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ABSTRACT 
In solving many “real world” engineering optimization applications, it is generally preferable to formulate 

several quantifiably good alternatives that provide distinct perspectives to the particular problem. This is 

because decision-making typically involves complex problems that are riddled with incompatible performance 

objectives and contain competing design requirements which are very difficult – if not impossible – to capture 

and quantify at the time that the supporting mathematical programming models are actually constructed. There 

are invariably unmodelled design issues, not apparent at the time of model construction, which can greatly 

impact the acceptability of the model’s solutions. Consequently, it is preferable to generate several, distinct 

alternatives that provide multiple, disparate perspectives to the problem. These alternatives should possess near-

optimal objective measures with respect to all known modelled objective(s), but be fundamentally different from 

each other in terms of their decision variables. This solution approach is referred to as modelling to generate-

alternatives (MGA). This paper provides an efficient computational procedure for simultaneously generating 

multiple different alternatives to optimal solutions that employs the Firefly Algorithm. The efficacy of this 

approach will be illustrated using a well-known engineering optimization benchmark problem. 

Keywords: Biologically-inspired Metaheuristic Algorithms, Firefly Algorithm, Modelling-to-generate-

alternatives 
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I. INTRODUCTION 

Typical “real world” decision-making 

involves complex problems that possess design 

requirements which are frequently very difficult to 

incorporate into their supporting mathematical 

programming formulations and tend to be plagued by 

numerous unquantifiable components [1][2][3]. While 

mathematically optimal solutions provide the best 

answers to these modelled formulations, they are 

generally not the best solutions to the underlying real 

problems as there are invariably unmodelled aspects 

not apparent during the model construction phase 

[1][2]. Hence, it is generally considered desirable to 

generate a reasonable number of very different 

alternatives that provide multiple, contrasting 

perspectives to the specified problem [4]. These 

alternatives should preferably all possess near-optimal 

measures with respect to all of the modelled 

objective(s), but be as different as possible from each 

other in terms of the system structures characterized 

by their decision variables. Several approaches 

collectively referred to as modelling-to-generate-

alternatives (MGA) have been developed in response 

to this multi-solution creation requirement [4]-[9].  

The primary motivation behind MGA is to construct a 

manageably small set of alternatives that are good 

with respect to all measured objective(s) yet are 

fundamentally dissimilar within the prescribed 

decision space. The resulting set of alternatives should 

provide diverse approaches that all perform similarly 

with respect to the known modelled objectives, yet 

very differently with respect to any unmodelled issues 

[3][10]. Clearly the decision-makers must then 

conduct a sub-sequent comprehensive comparison of 

these alternatives to determine which options would 

most closely satisfy their very specific circumstances. 

Therefore, MGA methods must necessarily be 

classified as decision support processes in contrast to 

the explicit solution determination methods assumed, 

in general, for optimization. 

In this paper, it is shown how to 

simultaneously generate sets of maximally different 

solution alternatives by implementing a modified 

version of the nature-inspired Firefly Algorithm (FA) 

[10][11] by extending previous concurrent MGA 

approaches [6]-[9][12]-[14]. For calculation and 

optimization, it has been demonstrated that the FA is 

more computationally efficient than such commonly-

employed metaheuristics as enhanced particle swarm 

optimization, simulated annealing, and genetic 

algorithms [11][15]. The MGA procedure extends the 
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earlier approaches of Imanirad et al. [6]-[9][12][13] to 

now permit the simultaneous generation of the desired 

number of alternatives in a single computational run. 

This new simultaneous FA-based MGA procedure is 

extremely computationally efficient. This paper 

illustrates the efficacy of the new FA approach for 

simultaneously constructing multiple, good-but-very-

different solution alternatives on a commonly 

evaluated benchmark engineering optimization test 

problem [16]. 

