
Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 10 | P a g e

Efficient Data Integrity Algorithm for Outsourced Data in Cloud

Environment

Pramod Kumar*, MMS Rauthan**, Vikram Kapoor***
*(Department Of Computer Science, Uttarakhand Technical University, India

** (Department Of Computer Science And Engineering, HNB Garhwal University, India

** (Department Of Computer Science, Uttarakhand Technical University, India

Corespondind Auther : Pramod Kumar

ABSTRACT

With The Rapid Advances In Communication Services And Increasing Growth In Outsourcing Of Data To

Cloud Environment; Concerns Of Data Integrity Of Outsourced Data Is On The Rise. The Evidence Of Data

Integrity Being Tampered And Up-To Date, Seem To Be Of Immediate Concern. Current Data Integrity

Techniques Are Inefficient To Provide Fast User Data Verification Or To Check The Correctness Of Data

Without Additional Storage Overhead At The Data Owner (DO). For Data Owners With Large Data Files,

Existing Techniques Are Not Feasible Solutions. In This Paper, We Propose An Efficient Alternative Technique

For The Integrity Of Outsourced Data Using Optimal Bloom Filters (OBF). We Propose The Basic Data

Integrity Method And Discuss Various Alternatives To Design The Optimal Data Integrity Model. We Present A

Detailed Analysis And Experimental Results For One Of The Alternative. These Results Are Compared With

The Current Data Integrity Algorithms Such As SHA-1 And MD5. The Proposed Technique Using Bloom Filter

Implementations Is Highly Space-Efficient At The Expense Of Extra Computational Overhead And The

Multicore Implementations Have Significantly Reduced The Execution Time. The Presented Results

Demonstrate That Employing Bloom Filters To Enforce Data Integrity For Outsourced Data In Cloud

Environments Is Feasible And Efficient Than Traditional Techniques.

Keywords - Data Integrity, Hashing, Outsourced Data, Cloud.

Date of Submission: 21-02-2018 Date of acceptance 8-03-2018
--- -----

I. INTRODUCTION
Rapid Developments In Communication

And Networks Have Made Huge Data File Sharing

More Effective. Consequently, The Demand For

Rich Media Applications, Such As Multimedia

Mails, High Definition Audio/Video Sharing Has

Grown Tremendously. The Volume Of Data Being

Used By Those Applications Have Also Grown

Exponentially. As A Result, The Costs Of IT

Infrastructure And IT Support Staff Is Rising.

Therefore, Cloud Computing Has Become An

Attractive Technology Of IT Service. In Cloud

Computing Users Can Use Infrastructures,

Applications, Storage, Network, Servers And Other

Computing Resources, Which Is A Shared Pool Of

Computing Resources That Can Be Easily Accessed

Through Network Connections. This Cloud

Computing Service Model Offers Users Seemingly

Unlimited Computing Resources Without

Acquisition And Maintenance Costs. Storage, As

One Of The Most Demanding Computing Resources

Among The First Being Moved Into The Cloud. This

Type Of Cloud Computing Services Is Known As

Cloud Storage And In This Model The Service

Provider Rent Spaces In Their Large-Pool Of

Storage Infrastructure To Organizations And

Individuals Such As Google Drive And Amazon

Cloud. Cloud Computing Provides:

I) On-Demand Self-Service

Ii) Broadband Network Access

Iii) Resource Multiplexing

Iv) Rapid Elasticity

Besides The Key Advantages Of Cost

Saving, Cloud Storage Can Facilitate Storage Of

Sensitive Data, Such As Financial, Personal, Or

Medical. Since Storage Is One Of The Core

Infrastructure In Clouds, So Security And Privacy

Of Data In Cloud Storage Is One Of The Key Issue.

