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ABSTRACT— In A Utility Cloud Resources Are Operating On A Utility Basis That Allows Customers To 

Pay As They Go And Only For The Resources They Will Use At Multiple Granularities For A Specified Level 

Of Quality Of Service. Cloud Infrastructure Services Or Iaas (Infrastructure–As-A-Service) Delivers The 

Computer Infrastructure Or We Can Say A Platform Virtualization Environment, As A Service And The Service 

Is Typically Billed On A Utility Computing Basis And Amount Of Resources Consumed. Generally, This 

Infrastructure Allocation Is Static And Resources Are Allocated During VM Instantiation. Any Change In 

Workload Leading To Significant Increase Or Decrease In Resources Is Handled By VM Migration. Hence, 

Cloud Users Tend To Characterize Their Workloads At A Coarse Grained Level Which Potentially Leads To 

Over-Allocated VM Resources Or Under-Performing Application. That Means Either User Is Paying More In 

Case Of Over-Allocation Of Resources Or The Application Is Under-Performed In Case Of Under-Allocation 

Of Resources. In This Paper, We Present A Framework For Iaas Utility Cloud Where A Prognostication 

Component Predicts At Run-Time The Expected Demand By Application Which Is Then Used To Modulate 

Resource Allocation Based On The Predicted Demand. We Derive This Component Based On A Cost Model To 

Make It More Cost-Effective For Both The Service User And The Service Provider. Confidence Interval For 

Predicted Workload Is Used To Minimize This Effective Cost.  

Keywords— Utility Cloud,  Application Service Prognostication, Cost-Effective Model, Confidence Interval, 

Resource Allocation. 
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I. INTRODUCTION 
Cloud Computing Is A Pay-Per-Use Model 

Where In Cloud Users Pay For The Resources That 

Are Allocated To Them.  The Pay-Per-User 

Characteristic Of Cloud Can Be Leveraged By 

Users By Opting For Cloud Services Especially In 

The Case Of Variable Workloads And Time-Critical 

Workloads. For Variable Workloads, Users Might 

Request For Variable Resources At Different Times 

And Pay Accordingly, Instead Of Buying Their 

Own Resources To Satisfy The Workload At Peak 

Times. Infrastructure-As-A Service (Iaas) Provides 

The Physical Machines (Pms) Or Virtual Machines 

(Vms) And Other Hardware Resources As A Service 

To The Users. VM Is An Abstraction Of The 

Underlying Hardware, And Hence Is A More Flexible 

Way Of Providing The Service To Customers.  VM 

Provides An Isolated Environment Which Is In Full 

Control  Of The Customer.  Iaas Allows The Cloud 

Users To Install Their Own Stack Of Software In The 

Isolated VM Environment.  

 

II. IAAS ARCHITECTURE 
Generally, Large Data-Centers  Have Series 

Of Many  Distributed Systems  That  Form The 

Underlying Physical Infrastructure. In Order To 

Provide Infrastructural Resources As A Utility, There 

Must Exist Some Software Object Which Controls 

And Manages The Infrastructure, And Provide The 

Virtual Resources.  This Software Object Is Called 

Infrastructure Manager Is Generally Referred To As 

Cloud OS. Cloud OS Manages  The  Deployment  Of 

Vms On To  Physical  Machines  (Pms). It  Also 

Needs To  Cater  To  Dynamic  Resource Allocation,  

That  Is, Increasing  Or Decreasing Demand  Of Vms.  

 

 

 

 

 

 

 

Fig. 1: Cloud OS Architecture 

There Are A Number Of Iaas Architectures That  Are 

Currently  Being Used To Build Iaas Cloud.  In This 

Work, We Explain Iaas Architecture With The  Help 

Of An Example Of Opennebula, Which Is Widely 

Used And  Similar To Other Iaas Architectures. Figure 

1 Shows The Cloud OS [1] Architecture For 

Opennebula.  Cloud OS Architecture Is Divided  Into  

Three  Main  Layers :  Tools, Core And  Drivers. 