 

II. FIREFLY ALGORITHM FOR 

OPTIMIZATION 
While this section provides only a relatively 

brief synopsis of the FA procedure [5][12][13], more 

comprehensive explanations appear in [10][11]. The 

FA is a biologically-inspired, population-based 

metaheuristic. Each firefly in the population 

represents one potential solution to a problem and the 

population of fireflies should initially be distributed 

uniformly and randomly throughout the solution 

space. The solution approach employs three idealized 

rules. (i) The brightness of a firefly is determined by 

the overall landscape of the objective function. 

Namely, for a maximization problem, the brightness 

is simply considered to be proportional to the value of 

the objective function. (ii) The relative attractiveness 

between any two fireflies is directly proportional to 

their respective brightness. This implies that for any 

two flashing fireflies, the less bright firefly will 

always be inclined to move towards the brighter one. 

However, attractiveness and brightness both decrease 

as the relative distance between the fireflies increases. 

If there is no brighter firefly within its visible 

neighborhood, then the particular firefly will move 

about randomly. (iii) All fireflies within the 

population are considered unisex, so that any one 

firefly could potentially be attracted to any other 

firefly irrespective of their sex. Based upon these 

three rules, the basic operational steps of the FA can 

be summarized within the following pseudo-code 

[11].  

Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 1, 

2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ 

while (t < MaxGeneration) 

fori = 1: n , all n fireflies 

forj = 1: n ,all n fireflies (inner loop) 

 if (Ii<Ij), Move firefly i towards j; end if 

 Vary attractiveness with distance r via e
- γr

 

endforj 

end fori 

Rank the fireflies and find the current global best 

solution G
*
 

end while 
Postprocess the results 

 

In the FA, there are two important issues to resolve: 

the formulation of attractiveness and the variation of 

light intensity. For simplicity, it can always be 

assumed that the attractiveness of a firefly is 

determined by its brightness which in turn is 

associated with its encoded objective function value. 

In the simplest case, the brightness of a firefly at a 

particular location X would be its calculated objective 

value F(X). However, the attractiveness,, between 

fireflies is relative and will vary with the distance rij 

between firefly i and firefly j. In addition, light 

intensity decreases with the distance from its source, 

and light is also absorbed in the media, so the 

attractiveness needs to vary with the degree of 

absorption. Consequently, the overall attractiveness of 

a firefly can be defined as:   

= 0exp(-r2) 

where 0is the attractiveness at distance r = 0 and  is 

the fixed light absorption coefficient for the specific 

medium. If the distance rij between any two fireflies i 

and j located at Xi and Xj, respectively, is calculated 

using the Euclidean norm, then the movement of a 

firefly i that is attracted to another more attractive (i.e. 

brighter) firefly j is determined by: 

Xi = Xi + 0 exp(- (rij)
2
)(Xi – Xj) + I 

In this expression of movement, the second term is 

due to the relative attraction and the third term is a 

randomization component. Yang [11] indicates that  

is a randomization parameter normally selected within 

the range [0,1] and i is a vector of random numbers 

drawn from either a Gaussian or uniform (generally [-

0.5,0.5]) distribution. It should be explicitly noted that 

this expression represents a random walk biased 

toward brighter fireflies and if 0 = 0, it becomes a 

simple random walk. The parameter  characterizes 

the variation of the attractiveness and its value 

determines the speed of the algorithm’s convergence. 

For most applications,  is typically set between 0.1 to 

10 [11,15]. In any given optimization problem, for a 

very large number of fireflies n>>k, where k is the 

number of local optima, the initial locations of the n 

fireflies should be distributed relatively uniformly 

throughout the entire search space. As the FA 

proceeds, the fireflies begin to converge into all of the 

local optima (including the global ones). Hence, by 

comparing the best solutions among all these optima, 

the global optima can easily be determined. Yang 

(2010) proves that the FA will approach the global 

optima when n   and the number of iterations t, is 

set so that t>>1. In reality, the FA has been found to 

converge extremely quickly with n set in the range 20 

to 50 [10,15]. 
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III. MODELLING TO GENERATE 

