Jacobian Matrix Is The
Only Possible Verification In This Case. Figure 1
Shows Some Examples Of 2d Isoparametric
Elements.

Equation 3.27 Allows Us To Obtain A Relationship
Between The Derivatives Of The Shape Functions
With Respect To The Cartesian And The Natural

Coordinates. In General, N;Is Expressed In Terms

Of The Natural Coordinates ¢ and nAnd The

Chain Rule Of Derivation Yields
dN; dN;dx dN;dy

L

3 dxar . ayae ’

aN; _ oN; dx aN; dy
on dx dn Ay on

13
In Matrix Form,
ANy [9x & aN,
ot | |a¢ a¢ _ o) 8%
aN.( " |ox ay =1 ow (M
dn dn dn dy

WhereJ '™ Is The Jacobian Matrix Of The
Transformation Of The Derivatives Of N;In The

Natural And Global Axes. The Super Index E In J

Denotes That This Matrix Is Always Computed At
Element Level. We Deduce From Eq. 3.29
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i; ﬂ

a1 8
S RME

iy 3_*?
o
B
o ||
i of | \éy

15
Where []':E']' |Is The Determinant Of The Jacobian

Matrix; (Also Simply Called “The Jacobian"). This
Determinant Relates The Differential Of Area In
The Two Coordinate Systems, I.E.

dx dy = |J'®| d& dn

16
The Terms Of J'*) Are Computed Using The

Isoparametric Approximation In Eq. 3.31, L.E.

;]
dx dN,
—_—= 1. .
a¢ ¢ - ’
i=1
E‘x _ n E';"."l
A T =1 x5
én an
17
aN; aN;
a X Tar Yi
jo =yn [ d
RLaN; AN
dn i an -t
18

For A Rectangular Element,

j":E':' = [rx ﬂ] ard [}':E':'| =ab

0 b
19
The Strain Matrix Is Obtained As
L _
P k. 0
B""'-I: i ! —
Bim = 0 ay |~ [y 0 G
an;  an; ¢ b
oy dx
20

5 __dyadN; dyoN,
f o an 9f

aF an ’

21
The Stiffness Matrix Is Obtained As

Kz'.i" @ =

ﬂ BTDB, t dxdy =

+1 ~+1 )
J. J. Bir(frﬂ:]ﬂgj[frﬂ] I.]I‘E}| td 22

Equation 3.38 Shows That The Integrand Of

KE}-':E'}Contains Rational Algebraic Functions In

EAnd 1.

An Exception To This Rule Is When The
Determinant Of The Jacobian Matrix Is Constant.
This Only Occurs For Rectangular Elements And
For Straight Side Triangles.

For General Quadrilateral Shapes The Analytical

Integration Of Kz-}-':ﬂ}ln The Natural Coordinate

System &,mls Difficult (And In Some Cases

Impossible!) And The Best Option Is To Use
Numerical Integration.

To Accomplish The Integration As Given In
Equation 22, From A Numerical Perspective,
Gaussian Quadrature Is Used. The Gauss Product
Rule Is Obtained By Successive Application Of A
One-Dimensional Gauss Rule. For The Function

@ = B(&,n) The Quadrature Rule Is Given As
INNCIGOE T E

E'pii qq=1 @(E‘F’ Mg j %Wq

23
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Where npAnd ngAre The Number Of Integration

Points Along Each Natural Coordinate &And

7 Respectively; §, and n,Are  The Natural
Coordinates Of The pth Integration Point And W,

And WqAre The Corresponding Weights. A

Similar Procedure Is Followed To Compute The
Equivalent Nodal Force Vectors For Isoparametric
Quadrilateral Elements.

fbil:s} =[N btdudy=

[ NI edg dn
24

The Numerical Integration Of The Equivalent
Nodal Force Vector Due To Body Forces For
Isoparametric Quadrilateral Elements Equation
3.39 Gives

?’lp ?’!q
fbf{s} = Z Z [NerbU':E” tlp}q W, W, 25

p=1lg=1

Steps To Be Followed For The Finite Element
Analysis Of A Structural Stress Problem;

Step 1. Discretize The Structure Into A Mesh Of
Finite Elements.

Step 2. Compute For Each Element The Stiffness
Matrix And The Equivalent Nodal Force Vector
Due To External Loads And “K” And “F”.

Step 3. Assemble The Stiffness Matrix And The
Equivalent Nodal Force Vector For Each Element
Into The Global System

Ka=f

26
K =AK'"® f=Af4+p+r
Where A Denotes The Operator For The Global
Assembly Of All The Individual Matrices And
Vectors For Each Element In The Mesh In
Equation 3.43.
“P” Is The Vector Of External Point Forces Acting
At The Nodes And “R” Is The Vector Of Nodal
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Reaction To Be Computed “A Posteriori" Once
The Nodal Displacement Are Found.