Tools Are The  Components  To Interact  With  The  

External  World And  To Take  Inputs  From 

Administrators Regarding  Different Policies. Core 

TOOLS 

CORE 

DRIVERS 
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Components Are  The  Backbone  Of The Cloud OS, 

And Drivers Are The Components Used To 

Communicate With Local Infrastructure Or External  

Clouds.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Core Layer Of Opennebula Iaas 

Architecture 

 

The Main Components Of The Core Layer Of 

Opennebula Iaas Architecture (Fig. 2) Are The 

Following: 

 Scheduler: One Of The Challenging Task In Iaas 

Cloud Is The Optimal Placement Of Vms Onto The 

Physical Hosts.  Scheduler Takes Decision To Place 

A VM Either On One Of The Physical Server, Or 

On To The External Clouds. Scheduler Can Also 

Take Dynamic Reallocation  Decisions For The 

Variable Workloads To Optimize Some Criteria 

Based On Different Policies. 

 Information Manager: Information  Manager Is A 

Monitoring System, Which Checks The State  Of 

Vms, Server Resource Utilization,  Network Usage, 

Etc..  

 VM  Manager: A VM Is The Basic Allocation Unit  

In A Cloud OS. VM Manager  Is Responsible For 

Allocating Vms And Managing A VM’s Life Cycle.   

 Accounting And Auditing: It Keeps Track Of The 

Usage Information Of The Deployed Services.  It  

Is Essential  To Produce  Billing Information  And  

Protect  It From Threats Like Unauthorized Access, 

Abusive Use Of Resources And Other Forms Of 

Intrusion. 

 Authorization And Authentication:  It Incorporates 

Mechanisms To Verify The    Identity Of Users, 

And Ensure Their Permissions To Access Different 

Cloud Resources. 

 Image Manager:  It  Manages  The Varied  Of VM 

Images,  And  Support  Creation, Deletion, Cloning 

And Sharing Of VM Images. 

 Network Manager:  Network Manager Manages 

Private Virtual Networks Among Vms In Multi-

Tier Applications And Assigns Public Ips To Vms. 

It Also Ensures Traffic Isolation Between Different 

Virtual Networks. 

 Storage Manager:    It Provides Storage Services As 

A Commodity, Ensuring That Storage System Is 

Scalable, Highly Available, And Delivers High-

Performance For Data-Intensive Workloads.   It 

Relies On External Storage Drivers To Meet  These   

Goals By Creating  A Storage Resource Pool. 

 Federation Manager: It Enables Access To Remote 

Cloud Infrastructures.   

 

III. LIMITATIONS OF CURRENT IAAS 

ARCHITECTURE 
In The Present Iaas Utility Cloud Systems, The 

Resources Are Allocated Statically In The Form Of 

Virtual Machines (Vms) That Means Cannot Be 

Changed Over Time. However, Real Time Time-

Varying Workloads Require Time-Varying Resources 

To Keep Their Usage Low And Without Leaving 

Resources Idle.  In Order To Acquire More Resources 

A Cloud User Needs To Request For More Number 

Of Vms With Same Configuration Or Migrate Its 

Application To Another VM With More Resources. 

For Example, Amazon Provides Few Standard Types 

Of Vms  [2] With Some Pre-Defined Configuration 

Like Small, Medium, And Big Instance, And Some 

Job Specific Instances Like High Memory, High CPU, 

High I/O Instances. Resource Provisioning Can Be 

Done As Per The Workload Requirements And 

Pricing By Static Allocation.  
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FIG 3: Typical Workload Characteristics Of Web 

Server 

 

Figure  3 Shows The Actual Workload Of A 

Web Server Hosted In Our Institute. In The Figure, X-

Axis Represents Time In Hours And The Y-Axis 

Indicates The Web Server Workload, Measured As 

The Number Of Http Requests Per Hour, Received By 

The Server. There Are Higher Requests Received By 

The Server During The Day Time As Compared To 

Night Times. With The Existing Resource 

Provisioning Model, For This Workload, A User 

Would Demand Two Types Of Vms, As Indicated By 

The Peak And Trough Of The Workload 

Corresponding To Allocated Resources Curve. 