ALTERNATIVES 
Most optimization methods appearing in the 

mathematical programming literature have 

concentrated almost exclusively upon producing 

single optimal solutions to single-objective problem 

instances or, equivalently, generating noninferior 

solution sets to multi-objective formulations 

[2][3][5][12][13]. While such algorithms may 

efficiently generate solutions to the derived complex 

mathematical models, whether these outputs actually 

establish “best” approaches to the underlying real 

problems is questionable [1][2][5]. In most “real 

world” decision environments, there are innumerable 

system requirements and objectives that are never 

included or apparent in the decision formulation stage 

[1][3]. Furthermore, it may never be possible to 

explicitly incorporate all of the subjective components 

because there are frequently many incompatible, 

competing, design interpretations and, perhaps, 

adversarial stakeholders involved. Therefore, most of 

the subjective aspects of a problem necessarily remain 

unquantified and unmodelled in the construction of 

the resultant decision models. This is a common 

occurrence in situations where final decisions are 

constructed based not only upon clearly stated and 

modelled objectives, but also upon more 

fundamentally subjective socio-political-economic 

goals and stakeholder preferences [4]. Numerous “real 

world” examples describing these types of 

incongruent modelling dualities are discussed in 

[5][17][18]. 

When unquantified issues and unmodelled 

objectives exist, non-conventional approaches are 

required that not only search the decision space for 

noninferior sets of solutions, but must also explore the 

decision space for discernibly inferior alternatives to 

the modelled problem. In particular, any search for 

good alternatives to problems known or suspected to 

contain unmodelled components must focus not only 

on the non-inferior solution set, but also necessarily 

on an explicit exploration of the problem’s inferior 

decision space. 

To illustrate the implications of an 

unmodelled objective on a decision search, assume 

that the optimal solution for a quantified, single-

objective, maximization decision problem is X* with 

corresponding objective value Z1*. Now suppose that 

there exists a second, unmodelled, maximization 

objective Z2 that subjectively reflects some 

unquantifiable “political acceptability” component. 

Let the solution X
a
, belonging to the noninferior, 2-

objective set, represent a potential best compromise 

solution if both objectives could somehow have been 

simultaneously evaluated by the decision-maker. 

While X
a
might be viewed as the best compromise 

solution to the real problem, it would appear inferior 

to the solution X
*
 in the quantified mathematical 

model, since it must be the case that Z1
a Z1*. 

Consequently, when unmodelled objectives are 

factored into the decision-making process, 

mathematically inferior solutions for the modelled 

problem can prove optimal to the underlying real 

problem. Therefore, when unmodelled objectives and 

unquantified issues might exist, different solution 

approaches are needed in order to not only search the 

decision space for the noninferior set of solutions, but 

also to simultaneously explore the decision space for 

inferior alternative solutions to the modelled problem. 

Population-based solution methods such as the FA 

permit concurrent searches throughout a feasible 

region and thus prove to be particularly adept 

procedures for searching through a problem’s decision 

space. 

The primary motivation behind MGA is to 

produce a manageably small set of alternatives that 

are quantifiably good with respect to the known 

modelled objectives yet are as different as possible 

from each other in the decision space. The resulting 

alternatives are likely to provide truly different 

choices that all perform somewhat similarly with 

respect to the modelled objective(s) yet very 

differently with respect to any unknown unmodelled 

issues. By generating a set of good-but-different 

solutions, the decision-makers can explore desirable 

qualities within the alternatives that may prove to 

satisfactorily address the various unmodelled 

objectives to varying degrees of stakeholder 

acceptability. 