The Consequences Of Security Breaches Could Be

Seriously Damaging To Both Service Providers And

Users. The Essential Requirement Of Cloud

Computing In Data Storage And Data

Communication Is Data Integrity. The Parity

Checking Codes, Error Detection Codes, And Error

Correction Codes Have Long Been Used In Data

Communication [1]. Cyclic Redundancy (CRC) Is

One Such Code Used As A Checksum In The

Computer Network Since Two Decade [2].

In Main Memory Technologies Hash Codes Have

Been Used To Ensure Data Integrity [3]. A RAID

Technology Have Been Used To Store The Parity

Corresponding To Each Disk Block To

RESEARCH ARTICLE OPEN ACCESS

Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 11 | P a g e

Detect/Correct Any Data Integrity Violations [4].

However, This Threat Model Comprised Of

Unintentional Corruption Of Data Rather Than

Intentional Altering [1-4]. Today, Cloud Computing

Seems To Be The Fastest Evolving Technology

With The Availability Of Higher Network

Bandwidths [5]. In Addition To Several Private

Clouds, Companies Such As Google (Gmail, Google

Drive) And Microsoft (Hotmail, Onedrive) Offer

These Services To The Public At Low Cost. The

Rate At Which Data Is Being Collected By Cloud

Service Provider (E.G., Facebook, Whatsapp) From

Data Owners Is Also Growing [6]. This Has

Resulted In Data And Process Outsourcing To The

Clouds With Rapid Rate. However, Outsourcing Of

Data Has Several Concerns Regarding Data

Integrity, Security, And Privacy To The Data

Owners. In Terms Of Data Integrity And Currency,

The Concerns Of The Owner Are:

(I) How It Will Be Ensure That Data File Has Not

Been Tampered.

(Ii) Assurance That All Updates Sent To It Have

Been Carried Out Exactly Once.

(Iii) In Case, The Data Owner Is Different From The

Data User, How Can The Data User Be Assured

That The Provided Data Has Not Been

Tampered With And Is Current?

(Iv) How Can An Owner Will Recover Its Tampered

Files.

In This Paper, We Focus On Issue (I). In Particular,

We Focus On File Integrity.

The Use Of Hashes Has Been The Most

Practical Approach To Check The Integrity Of Files.

While The Simplest Data Integrity Schemes Suggest

Creating One Hash Value For Each Data Block Of

File, A More Complex Mechanisms Create And

Store The Hashes As A Merkel Tree [7]. In A

Merkle Hash Tree, The Parent Node Is A Hash Of

The Data Obtained By Concatenating The Hashes

Of Its Two Children Data And This Process Is

Continued Till The Root Hash Is Evaluated And

This Root Hash Is Again Authenticated By The

Client. Now For Every Request From The Client,

The Server Generates A Verification Object (VOB)

Which Is A Collection Of All The Necessary Hashes

Required By The Client To Re-Compute The Root

Hash And Verify Its Authenticity. Some Data

Integrity Techniques Have Uses A Universal-Hash

MAC Tree To Improve The Performance [8]. All

These Schemes Involve Significant Processing Due

To Complex Structure Of Hash Functions And

Storage Overhead As Hash Value For Each Block At

The Owner Side When Data Is Stored And Retrieved

From The Cloud To Verify Data Blocks. In This

Paper, We Propose An Efficient Data Structure

Called Bloom Filters That Is Used To Check

Whether A Data Block Is A Member Of A Set [10].

The Availability Of Multicore Processors Makes

The Additional Computing Overhead Of Hashes

Insignificant Since Bloom Filters Can Easily

Programmed To Parallel Implementation Using

Shared Memory Programming. Several Systems

Such As Google’s Bigtable [11], High-Speed Traffic

Measurement [12] And Network Forensics For

Iptraceback [14] Are Using Bloom Filters For

Integrity Purpose. Zhang Et Al Have Implemented

Bloom Filters For Data Integrity In Cloud Database

Environments [17].