However, As Is Shown, The Resources Are Mostly 

Over-Allocated. Assuming Linear Relationship 

Between Workload And Resources, Calculations 

Show That The Effective Utilization Of Resources As 

Per This Allocation Is Just About 30%, Which Is 

Ratio Of Area Under Curve Of The Actual Workload 

To The Workload Corresponding To Allocated 

Resources. In This Type Of Cases, Users Of A Utility 

Cloud End Up Paying More Than What They Actually 

Used.  

 Info

rma

tion 

Ma

nag

er 

Acco

untin

g 

&Au

ditin

g 

Author

ization 

&Auth

enticat

ion 
Sch

edu

ler 

Net

wor

k 

Ma

nag

er 

Storag

e 

manag

er 
VM 

mana

ger 

Fed

erati

on 

Man

ager 

Proposed 

prognosti

cation 

engine 

Ima

ge 

Ma

nag

er 



Monika Sainger Int. Journal of Engineering Research and Application            www.ijera.com                                                 

ISSN : 2248-9622, Vol. 8, Issue3, ( Part -3) march2018, pp.15-22 

 
www.ijera.com                          DOI: 10.9790/9622-0803031522                               17 | P a g e  

 

 

 

 

Cloud Providers Also Cannot Achieve High 

Server Utilization With Present Provisioning Models. 

Over-Allocated Resources Are Idle And Available But 

Provider Cannot Release Them For Better Usage. 

Inefficient Models Thus Defeat The Whole Idea Of 

Achieving High Server Utilization Using Cloud 

Computing.  

One More Challenge With The Existing Iaas 

Architecture Is To Deal With The Virtualization 

Overhead. Virtualization Overhead Plays A Major 

Role In Impacting The Performance Of The 

Application Service, Especially For I/O Workloads As 

The Vms Run On Virtualized Platforms.    

 

IV. PROPOSED FRAMEWORK 
For The Varying Workloads, The Present 

Provisioning Models Ensure Good Performance Of 

Application, But Result In Significant Wastage In The 

Form Of Idle Resources. To Overcome This Gap, In 

This Paper, We Propose A Modified Iaas Architecture 

In A Utility Cloud As Shown In Figure 2. The Picture 

Shows A Modified Opennebula Iaas Architecture. To 

Enable Flexibility In Provisioning Of Resources, We 

Propose A Prognostication Engine Based On Cost 

Model (Shown In Black Color) In The Core Layer Of 

Iaas Architecture. Addition Of This Component May 

Be Affecting Some Other Components Of The 

System. These Components Are Information Manager, 

VM Manager And Scheduler. In The Existing Iaas 

Architecture, VM Manager Allocates The Virtual 

Machines To The Applications. Scheduler Interacts 

With VM Manager To Reallocate The VM On The 

Selected Server When Workload Increases. The 

Component Information Manager Monitors The 

Resource Utilization In The Vms, We Propose A 

Component Prognostication Engine Based On Cost 

Model Into The Existing Architecture, Which 

Basically Predicts The Resource Requirement Based 

On The History Of The Application  Workload That 

The VM Hosts. It Provides Exquisite Resource 

Requirements To The VM Manager. VM Manager 

Then Tries To Fulfill The Demand On The Same 

Server. If It Is Not Possible To Fulfill The Demand 

Locally It Interacts Back With Scheduler To Allocate 

Resources On Other Server. The Component 

Information Manager, In The New Framework, Also 

Collects And Interprets The Workload History Saved 

In VM And Presents It To The Prognostication Engine 

[3]. The Prognostication Engine Then Predict The 

Application Workload In Next Cycle Based On Past 

Resource Usage Pattern Of The Application That The 

VM Hosts And  Resource  Manager  Further  

Translates This Predicted  Workload Into  The  

Resource Requirements.   