 

Maximize (X, X*) =
i | Xi -Xi*| 

 [P1] 
 

Subject to:XD 
| F(X) - Z* |   T 

 

where   represents some difference function (for 

clarity, shown as an absolute difference in this 

instance and T is a targeted tolerance value specified 

relative to the problem’s original optimal objective 

Z*. T is a user-supplied value that determines how 

much of the inferior region is to be explored in the 

search for acceptable alternative solutions. This 

difference function concept can be extended into a 

measure of difference between any set of alternatives 

by replacing X* in the objective of the maximal 

difference model and calculating the overall sum (or 

some other function) of the differences of the pairwise 

comparisons between each pair of alternatives – 

subject to the condition that each alternative is 

feasible and falls within the specified tolerance 

constraint.  
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IV. FA-DRIVEN SIMULTANEOUS MGA 

COMPUTATIONAL ALGORITHM 
The MGA method to be introduced produces 

a pre-determined number of close-to-optimal, but 

maximally different alternatives, by modifying the 

value of the bound T in the maximal difference model 

and using an FA to solve the corresponding, maximal 

difference problem. Each solution within the FA’s 

population contains one potential set of p different 

alternatives. By exploiting the co-evolutionary 

solution structure within the population of the 

algorithm, the Fireflies collectively evolve each 

solution toward sets of different local optima within 

the solution space. In this process, each desired 

solution alternative undergoes the common search 

procedure of the FA. However, the survival of 

solutions depends both upon how well the solutions 

perform with respect to the modelled objective(s) and 

by how far away they are from all of the other 

alternatives generated in the decision space. 

A direct process for generating alternatives 

with the FA would be to iteratively solve the 

maximum difference model by incrementally 

updating the target T whenever a new alternative 

needs to be produced and then re-running the 

algorithm. This iterative approach would parallel the 

original Hop, Skip, and Jump (HSJ) MGA algorithm 

[5] in which, once an initial problem formulation has 

been optimized, supplementary alternatives are 

systematically created one-by-one through an 

incremental adjustment of the target constraint to 

force the sequential generation of the suboptimal 

solutions. While this approach is straightforward, it 

requires a repeated execution of the optimization 

algorithm [4][12][13].  

To improve upon the stepwise alternative 

approach of the HSJ algorithm, a concurrent MGA 

technique was subsequently designed based upon the 

concept of co-evolution [6][8][12][13]. In the co-

evolutionary approach, pre-specified stratified 

subpopulation ranges within the algorithm’s overall 

population were established that collectively evolved 

the search toward the creation of the specified number 

of maximally different alternatives. Each desired 

solution alternative was represented by each 

respective subpopulation and each subpopulation 

underwent the common processing operations of the 

FA. The survival of solutions in each subpopulation 

depended simultaneously upon how well the solutions 

perform with respect to the modelled objective(s) and 

by how far away they are from all of the other 

alternatives. Consequently, the evolution of solutions 

in each subpopulation toward local optima is directly 

influenced by those solutions contained in all of the 

other subpopulations, which forces the concurrent co-

evolution of each subpopulation towards good but 

maximally distant regions within the decision space 

according to the maximal difference model [4]. 

By employing this co-evolutionary concept, 

it becomes possible to implement an FA-based MGA 

procedure that concurrently produces alternatives 

which possess objective function bounds that are 

somewhat analogous to those created by the 

sequential, iterative HSJ-styled solution generation 

approach. While each alternative produced by an HSJ 

procedure is maximally different only from the 

overall optimal solution (together with its bound on 

the objective value which is at least x% different from 

the best objective (i.e. x = 1%, 2%, etc.)), a concurrent 

procedure is able to generate alternatives that are no 

more than x% different from the overall optimal 

solution but with each one of these solutions being as 

maximally different as possible from every other 

generated alternative that was produced. Co-evolution 

is also much more efficient than the sequential HSJ-

style approach in that it exploits the inherent 

population-based searches of FA procedures to 

concurrently generate the entire set of maximally 

different solutions using only a single population 

[6][8]. 

While a concurrent approach exploits the 

population-based nature of the FA’s solution 

approach, the co-evolution process occurs within each 

of the stratified subpopulations. The maximal 

differences between solutions in different 

subpopulations is based upon aggregate subpopulation 

measures. Conversely, in the following simultaneous 

MGA algorithm, each solution in the population 

contains exactly one entire set of alternatives and the 

maximal difference is calculated only for that 

particular solution (i.e. the specific alternative set 

contained within that solution in the population). 