In This Paper, We Have Used Bloom

Filters To Replace The Individual Hashes For Data

Blocks To Ensure Integrity And We Show That

Parallel Bloom Filter Performs Better Than The

Existing Hash Based Solutions For Data Integrity. In

This Technique, For Each Data Block Of File, We

Compute A Set Of Hash Functions On The Data

Block Of File, The Block Number, And The Version

Number, And Include Them In A Bloom Filter. The

Bloom Filter Can Then Be Either Stored At The

Client Or Stored Along With The Data In Cloud

Storage. We Can Consider To Store The Bloom

Filter At The Server In An Encrypted Form Or As It

Is.

The Paper Is Organized As Follows. In Section 2,

We Briefly Summarize The Previous Work In Data

Integrity And Bloom Filters. Section 3 Describes

The Proposed Work. Section 4 Summarizes The

Results. Finally, Section 5 Concludes The Paper

With The Contributions Of This Paper.

II. LITERATURE REVIEW
The Essential Requirement Of Cloud

Computing In Data Storage And Data

Communication Is Data Integrity. Several Systems

Have Uses Hashes For Data Integrity In The Last

Two Decade [7-8]. However, Computing And

Storing Hashes Has Significant Cost For Each Data

Block In Resource-Constrained Systems. In 2005,

Opera Et Al [19] Suggested A Method Using

Tweakable Encryption Scheme (TES) And Perform

Hashing Based On The Randomness Of The Data.

The Data Is Divided Into Fixed Size Blocks And

The Data Blocks Are Encrypted Using TES. Data

Owner (DO) Is Responsible For Maintaining The

File Integrity And For This It Stores A Block

Identifier And A Hash Of The Block. To Reduce

The Local Storage Overhead, The Entropy Of Each

Block Is Calculated And No Hash Is Stored Locally

For Low Entropy Blocks. In 2009, Yun Et Al. [8]

Proposed A Novel Method That Uses MAC Tree

Data Structure To Verify Data Integrity. In This

Technique Each Encrypted Data Block Of File Is

Stored At The Untrusted Server. A Message

Authentication Code MAC Is Computed For Each

Block Using The Block Cipher And The Nonce And

Further A MAC Tree Is Constructed For All The

Nonce Hashes Where Each External Node In The

Order Contains The Nonce Used For The

Corresponding Block To Calculate The Cipher

Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 12 | P a g e

Block And The Hash. Kumar Et Al. [12] And Li Et

Al. [13] Has Been Use Merkle Hash Trees As Data

Structure To Store The Hashes Of The Blocks Of

Data Files. In These Techniques Each External Node

Of The Tree Contains The Hash Of The

Corresponding Block. Opera Et Al’s Method [19]

Significantly Reduces The Space Overhead But It

Compromises On The Strength Of Data Integrity.

Mykletun Et Al. [20] Introduces A Model For

Authentication In Outsourced Data. They Developed

Techniques To Ensure That The Results Received

For A Query From An Outsourced Database Are Not

Tampered With And Are Authentic. Our Proposed

Technique Uses Bloom Filters That Are Efficient

And Provide Security With Data Integrity. This

Technique Is Also Computationally Fast On The

Server.

III. PROPOSED SCHEME
This Technique Employed Bloom Filters

Which Is A Vector Of M Bits And All Bits Are Set

To Zero Initially. Bloom Filters Has A Set Of K

Basic Hash Methods, Each Of Which Can Take Any

Key As Input And Return An Index (0, M-1) Into

The Vector As Result. In This Data Structure Two

Operations Are Defined:

(I) To Insert Message We Compute K Hash

Values Of The Message And Setting To 1 The

Corresponding Bits In The Vector;

(Ii) To Query A Message We Compute K Hash

Values Of The Element And Test If The

Corresponding Bits Are 1 In The M-Bit Vector.

When We Use Hash Functions, There Is A

Chance Of Getting A Positive Answer While

Querying For An Element Which Was Not Stored

Into The Bloom Filter. This Scheme Is Block-

Oriented Like [7-9, 20-21]. In This Technique, The

Data File Is Divided Into Fixed Size Data Blocks.