The Prediction Made By The Prognostication 

Engine May Not Be Always Correct, Therefore 

Leading To Under-Allocation Or Over-Allocation Of 

Resources. Over-Allocation Leads To Under 

Utilization Of Resources And Under-Allocation Leads 

To Poor Performance Of The Application. To Assess 

The Same, We Derive An Excess Cost Model And 

Formulate The Problem Into A Cost Optimization 

Problem. The Excess Cost Comprises Of Two 

Components, Namely, Cost Due To Over-Allocation 

Of Resources (Cover Allocation) And The Penalty Cost 

(Cslapenalty) Corresponding To Poor Application 

Performance Resulting From Under-Allocation Of 

Resources. The Goal Of Optimization Problem Is To 

Reduce The Excess Cost. The Basic Intuition Of This 

Cost Model Is To Reduce The Resource Cost Of The 

User By Enabling Resource Allocation Closer To 

What Is Actually Used, Without Compromising On 

The Application Performance. 

 

V. PROGNOSTICATION MODEL 
Prognostication Or Forecasting Means 

Estimating A Future Event. Forecasting Can Be A) 

Causal Forecast [4] [5] Where In Several Factors Are 

Identified Which Influence The Forecast Variable 

And A Complete Cause And Effect Model Is 

Developed. B)  Non-Causal Forecast [6] [7] [8] [9] 

Where In Prediction  Is Made  Based  On The  

History (Past  Patterns In The  Data)  And  Are  

Usually  Known As “Time-Series” Methods.   In 

Non-Causal Methods, Forecast Is Usually Not 

Influenced Or Minimally Influenced By Other 

Factors.  In This Work, We Have Used A Non-

Causal  Forecasting  Model To Forecast Cloud 

Workloads Where In The Past  Workload  Is Used To  

Predict  The  Workload  For Next  Scheduling  Cycle 

For Cost-Effective Allocation  Of Resources.  In 

This Work Forecasting Strategy U s e d  I s  

Gaussian Process Model. Gaussian Process Models 

Are Prediction Models Which Are Non-Parametric In 

Nature That Means We Do Not Have To Worry 

About Whether It Is Possible For The Model To Fit 

The Data That Can Be Linear Or Nonlinear.  

A Gaussian Process Is A Collection Of Any 

Finite Number Of Random Variables Which Have 

Joint Gaussian Distribution. Hence The Problem Can 

Be Reduced To Finite Dimensions By Taking Only 

The Points Containing Training Data And Test Data. 

The Interesting Characteristic Of Gaussian 

Distribution Is That It Can Be Characterized By Only 

Two Parameters, Mean And Covariance.  Hence, Its 

Mean Function M(X) And The Covariance Function 

K(X, X’), Given By 

M(X) = E[F (X)]                                                              

K(X, X’) = E[(F (X) − M(X))(F (X’) − M(X’))] 

And The Gaussian  Process Can Be Written  As 

F (X) ∼ GP (M(X), K(X, X’)) 

Gaussian Processes Assume Gaussian 

Distribution As Prior Over The Function Values. 

Each Value Of The Function Is Assumed To Be A 

Random Variable With Gaussian Distribution. And 

The Set Of Values Of The Function (Set Of Random 

Variables) Also Form A Joint Gaussian Distribution. 
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Gaussian Processes Also Represent A 

Powerful Way To Perform Bayesian Inference [10] 

About Functions. In Bayesian Inference, A Prior 

Probability Distribution Is Assumed Initially To 

Describe The Underlying Process Generating Data, 

And Then After Gaining Knowledge About The 

Observed Values A Posterior Probability Distribution 

Is Obtained. A Prior Denotes The Initial Assumptions 

About The Data, Generally, The Kind Of Relation 

That The Data Points Can Exhibit. Then, A Posterior 

Improvises The Knowledge Of The Observed Over 

The Prior. 