Hence, by the evolutionary nature of the FA search 

procedure, in the subsequent approach, the maximal 

difference is simultaneously calculated for the specific 

set of alternatives considered within each specific 

solution – and the need for concurrent subpopulation 

aggregation measures is circumvented. 

The steps in the simultaneous co-

evolutionary alternative generation algorithm are as 

follows: 

Initialization Step. In this preliminary step, solve the 

original optimization problem to determine the 

optimal solution, X*. As with prior solution 

approaches [6]-[9][12][13] and without loss of 

generality, it is entirely possible to forego this step 

and construct the algorithm to find X* as part of its 

solution processing. However, such a requirement 

increases the number of computational iterations of 

the overall procedure and the initial stages of the 

processing focus upon finding X* while the other 

elements of each population solution remain 

essentially “computational overhead”. Based upon the 

objective value F(X*), establish P target values. P 

represents the desired number of maximally different 

alternatives to be generated within prescribed target 
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deviations from the X*.  

Note: The value for P has to have been set a priori by 

the decision-maker. 

Step 1. Create the initial population of size K in which 

each solution is divided into P equally-sized 

partitions. The size of each partition corresponds to 

the number of variables for the original optimization 

problem. Ap represents the p
th

 alternative, p = 1,…,P, 

in each solution. 

Step 2. In each of the K solutions, evaluate each Ap, p 

= 1,…,P, with respect to the modelled objective. 

Alternatives meeting their target constraint and all 

other problem constraints are designated as feasible, 

while all other alternatives are designated as 

infeasible. A solution can only be designated as 

feasible if all of the alternatives contained within it 

are feasible. 

Step 3. Apply an appropriate elitism operator to each 

solution to rank order the best individuals in the 

population. The best solution is the feasible solution 

containing the most distant set of alternatives in the 

decision space (the distance measure is defined in 

Step 5). Note: Because the best solution to date is 

always retained in the population throughout each 

iteration of the FA, at least one solution will always 

be feasible. A feasible solution for the first step can 

always consists of p repetitions of X*. 

This step simultaneously selects a set of 

alternatives that respectively satisfy different values 

of the target T while being as far apart as possible (i.e. 

maximally different as defined in the maximal 

difference model) from the other solutions generated. 

By the co-evolutionary nature of the FA, the 

alternatives are simultaneously generated in one pass 

of the procedure rather than the p implementations 

suggested by the necessary increments to T in the 

maximal difference problem. 

Step 4. Stop the algorithm if the termination criteria 

(such as maximum number of iterations or some 

measure of solution convergence) are met. Otherwise, 

proceed to Step 5. 

Step 5. For each solution k = 1,…, K, calculate Dk, a 

distance measure between all of the alternatives 

contained within solution k. 

As an illustrative example for determining a distance 

measure, calculate 

 Dk= 
1i toP 1j toP  (Ai,Aj). 

This represents the total distance between all of the 

alternatives contained within solution k. Alternatively, 

the distance measure could be calculated by some 

other appropriately defined function. 

Step 6. Rank the solutions according to the distance 

measure Dkobjective – appropriately adjusted to 

incorporate any constraint violation penalties for 

infeasible solutions. The goal of maximal difference is 

to force alternatives to be as far apart as possible in 

the decision space from the alternatives of each of the 

partitions within each solution. This step orders the 

specific solutions by those solutions which contain the 

set of alternatives which are most distant from each 

other. 

Step 7. Apply appropriate FA “change operations” to 

the each of the solutions and return to Step 2. 