Let D1, D2, D3,…,Dn Be The Data Blocks And Bi

Be The Data Block Number And Vi Be The Version

Number For Data Block Di. A Set Of Hash

Functions Used For Calculating The Bloom Filter Is

Denoted By BF() And Hi Denotes The Set Of

Hashes Corresponding To The Block Di And It Is

Defined As-

Bi= BF(Hi(Di||Bi||Vi))

We Concatenate The Data Block Number

And Version Number To The Block Of Data And

Compute The Hashes And Store It Into The Bloom

Filter Vector. In Proposed Scheme We Have

Considered 8- Bit, 16-Bit, 24-Bit, And 32-Bit Bloom

Filters Vector. The Resulting Bloom Filter Vector Hi

Can Be Either Stored Locally On The Data Owner

Computer Or Appended With The Data Block Itself

On The Storage Server. The Data Owner (DO) Has

Several Options In Storing The Data And The

Corresponding Bloom Filter Vector Depending On

Its Storage, Integrity, And Confidentiality

Requirements. In This Technique, The Encrypted

(ENC) And Unencrypted (UENC) Option Are

Specified For Data And The Bloom Filter Vector.

The BFV Location Option Is Specified For The

Bloom Filter Vectors: At Server (SRV), At Data

Owner (DO), Or At Both (SRV & DO).

In Options 1-4 Data Owner (DO) Keeps No

Record At Client Side Node, But The Storage Server

May Neglect The Recent Changes To A Data Block,

Yet Maintaining Correct Bloom Filter Vector (BFV)

From The Last Update. Neither The Data Owner

(DO) Nor A Third Party Client May Detect This

Inconsistency. The Options Are Listed In Table 1.

Table 1: Bloom Filter Vector Location

In These Options No Storage Cost Is On

The Data Owner (DO). In Serial No 1 And 3 Where

The Bloom Filter Vector (BFV) Is Encrypted, It Is

Possible To Rectify This By Data Owner (DO). This

Will Enable It To Check The Currency When A

Data Block Is Retrieved And The Bloom Filter

Vector (BFV) Recomputed.

In Schemes 5-8, Data Owner Keeps The

Bloom Filter Vector (BFV) And So The Additional

Storage Cost At The Server Side Is Nothing And

Whenever A Data Block Is Accessed, The Data

Owner Computes The Hash And Test It For Data

Integrity And Currency. However, Schemes 5-8

Have An Additional Storage Overhead On The Data

Owner Machine And Any Clients Accessing The

Data From The Storage Server Need To Contact The

Data Owner For Integrity Test. It Will Bring An

Additional Processing And Communication Cost For

The Data Owner Machine.

Finally, In Schemes 9-12, Both Storage

Server And Data Owner Machine Keep The Bloom

Filter Vector (BFV). This Is Helpful When Other

Customer/Clients Access The Data Blocks And

Hence Can Test The Data Integrity Directly Without

Contacting The Data Owner Machine. The Data

Owner Also Can Carry Out Currency Checks. While

The Encrypted Bloom Filter (EBFV) At The Owner

Is Not Useful, The Encrypted Bloom Filter At The

Server Is Useful. Now The Storage Server Can

Tampers The Data, But Can’t Change The Bloom

Filter Vector Since It Is Encrypted And The Client

Will Be Able To Decrypt The Bloom Filter Vector

And Can Check For Data Integrity Without

Contacting The Data Owner. It Still Needs To

Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 13 | P a g e

Contact The Data Owner For The Currency. In This

Paper, For We Assume Option 11 With A

Modification For Storage Efficiency. We Store The

Version Number Of Data Block Rather Than BFV.

Figure 1a: Procedure at data owner to store a file at

server

Figure 1b: Procedure at data owner to verify a file

Whenever A Data Block Is Modified In A

Data File And Rewritten, That Version Number Is

Incremented And The Corresponding Bloom Filter

Vector (BFV) Is Recomputed For The Modified

Block And Stored At The Server.