That Means, Given The Training Data Set D 

= {(X(I) , Y(I))|I = 1, 2, ..., N} And A Test Point 

X(N+1), The Goal Is To Compute The Distribution 

P(Y(N+1) |D, X(N+1) ), Which Can Be Further  

Used For Prediction  Purposes. In This Work, For 

The Prediction Of Resource Requirements, We Use 

Gaussian Model With Bayesian Inference 

 

VI. PROGNOSTICATION ENGINE 
The Key Component In The Proposed Framework Is 

The Prognostication Engine Which Uses An Excess 

Cost Model To Arrive At An Optimal Resource 

Requirement Based On Predicted Workload For The 

Application. The Prognostication Engine Uses A 

Confidence Interval For The Predicted Workload To 

Optimize The Resource Requirements. Following 

Figure  4 Details The Component Prognostication 

Engine.  

  

 
The Input To The Engine Is The Application 

Workload And It Outputs The Optimal Resource 

Requirements. The Prognostication Engine Uses Past 

History Of The Application Workload And A Prior 

Covariance And Mean Function Is Selected Offline 

Based On Some Initial Assumptions About Data. 

Then After Gaining Knowledge About Observed Data 

A Posterior Probability Distribution Is Obtained.  

 

VII. FINDING OPTIMAL CONFIDENCE 

INTERVAL 
The Optimal Confidence Interval Is Based On The 

Minimization Of The Over-Allocation Cost Cover 

Allocation And The Optimization Problem Can Be 

Formulated As Follows: 

     

 

    M Inimize 

      Ceffective 
=
 

Cover  Allocation(Α )  

   Subject To  

     0 < Α < 

100  

 

Where, Α Is The Confidence Interval. Cost Cover 

Allocation Is A Function Of Confidence Interval. The 

Solution To This Optimization Problem Would 

Provide Us The Optimal Value Of Confidence 

Interval, Which Would Result Into Minimized 

Effective Cost. 

 
 

Figure 5 Further Describes The Component 

Find Optimal Confidence Interval Discussed In The 

Figure 4. First Of All, We Split The Data Into Two 

Parts: Training Data And Test Data. Using The 

Training Data, A Prior And A Confidence Level Is 

Selected. An Optimal Confidence Level Is Obtained 

Using A Critical Value Of 1.96 And Standard 

Deviation Error. Then A Model Is Built And We 

Derive The Resources Based On Upper Bound Of 

Confidence Interval. Then, We Compare The 

Predicted Resources With The Resources Actually 

Required, And Calculate The Over-Allocation Cost. 

Effective Cost Is The Minimum Over-Allocation Cost 

For All Of The Test Points. For Each Point, We Need 

To Update The Model To Include The Next Test 

Point. Note That Update Does Not Mean 

Recalculation Of Model Parameters Every Time. 

Then, We Update The Confidence Interval And 

Repeat The Procedure Again To Find Effective Cost, 

And The Objective Is To Reach To A Point Near To 

Optimal Confidence Interval, Where Effective Cost Is 

Minimized.  

 

VIII. EXEMPLIFICATION 
As An Example, We Analyze The Workload Of The 

Web Server Hosted In Our Academic Institute. Web 

Servers Are One Of The Most Popular I/O Workloads 
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That Are Getting Hosted On Cloud Systems [3]. These 

Workloads Can Particularly Benefit From Inherently 

Elastic Resource Provisioning. 