The Assembly Of The Reaction Vector “R” Into
“F” Is Optional, As The Reactions Do Not
Influence The Solution For The Nodal
Displacements

Step 4. The Nodal Displacements Are Computed
By Solving The Equation System Eq.3.43 Where
The Prescribed Displacements Must Be Adequately
Imposed, I.E.

a=K?1f

27
The Nodal Reactions Are Obtained At The
Prescribed Nodes.
Step 5. The Strains And Stresses Are Computed
Within Each Element From The Nodal
Displacements As

c=FRBa ; og=DFBa
28

The Nodal Axial Forces For Each Element Can Be
Computed From

q'®) = K@ gle) _ fle)

29
Main Programming
Previous Sections Provides All The Necessary
Expressions For Programming The Computation
Of The Stiffness Matrix And The Equivalent Nodal
Force Vector For Each Element. Below Is The
Main Program Algorithm.

| SET THE INPLT VALUES |

!

EET THE GATEE LEGENDRE

NUMERICAL INTEGRA TTON

COMPUTE THE
ELASTICITEFCONSTITUTIVE
CONETANT MATRIX (D}

i

COMPUTE THE ELEMENT

STIFFNESSMA TRIX(E) AND NODAL
COMPUTE THE GLOBAL
DISPLACEMENT LyX} AND V(Xp

i

COMPUTE THE GLOBAL SFSTEM
ELEMENT'S NODE REACTIONS

i

COMPUTE THE ELEMENT'S
ETRESESES

1

| DISPLA¥ RESTULTE |

Figure 3: Main Program Flowchart Algorithm
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| Loop owver all Elemenr | ‘/ NO Of Element = 6
v Element Node Number For Each
——l Loop ovear the fmtegration | Element:
I v Element Node Number
Commp e the Shape And In Matlab Syntax, It’s Written As
functions and the [ 3 11 9 2 7 10 63 5 13 11
1 4 8 12 7,9 11 19 17 10 E15 18

Comp ute the Cartestan
derivatve of the Shaps
Funcrions. The Jacohien

i

Compute the strain mooix

ar sach integrafion points

!

And finally computs the
Stiffress Maoix ()

!

End loops I
Figure 4: Flowchart Eor The Computaton Of Stffoess Matrix (EK)

IV. RESULT AND DISCUSSION
The Computer Program Written And The
Model Developed Is Used To Analyze The
Problems Below. The Global Displacements,
Nodes Reactions And The Stresses For Each
Element Are Computed Using The Module. The
Program Codes Can Be Found At The Appendices
Section.
Case Study To Explain The Work In View
Case 1

8NODE-16DOF ISOPARAMETRIC PLANE STRESS

Elasticty ~ : E=2E8Knim**2
Poission ratio : v=0.30
500X | Thickness : th=0.20m
Shape function: Serendipity family.

“mUm'Nﬂm:

Figure 4.1: An 8node Isoparametric Plane Stress

Problem 1
, The Input Value For The “Case 1” Above Are:
v Elasticity Constant (E) = 2"8KN /m?
v Poisson Ratio(V) = 0.3
v Plane Element Thickness (Th) = 0.2m

14;11 13 21 19 12 16 20 15:;17 19
27 25 18 23 26 22 ;19 21 29 27
20 24 28 23]

v' Global System Coordinate’S For Element
Node Cartesian Value In The Form X And
Y Coordinates
And In Matlab Syntax,
[1.0 0; ;25 0 ;20 0 ;25 0 3.0 0 ;
0.9659258 0.258819 ; 1.931852 0.5176381 ;
2.897778 0.7764571 ; 0.8660254 0.5 ;
1.299038 0.75 ;1732051 1 ; 2.165064
125 ;2598076 1.5 ; 0.7071068 0.7071068
o 1414214 1.414214 ; 212132 2.12132 ;
0.5 0.8660254 ; 0.75 1.299038 ; 1
1.732051 ; 1.25 2.165064 ; 15
2.598076 ; 0.258819 0.9659258 ; 0.5176381
1.931852 ; 0.7764571 2.897778 ; 6.123032¢e-
17 1 ; 9.184548e-17 1.5 ; 1.224606e-16 2 ;
1.530758e-16 2.5 ; 1.83691e-16 3]

v No Of Fixed Nodes = 4
v" Fixed Nodal Number = [1 5 25 29]
v" Nodes With External Force = [13 21]
v External Force (Kn) In X And Y
Coordinates= [0 -5; 0 -5]
Case 2;
:;T; lastic Modulus: E in:::kaz\'/m:
b.!&,i 32