Fig. 1a And 1b Give A Detailed

Information On The Data Storage And Data

Retrieval/Verification At Data Owner. Since The

Underlying Hash Functions Make A Significant

Impact On The Effectiveness Of A Hash Filter, We

Have Looked At Several Hashing Functions.

In This Experiment We Have Chosen The

Basic Hash Functions Shown In Table 2 From [22-

23]. SDBM Hashing Is The Simplest Of All And Its

Code In C++ Is Shown In Fig. 2. Here, Data Is The

Input String For Which Hash Is Being Computed

And Size Is The String Size. The Resulting Hash

Value Is An Unsigned Int.

Table 2: Basic Hash Functions Used In The

Experiments

Hash

Function

Source

RS R. Sedgwick

SDBM Open Source SDBM Project

JS J. Sobel

PJW P. J. Weinberger

BKDR B. Kernighan And D. Ritchie

IV. RESULTS

In This Experiment We Have Considered A Bloom

Filter Vector Of Size M And K Independent Hash

Functions, Each With Range {0,1,…,M-1}. For

Each Element X (I.E A Data Block), The Bit

Positions At H1(X), H2(X), …, Hk(X), Are Set To

1.

Given A Retrieved Data Block Y And Its

Bloom Filter Vector We Have To Check If The Data

Block Has Been Tampered With. If H1(Y), H2(Y),

…, Hk(Y), Are All Set To 1, And No Other Bits Are

Set To 1. In This We Case The Data Block Y Is Not

Tampered With. However, There Is A Finite

Probability Of False Positive (FP). Fan Et Al. [24]

Shown That The Probability Of A False Positive

(FP) Test Result Is-

[1-(1-1/M) K]
K

But The Important Assumption Underlying This

Formula Is That The K Hash Functions Are

Independent. This Is Empirically Shown In Table 3.

Table 3: Comparison With Variation Of Hash

Fucntions

It Has Been Observed That (I) Accuracy

Improves With Increase In Bloom Filter Vector

(BFV) Size M; (Ii) When M/K < 0.5, Increase In K,

For A Given M, May Actually Decrease The Bloom

Filter Accuracy. (Iii) When M/K ≥ 0.5, The

Accuracy Improves With Increase In K For A Given

M.

We Can Achieve Storage And Computational

Efficiency By Using Four Hash Functions I.E. K=4

With Filter Size Of 8 Bits I.E. M=8 With An

Accuracy Of 0.97. We Can Use A Filter Size Of 16

Bits I.E. M=16 With An Accuracy Of 1.

Here, Table 3 Shows Theoretical Accuracy

Measures But The Underlying Hypothesis May Not

Always Be Valid. So, To Check Validation And To

Compare The Performance Of Bloom Filters Vector

We Have Test Several Experiments. The Results

And Conclusions From These Experiments Are

Discussed Here.

A. Storage Requirements Of BFV

Bloom Filters Require Much Less Space Than

Secure Hashes As:

SHA-1: It Generates A 20-Byte Digest

SHA-2: It Generates Either 32-Byte Or 64-Byte

Digest

MD5: It Generates A 16- Byte Digest.

Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 14 | P a g e

Bloom Filters Vectors That We Consider Use 1-

Byte, 2-Byte, 3-Byte Or 4-Byte Filters Which Are

Far Smaller Than The Secure Hashes.

B. Storage Overhead At The Server

Techniques That Use Merkle Hash Trees

[7], The Storage Server Send All Hashes From The

Requested Data Block Element’s Root To The Root

Of The Tree To The Client. For Example, For A 1

Mega Byte File With A Data Block Size Of 1K

Bytes, The Height Of The Merkle Hash Tree Is

About 10. This Is Ten Times More Than The Bloom

Filter Vector. Here, The Storage Cost Is Number Of

Data Blocks When Both Merkel Hash Trees And

Bloom Filters Vector Are Used. It Is Proved That

Bloom Filters Vectors Have A Major Advantage

Over The Merkle Hash.