 

 

V. COMPUTATIONAL TESTING OF THE 

FIREFLY ALGORITHM USED FOR 

MGA 
As described earlier, “real world” decision-

makers generally prefer to be able to select from a set 

of “near-optimal” alternatives that significantly differ 

from each other in terms of the system structures 

characterized by their decision variables. The ability 

of the FA MGA procedure to simultaneously produce 

such maximally different alternatives will be 

demonstrated using an optimization problem that has 

frequently been employed as a standard benchmark 

test problem for constrained, non-linear engineering 

optimization algorithms [16]. The mathematical 

formulation for this problem is: 

 

 

Min F(X) =      
2 2 24 6 2 4

1 2 3 4 5 6 7 6 7 6 710 5 12 3 11 10 7 4 10 8x x x x x x x x x x x             

Subject to:   g1(X) = 
2 4 2

1 2 3 4 52 3 4 5 127x x x x x       0 

    g2(X) = 
2

1 2 3 4 57 3 10 282x x x x x       0 

    g3(X) = 
2 2

1 2 6 723 6 8 196x x x x      0 

    g4(X) = 
2 2 2

1 2 1 2 3 6 74 3 2 5 12x x x x x x x       0 

     -10  ix   10, i = 1, 2, 3, 4, 5, 6, 7 

 

The optimal solution for the specific design 

parameters employed within this formulation F(X*) = 

680.6300573 with decision variable values of X* = 

(2.330499, 1.951372, -0.4775414, 4.365726, 

0.6244870, 1.038131, 1.594227) [16]. 

In order to create the set of different alternatives, 
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extra target constraints that varied the value of T by 

up to 1% between successive alternatives were placed 

into the original formulation in order to force the 

generation of solutions maximally different from the 

initial optimal solution (i.e. the values of the bound 

were set at 1%, 2%, 3%, etc. for the respective 

alternatives). The MGA maximal difference algorithm 

described in the previous section was run to produce 

the optimal solution and the 10 maximally different 

solutions shown in Table 1. Subsequently, target 

constraints that varied T by up to 2.5% between 

successive alternatives were employed. The MGA 

algorithm was run again to produce the optimal 

solution and the 10 maximally different solutions 

shown in Table 2.

  

Table 1. Objective Values and Solutions for the 11 Maximally Different Alternativeswith 1% Increment. 

 

Table 2. Objective Values and Solutions for the 11 Maximally Different Alternativeswith 2.5% Increment 

Increment 2.5% Increment Between Alternatives 

 F(X) 1x  2x  3x  4x
 5x  6x  7x  

Optimal 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942 

Alternative 1 687.022 2.3056 1.9076 -0.4245 4.3256 -0.6184 1.0388 1.6067 

Alternative 2 711.793 2.3174 1.9111 -0.4084 4.3668 -0.6166 1.0759 1.6116 

Alternative 3 730.671 2.2916 1.9496 -0.4442 4.3474 -0.6154 1.0555 1.5864 

Alternative 4 744.901 2.3468 1.9118 -0.4087 4.3557 -0.6283 0.9899 1.6024 

Alternative 5 756.260 2.2985 1.9019 -0.4452 4.3577 -0.5927 1.0022 1.5770 

Alternative 6 779.735 2.3463 1.9397 -0.4338 4.3425 -0.5867 1.0457 1.6301 

Alternative 7 796.641 2.3011 1.9128 -0.4282 4.3386 -0.5758 1.0035 1.6227 

Alternative 8 811.767 2.3539 1.9579 -0.4543 4.3338 -0.6425 1.0413 1.6155 

Alternative 9 832.123 2.3690 1.9208 -0.4181 4.4001 -0.617 1.0411 1.6374 

Alternative 10 846.019 2.2967 1.897 -0.4684 4.3467 -0.6374 1.0252 1.5721 

 

As described earlier, most “real world” 

optimization applications tend to be riddled with 

incongruent performance requirements that are 

exceedingly difficult to quantify.  Consequently, it is 

preferable to create a set of quantifiably good 

alternatives that provide very different perspectives to 

the potentially unmodelled performance design issues 

during the policy formulation stage. The unique 

performance features captured within these dissimilar 

alternatives can result in very different system 

performance with respect to the unmodelled issues, 

hopefully thereby addressing some of the unmodelled 

issues into the actual solution process. 