‘ 20
I

The Input Value For The “Case 2” Above Are:
v Elasticity Constant (E) = L000KN /m?

v' Poisson Ratio(V) = 0.3
v" Plane Element Thickness (Th) = 1m

v No Of Element = 9

v" Element Node Number For Each Element:

In Matlab Syntax, It’s Written As

[1 2 3 9 14 13
128; 3 4 5 1 16
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15 149; 5 6 7 11
18 1716 10; 12 13 14
20 25 2423 19; 14
15 16 21 27 26 25 20;
16 17 18 22 29
28 27 21; 23 24
25313635 34 30; 25
26 2732 38 37 36
31; 2728 2933 40 39
38 32]
v" Global System Coordinate’S For Element
Node Cartesian Value In The Form X And
Y Coordinates
And In Matlab Syntax,
[5 0;6.667 0;8.333 0;10.667 0;13 0;16.5 0;20
0;4.830 1.294;8.049 2.157;12.557 3.365;19.319
5.176;4.33 25;5.774 3.333;7.217 4.167;9.238
5.333;11.258 6.5;14.289 8.250;17.321 10;3.536
3.536;5.893 5.893; 9.192 9.192;14.142 14.142;2.5
4.330;3.333 5.774;4.167 7.217;5.333 9.238;6.5
11.258;8.25 14.289;10.000 17.321;1.294
4.830;2.157 8.048;3.365 12.557;5.176 19.319;0 5;0
6.667;0 8.333;0 10.667;0 13;0 16.5;0 20]

v" No Of Fixed Nodes = 14

v" Fixed Nodal Number = [1234567 3435
36 37 38 39 40]

v" Nodes With External Force = [8 12 19 23
30]

v' External Force (Kn) In X And Y
Coordinates= [9.659 2.588; 8.66 5; 7.071
7.071; 5 8.66;2.588 9.658]

DEVELOPMENT OF AN INTERACTIVE FINITE ELEMENT SOLUTION MODULE FOR TWO
DIMENSIONAL STRESS PROBLEM ANALYSIS USING ISOPARAMETRIC ELEMENTS
. ) Elusticiy Constant (6) =
Enter input in Matlab Matrix syntax 2408 ”"“’:,"“ = °': s
Element Thickness (th)
0.2 Number of Element  External Force Node
| 15 12460616 2 ; 1LSIOTSHELS 25 LBOIELS 3) Fixed Nodal Number c R
i ] =
External Force in x & y coordiante

Global System Coordinate
y

1 | Node Number for Each Element

Enter External forcein x nd y coordinates 1 0
2 15000 0 .
10.5:0.5) =l : s 3snnasn 7
91119171015 18 14
] 2500 0 113 2119 12 16 20 15
s ) 0 17192725 18 23 26 22
; T WA9720U83
nss29 032 7 199 o
[ wm s
9 om0 050

129% o180 v

X 'ENTER" TO INPUT OTHER DATA
ENTER

Submit Input
caLcutATe

Plate 1: Gui Input Environment Showing The Input
Value For “Case 1” After Insertion
The Graphic User Interface (Gui) Showing The
Input VValues And The Output Result
A Windows Application Which Is
Developed From Matlab Gui Is Created To Enable
A User Friendly Environment For The Input And
Output Of The Data. Below Are The Input And
Output Environment Generated From The Two
Case Studies Above.

WwWWw.ijera.com

Plate 2: Gui Output Environment Showing The
Results For “Case 17
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Nedely 0 20edl Aol 2500t Askhett ATusea |[ | odey a0 s onn awe A 0w
Nodedr | A8M7es8 o ansiess vsmens soztes tanedt |[hesen | oew  aww  amw o e ae
Nodey | 2ol 0 280t Asedn ATemedt 3tsiedt [ | odery oS e amw e sam m
Nodedr | AU el GMeds AMNCA] 1Nl o [[hees | oo osn  arme wne e 2um
Nededy | 25Med] ANKedl AT INMedl A2Teds o [ heseyy | samment ssm o sam e rem
Nodedr | 475040 AR AN G210 o smeas| | hocet | ow 0w o oaws e s
Nededy | AMMedl 24N A0Aed] ATSeAT o womtenn | hodesy | ama omw em e e s
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3] awm e 3au e e ws

Case Two Input And Output Data
Plate 3: Gui Input Environment Showing The
Input Value For “Case 2” After Insertion

NODE ISOPARAMETRIC_MODEL - EN
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Z = P Elasticity Constant (E) ot
Enter input in Matlab Matrix syntax 1000 '“"""';f;'” ) "',:"“’ Neds

Element Thickness (th)
1

Number of Element  External Force Node
l 0 " ) 165: 0 | Fixed Nodal Number [REMIETATN ~
123 45 6|

External Force In x & y coordiante

Global System Coordinate jrem.: (2.