 

A. Analysis Of Training Data  And Selection Of 

Prior Function 

For The Gaussian Process, The Prior Is 

Expressed As An Initial Estimate Of Meanand 

Covariance Of The Function.  If There Is No Reason 

To Prioritize One Mean Function Over The Other, It 

Is Initially Assumed To Be Zero. Covariance Function 

Encodes The Assumptions About The Similarity Of 

The Various Data Points In Function. Based On Prior 

Knowledge About The Data An Appropriate 

Covariance Function Is Chosen. Both Mean And 

Covariance Functions Are Specified By A Set Of 

Hyperparameters That Are Collectively Represented 

By Θ Here. These Are The Hyperparameters For 

Which Optimal Values Need To Be Calculated. In Our 

Work We Analyzed The Workload Of Our Institute’s 

Web Server And Mail Server. It Has Been Observed 

That The Workload On Servers Starts Getting Heavily 

Loaded Afternoon Onwards Then In Evening And 

Night As Compared To In Morning. Following This 

Observation We Considered And Collected The 

Sample Data In Two Different Time Slots; One From 

12 Pm To 12 Am And Another From 12 Am To 12 

Pm. After Analyzing The Data, The Basic Assumption 

About Both The Webserver And Mailserver 

Workloads Is That They Are Locally Periodic I.E. 

They Are Periodic, But They Can Slowly Vary Over 

Time. In Other Words, They Don't Repeat Themselves 

Exactly. Hence, Locally Periodic Covariance Function 

Class Is Taken To Be As The Prior For The Given 

Data. Mathematically, A Locally Periodic Covariance 

Function Class Is Of The Following Form: 

Klocalper(X,X′) = Kper(X,X′) Kse(X,X′) = Θ1
2 

Exp(−2sin
2
(Π|X−X′|/ Θ2) Exp (−(X−X′)

2
) 

                 

Θ3
2
                          2θ3

2 

  GP Prior = (0, Θ1
2 

Exp(−2sin
2
(Π|X−X′|/ Θ2) Exp (−(X−X′)

2
) ))  

  (1) 

Θ3
2   

         2θ3
2 

 

Here Θ1 Captures The Magnitude Of 

Similarity In Nearby Data Points, Θ2 Length Scale Of 

The Function After Which The Value Of The 

Function Can Change Significantly I.E. Period Of The 

Function. And Θ3 Controls The Consistency In Data In 

Periodic Interval. Also A Confidence Level Of 0.95 Is 

Selected. In The Beginning, An Initial Value Of The 

Confidence Interval Is Specified As The Input. After 

That, This Value Is Provided As A Feedback To 

Minimize The Effective Cost Of The System. 

 

B. Obtaining Optimal Values Of Hyperparameters 

(1) Likelihood Function:  

After Selecting The Prior Function Next Step 

Is To Determine The Optimal Values Of 

Hyperparameters. This Step Is Very Important To 

Develop Useful And Effective Gaussian Process 

Models. In Bayesian Analyses When The Prior Is 

Selected And Observed Distribution Is Collected Then 

The Likelihood Of Observed Distribution As A 

Function Of Parameter Values Is Obtained. Likelihood 

Is The Hypothetical Probability That An Event Has 

Already Occurred Would Yield A Specific Outcome. 

A Likelihood Function Takes The Data Set As A 

Given And Represents The Likeliness Of Different 

Parameters For Collected Distribution. Let X1, X2, ..., 

Xn Have A Joint Density Function F(X1, X2, ..., 

Xn|Θ). Given X1 = X1, X2 = X2, ..., Xn = Xn Is 

Observed, The Function Of Θ Defined By: P(Θ) = 

P(Θ|X1, X2, ..., Xn) = F(X1, X2, ..., Xn|Θ) Is The 

Likelihood Function. Likelihood Function Measures 

The Support Provided By The Data For Each Possible 

Value Of Parameter.  If We Compare Likelihood 

Function At Two Parameter Points And Find That 

P(Θ1|X)  >  P(Θ2|X) 

Then The Sample We Actually Observed Is 

More Likely To Have Occurred If Θ = Θ1 Than If Θ = 

Θ2. This Can Be Interpreted As Θ1 Is More Plausible 

Value For Θ Than Θ2.[Mon1]. According To 

Likelihood Principle If X And Y Are Two Sample 

Points Such That P(Θ|X) ∝ P(Θ|Y) ∀ Θ Then The 

Conclusions Drawn From X And Y Should Be 

Identical. Thus The Likelihood Principle Implies That 

Likelihood Function Can Be Used To Compare The 

Plausibility Of Various Parameter Values. For 

Example, If P(Θ2|X) = 2P(Θ1|X) And P(Θ|X) ∝ P(Θ|Y) 