C. Effect Of The BFV Size And The Hash

Functions

If A Storage Server Tampers With The

Data, The BFV Of The Modified Data Should Not

Match With The Original BFV When Verified By

The DO Or Other Clients. If There Is A Match In

BFV’s, Then It Is A False Positive. So The

Accuracy Of The BFV Can Be Measured By The

Number Of False Positives Obtained From Various

Modified Data Blocks. It Is Clear That Even With 8-

Bit Bloom Filters And As Few As 3 Hash Functions,

One Can Obtain 96% Accuracy. This Accuracy May

Be Further Increased To Almost 100% By

Increasing The Bloom Filter Size To 24 Bits And

Increasing The Number Of Hashes To 12.

D. Computational Overhead

We Have Employed Multiple Hash

Functions And The Number Of Hash Functions

Used Clearly Dictated The Execution Times.

Surprisingly, The Computational Overhead Is Not

Linearly Proportional To The Number Of Hashes.

The Execution Time Is Directly Proportional To The

Number Of Blocks In The Data File.

V. CONCLUSION
In This Paper, We Have Investigated

Efficiency Of Bloom Filters For Integrity Of Data

Blocks. Here, We Discussed The Merkle’s Hashing

Methods For Data Integrity And Explained Their

Additional Storage Cost On The DO’s. Proposed

Method Uses Bloom Filters Vectors And Reduces

This Overhead. In Order To Reduce The

Computational Overhead We Have Implemented

These Schemes On Dual Core And Quad Core

Systems. The Experiments Clearly Show The

Advantage Of Using BFV.

REFERENCES
[1] A. S. Tanebaum And D. J. Wetherall,

Computer Networks, 5th Edition, Pearson

Higher Education, 2011.

[2] J. Peng, Y. Zhou, And Y. Yang, “Cyclic

Redundancy Code Checking Based On Small

Lookup Table,” IEEE Intl. Conf. On

Communication Technology And

Applications, Pp. 596-599, 2010

[3] B. Gassend, G. E. Suh, D. Clarke, M. Van

Dijk, And S. Devdas, “Caches And Merkle

Trees For Efficient Memory Integrity

Verification,” 9th Intl. Symp. High

Performnace Computer Architecture, Feb.

2003.

[4] A. Silberschatz, P. B. Galvin, And G. Gane,

Operting System Concepts, Eith Edition,

Wiley, 2009.

[5] R. Gagliardi, F. Marcantoni, A. Polzonetti, B.

Re, And P. Tapanelli, “Cloud Computing For

Network Business Ecosystem,” IEEE

IEEM’10, Pp. 862-868, Dec. 2010.

[6] J. B. Gurman, “How Many Terabytes Was

That? Archiving And Serving Solar Space

Data Without Losing Your Shirt,” Bulletinn

Of The American Astronomical Society, Vol.

31, P. 955, May 1999.

[7] J. Li, M. N. Krohn, D. Mazieres, And D.

Shasha, “Secure Untrusted Data Repository

(SUNDR), “ In OSDI, 2004, Pp. 121-136.

[8] A. Yun, C. Shi, And Y. Kim, “On Protecting

Integrity And Confidentiality Of

Cryptographic File System For Outsourced

Storage,” CCSW 2009, Nov 2009.

[9] M. T.Goodrich, C Papamanthou, R. Tamassia,

And N. Triandopoulos, “Athos: Efficient

Authentication Of Outsourced File Systems,”

ISC 2008, LNCS 5222, Pp. 80–96, Springer-

Verlag Berlin, 2008.

[10] B. H. Bloom, “Space/Time Trade-Offs In

Hash Coding With Allowable Errors,”

CACM, Vol. 13, No. 7, July 1970, Pp. 422-

426.