2588 9.658 v
y

Enter External force in x and y coordinates 1 5 0 | Node Number for Each Element
2 6670 ] a
8:8.665: 7.071 7.071; 5 8.66:2.588 9.658) : ey . N RS AR
5 6 7101817 16 10
4 108670 o RIRU25 24D
5 1 0 115 16 21 27 26 25
1617 18 22 29 28 27 21
6734353637 3839 40) 18121923 30) $ S . 3 Il NN,
7 » 0 2526273123837 36 N
0 w12 27 2829 33 40 39 38 32
) o 25
01 1286 38 ¥

‘CUCK "ENTER" TO INPUT OTHER DATA
ENTER

Submit Input
cALCULATE |

0 NODE SOPARAMETRC MODEL B « |

DEVELOPMENT OF AN INTERACTIVE FINITE ELEMENT SOLUTION MODULE FOR TWO
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R 7 Elasticlty Constant (E) s
Enter input in Matlab Matrix syntax g [ e st ol fheg s

Element Thickness (th)

1 Number of Element ~ External Force Node
| 0 w0 w0 | Fixed Nodal Nunber ') St
External Force In x & wdrm
= R orce nx &y ¢
’ » " 3 » " | ¢ > o
Globa System Coordinate . oo
g ; 2508 9650 v
Enter External force i x and y coordinates ! § 0 Node Number for Each Element
8060570170715 8662588 9458] LiEsee o i
3w . 56 7118171610
) 10,6670 ] NRUUANBUBN
A o M6 n s 0
Number H 6171822292202
6] 1w 1 2324 25 3136 35 34 30
6733637383940 #2923 7 n o N RRTKN
o1 um me | mABNOBNR

] 040 250
10 128500 Y

CLICK "ENTER' TO INPUT OTHER DATA|
ENTER Submit Input
CALCULATE ]
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Plate 4: Gui Output Environment Showing The
Results For “Case 2*”

The Result Generated From The Figures Above
Are As Follow:
The Global System Displacement (U(X) &V(Y))
For Each Element For The Two Case Studies
The Global Node Reactions In X & Y Direction
For Each Element
The Stress For Each Of The Element
It Can Be Deuced From The Result That;

The Fixed Points, That’s, The Fixed
Nodes Which Are Not Considered In The Problem
Defined In A Previous Work Which Tentative
Affects The Correctness And Accuracy Of The
Results Obtained For The Displacement And
Reactions For Each Element. In This Present Work,
The Fixed Point Are Rightly Considered Which
Enhanced The Accuracy Of The Work Output. The
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Model And Program Used To Develop And
Analyzed The Previous Similar Work Is Ibm
Which Has Several Limitation In Computing Some
Certain  Mathematical Expression And Also
Analyzing Some Of The Complex Governing
Equations. This Also Contributed To The Accuracy
Of The Output Generated. In The Present Work, A
More Enhanced And Latest Software Is Used. This
Helps In The Correctness Of The Limitation
Mentioned Above And Also Systematically Makes
The Output More Accurate The Model Developed
In Previous Similar Work Was Just Used To Solve
A Sample Of Isoparametric Problems. But The
Present Work Developed Grants The Enablement
To Solve Several Two Dimension Isoparametric
Problem Cases. An Addition Of A Graphic User
Interface Makes It Possible For A User With No
Knowledge Of A Programming Software To
Analyze And Solve A Stress Problem Using
Isoparametric Element. The Interface Is User
Friendly And Very Easy To Use. And Lastly, A
Window App Was Developed. This Makes It
Possible For An Analyst Or A User To Have
Access To The Module Without Installing The
Matlab Program Software.

V. CONCLUSIONS

The Results Obtained In This Study Are
Of High Level Of Accuracy Compared To Previous
Work. It Can Also Be Deduced That The Module
Developed Can Be Used To Analyze Different
Cases Of Two Dimensional Stress Problem With
Curved Boundaries. This Poses A Great
Breakthrough In The Analysis Of Finite Element
Using Isoparametric Element. In Summary, The
Use Of A Computer Program Is Essential In
Analysis Of Finite Element Using Isoparametric
Element. Having Successfully Developed And
Simulated, A New Model With Less Simplified
Assumption Is Recommended. In Real Life
Situation, It Could Be Difficult To Encounter A
Complete Structural Element With Materials
Across It Been Homogenous And Isotropic. Hence,
A Model With Different Material Properties In A
Structural Element Is Recommended. A Three
Dimensional Case With Higher Number Of Node
Considered, Is Recommended For New Model. A
New Model That Allows The Analysis Of Four,
Eight, Nine, Twelve, Etc., Simultaneously In One
Model Is Recommended.
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