∀ Θ, Then P(Θ2|Y) = 2P(Θ1|Y). Therefore, Whether 

We Observed X Or Y We Would Come To The 

Conclusion That Θ2 Is Twice As Plausible As Θ1. For 

Our Case, Using Experimental Server Workload, The 

Model Parameters (In Eq (1)) That Best Describe The 

Model Are Θ1 = 1200.58, Θ2=12 Hours, Θ3 = 1.    

 

(2) Posterior  Function: 

: In A Bayesian Framework, The Posterior Of 

Huperparameters Can Be Defined As Follows: 

P(Θ|Y,X) = P(Y|X,Θ) P(Θ)    

 Where P(Θ|Y,X) Is The Posterior Of The 

Hyperparameters, 

P(Θ) Is The Prior Of The Hyperparameters, 

P(Y|X,Θ) Is Likelihood Function (The Probability 

Density Of Observations Given The Parameters), 

Here We Have Used An Approach Which 

Uses The Observation That Likelihood Function Is 

Directly Proportional To The Posterior 

Distribution. It Selects The Θ Corresponding To 

Maximum Value Of The Likelihood Function And Is 

Called Maximum Likelihood Type II (ML-II) [11] 

Approximation. Maximum Likelihood Approach  Is 

A Common Approach  Used In Selecting Values Of 

Hyperparameters For Gaussian Processes [12]. A 

Systematic Analysis Of Hyperparameters And  
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Posterior Probabilities Is Executed Offline 

To Build A Prediction Model.  

 

(3) Forecasting:  

We Use The Above Model To Predict The 

Resource Requirement Within A Confidence Interval. 

A Probabilistic Bound Of The Forecast, Within An 

Obtained Confidence Interval, Is Generated Using The 

Prediction Model. For Instance, Upper And Lower 

Bounds Of The Forecast For 95% Confidence Interval 

Implies That The Probability That The Forecast 

Would Be Within The Upper And Lower Bounds Is 

0.95. We Use The Upper Bound Of The Forecast To 

Provision The Resources To Keep The Performance 

Of Application Intact. We Used 120 Observations To 

Construct The Model And It Is Forecasted And Tested 

For The Next 120 Observations. 0% Confidence 

Interval Implies The Actual Forecast With No Bounds. 

As The Confidence Interval Is Increased, The Upper 

Bound Of The Forecast Moves Upwards. That Means 

By Increasing Confidence Interval, Over-Allocation 

Cost Will Increase And Penalty Cost Will Decrease. 

Hence, Confidence Interval Is The Key To Control 

The Effective Cost Function Associated With The 

Prediction. 

 

(4) Obtaining Resource Requirements: 

  Fig. 6 Shows The Resource Requirements 

For Experimental Data On Web Server. We Derive 

Resource Requirements For The Observed Data By 

Using An Experimental Cloud Set Up. In The 

Experimental Setup, Web Server Is Hosted On A VM 

And We Used The Web Server Logs To Synthesize 

Workload. In Order To Generate The Http Requests, 

We Use Httperf  [13] As A Client Program. Along 

With Generating Varying Http Requests, It Also Has 

Other Capabilities Like Measuring Average Response 

Time And Throughput, Which Would Help Us 

Evaluating Our Model In The Later Steps. We Run 

Our Experiments On An AMD 2.4 Ghz System 

Having 12 Cores And 16 GB Memory. Figure  7 

Shows The Variation Of VM CPU Usage With 

Request Rate. As Expected, CPU Requirement Of VM 

Increases With Increase In Request Rate  [14]. We 

Use This To Derive The Resources Required To 

Support A Given Workload (Request Rate). The 

Forecasted Request Rate Can Be Used To Provision 

The Infrastructural Resources. . Based On The 

Variation Of VM CPU With Request Rate As 

Mentioned In  , We Calculate The CPU 

Requirement Using Nearest-Neighbor Interpolation. 