[11] F. Chang, J. Dean, S. Ghemawat, W. C.

Hseih, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, And R. Gruber, “Bigtable:

A Distributed Data Storage System For

Structured Data,” Proc. 7th Symp. Operating

Systems Design And Implementation

(OSDI’06), 2006, Pp. 205-218.

[12] A. Kumar, J. Xu, L. Li, And J. Wang, “Space-

Code Bloom Filters For Efficient Traffic

Flow Measurement,” IEEE J. Selected Areas

In Communication, Vol. 24, No. 12, 2006, Pp.

2327-2339.

[13] Z. Li And G. Gong, “On Data Aggregation

With Secure Bloom Filter In Wireless Sensor

Networks,” Technical Report, Dept. Of

Electrical And Computer Engineering, Univ.

Waterloo, Canada.

[14] A. Telidevara, V. Chandrasekaran, A.

Srinivasan, R. Mukkamala, And S. Gampa,

Pramod Kumar Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 8, Issue3, (Part -2) march2018, pp.10-15

www.ijera.com DOI: 10.9790/9622-0803021015 15 | P a g e

“Similarity Coefficient Generators For

Network Forensics,” Proc. IEEE WIFS, 2010.

[15] F. Jian-Ming, X. Ying, X. Hui-Jun, And W.

Wei, “Startegy Optimization For P2P Security

Using Bloom Filter,” Intl. Conf. Multimedia

Information Netyworking And Security,

MINES’09, 2009, Pp. 403-406.

[16] P. Williams, R. Sion, And B. Carbunar,

“Building Castles Out Of Mud: Practical

Access Pattern Privacy And Correctness On

Untrusted Storage,” ACM CCS’08, Oct. 27-

31, 2008, Alexandria, Virginia, Pp. 139-148.

[17] M. Zhang, K. Cai, And D. Feng, “Fine-

Grained Cloud DB Damage Examination

Based On Bloom Filters,” Proc. ACM Web-

Age Information Management (WIAM 2010),

Springer-Verlag LNCS 6184, 2010, Pp. 157-

168.

[18] M. J. Quinn, Parallel Programming In C With

MP And Openmp, Mcgraw-Hill, 2004.

[19] A. Oprea, M. K. Reiter, And K. Yang,

“Space-Efficint Block Storage Integrity,”

Proc. 12th Annual Network And Distributed

System Security Symposium, NDSS’05,

2005.

[20] E. Mykletun, M. Narasimha, And G. Tsudik,

“Authentication And Integrity In Outsourced

Databases,” ACM Transactions On Storage ,

Vol. 2, No. 2, May 2006. Pp. 107-138.

[21] S. Halevi And P. Rogaway, “A Tweakable

Enciphering Mode,” Advances In Cryptology

CRYPTO’03, Lecture Notes In Computer

Science, Vol. 2729, Pp. 482-499,

Springerverlag, 2003.

[22] A. Kirsch And M. Mitzenmacher, “Less

Hashing, Same Performance: Building A

Better Bloom Filter,” ESA 2006, Springer-

Verlag LNCS 4168, Pp. 456-467, 2006.

[23] A. Partow, Genral Purpose Hash Function

Algorithms,

Http://Www.Partow.Net/Programming/Hashf

unctions/.

[24] L. Fan, P. Cao, J. Almeida, And A. Z. Broder,

“Summary Cache: A Scalable Wide-Area

Cache Sharing Protocol,” IEEE/ACM Trans.

Networking, 2000, Pp. 254-265

[25] X. Wang And H. Yu, “How To Break MD5

And Other Hash Functions,” EUROCRYPT

2005, Pp. 19-35, 2005.

Pramod Kumar "Efficient Data Integrity Algorithm For Outsourced Data In Cloud

Environment "International Journal of Engineering Research and Applications (IJERA) , vol.

8, no. 03, 2018, pp. 10-15