We Round Off The Request Rate To The Nearest 

Multiple Of 100 Requests/S, And The Corresponding 

VM CPU To The Nearest Multiple Of 2%. For 

Example, If The VM CPU Requirement Has Been 

Derived To Be 14.9%, We Allocate 16% Of The CPU. 

Also, Using The Actual Request Rate Values, We 

Calculate The Actual VM CPU That Is Required, 

Such That The Response Time Of The System Stays 

Within The Defined Limits. Figure 7 Shows The 

Comparison Of The Actual And Predicted VM CPU 

Requirement, Based On The Earlier Forecast Of The 

Request Rates. Since It Can Be Shown That The VM 

CPU Requirements Is Almost Linear With Respect To 

Request Rate, Forecast Of CPU Requirement Is On 

The Similar Lines To That Of Forecast Of Request 

Rate, But Has Discrete Values Of CPU Because Of 

The Rounding Off. 

 

 
FIG 6: CPU Requirement For Workload 

 

 
FIG 7: Actual And Predicted Requirement 

 

(5) Validation Of Prediction Accuracy: 

  In This Work, We Predict The Request Rate 

And Use It To Derive The Resources For Allocation. 

Hence, Forecast Accuracy Is Measured In Terms Of 

Resource Required And Resource Allocated Based On 

Prediction. Several Performance Metrics Have Been 

Proposed In Literature To Measure Forecast 

Accuracy. In This Paper, We Use An Absolute 

Percentage Accuracy Measure, SMAPE (Symmetric 

Mean Absolute Percentage Error). SMAPE Is Defined 

As Follows: 
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                                            ^ 

    ∑ │Xt - Xt│ 

      SMAPE =       ^     

       ∑ │Xt + Xt│ 

 

Here, Xt Is The Actual CPU Requirement And X
^
T Is 

The Predicted CPU Requirement. For Our Case, The 

Value Of SMAPE For The Actual CPU Requirement 

Prediction (0% Confidence Interval) Has Come Out 

To Be 7.7051%, Which Is Quite Good And Shows 

The Credibility Of Our Approach. 

 

(6) Deriving The Effective Cost:  

As We Discussed Earlier In This Paper That The 

Effective Cost Is A Function Of Confidence Interval 

Α, We Can Define The Same As Follows: 

Ceffective 
=
 Cover  Allocation(Α ) 

And       Cover  Allocation = Α * ER 

Where ER Denotes Excess Resources Which Is The 

Difference Between Resources Predicted And 

Resources Actually Required.  

A Minimum +Ve (Positive) Effective Cost Indicates A 

Good Prediction That Means User Is Paying For What 

Has Been Used Actually Whereas A –Ve (Negative) 

Effective Cost Represents A Bad Prediction That 

Results In Under Performance Of Application.     

 

IX. CONCLUSION 
Adaptive Allocation Of Resources Based On 

Variations In Workload, Improves The Overall 

Resources Utilization Of The System. In This Paper 

We Have Described The Framework For A 

Prognostication Engine By Capturing The Changes In 

Workload Demand. This Approach Provides A Cost 

Effective Allocation Of Resources Which Is 

Beneficial For Both Cloud User As Well As Cloud 

Provider. Here The Option Of An Application 

Specific Prognostication Engine May Be Argued But 

It Is A Challenge For An Application Developer To 

Develop An Application Specific Prognostication 

Engine. However, If The Iaas Framework Provides 

Some Provision For A Standard Prognostication 

Engines Many Applications Will Benefit. Therefore A 

Prognostication Engine Generic Enough Like This 

Will Be Able To Cater Many Applications Needs.  
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