The example in this section underscores how 

a co-evolutionary MGA modelling perspective can be 

used to simultaneously generate multiple alternatives 

that satisfy known system performance criteria 

according to the prespecified bounds and yet remain 

as maximally different from each other as possible in 

the decision space. In addition to its alternative 

generating capabilities, the FA component of the 

MGA approach simultaneously performs extremely 

well with respect to its role in function optimization. 

It should be explicitly noted that the cost of the 

overall best solution produced by the MGA procedure 

is indistinguishable from the one determined in [16]. 

 

 

 

 

Increment 1% Increment Between Alternatives 

 F(X) 1x  2x  3x  4x
 5x  6x  7x  

Optimal 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942 

Alternative 1 683.917 2.3025 1.9353 -0.4881 4.3333 -0.6169 1.0355 1.5889 

Alternative 2 687.580 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782 

Alternative 3 696.899 2.2934 1.9096 -0.4397 4.3369 -0.6616 1.0331 1.6176 

Alternative 4 705.926 2.3080 1.9171 -0.4724 4.3343 -0.6578 1.053 1.6078 

Alternative 5 706.837 2.2913 1.9003 -0.3965 4.3548 -0.6388 1.0796 1.6023 

Alternative 6 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230 

Alternative 7 725.652 2.3428 1.9158 -0.4459 4.3929 -0.6672 1.0382 1.6129 

Alternative 8 730.091 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782 

Alternative 9 741.897 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230 

Alternative 10 747.925 2.3577 1.9121 -0.4395 4.3314 -0.5869 1.0038 1.6148 
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VI. CONCLUSIONS 
 “Real world” engineering 

optimizationproblems generally possess 

multidimensional performance specifications that are 

compounded by incompatible performance objectives 

and unquantifiable modelling features. These 

problems usually contain incongruent design 

requirements which are very difficult – if not 

impossible – to capture at the time that supporting 

decision models are formulated. Consequently, there 

are invariably unmodelled problem facets, not 

apparent during the model construction, that can 

greatly impact the acceptability of the model’s 

solutions to those end users that must actually 

implement the solution. These uncertain and 

competing dimensions force decision-makers to 

integrate many conflicting sources into their decision 

process prior to final solution construction. Faced 

with such incongruencies, it is unlikely that any single 

solution could ever be constructed that simultaneously 

satisfies all of the ambiguous system requirements 

without some significant counterbalancing involving 

numerous tradeoffs. Therefore, any ancillary 

modelling techniques used to support decision 

formulation have to somehow simultaneously account 

for all of these features while being flexible enough to 

encapsulate the impacts from the inherent planning 

uncertainties. 

In this paper, an MGA procedure was 

presented that demonstrated how the population 

structures of a computationally efficient FA could be 

exploited to simultaneously generate multiple, 

maximally different, near-best alternatives. In this 

MGA capacity, the approach produces numerous 

solutions possessing the requisite structural 

characteristics, with each generated alternative 

guaranteeing a very different perspective to the 

problem. The computational example has 

demonstrated several important findings with respect 

to the simultaneous FA-based MGA method: (i) The 

co-evolutionary capabilities within the FA can be 

exploited to generate more good alternatives than 

planners would be able to create using other MGA 

approaches because of the evolving nature of its 

population-based solution searches; (ii) By the design 

of the MGA algorithm, the alternatives generated are 

good for planning purposes since all of their structures 

will be maximally different from each other (i.e. these 

differences are not just simply different from the 

overall optimal solution as in an HSJ-style approach 

to MGA); and, (iv) The approach is computationally 

efficient since it need only be run a single time in 

order to generate its entire set of multiple, good 

solution alternatives (i.e. to generate n solution 

alternatives, the MGA algorithm needs to run exactly 

once irrespective of the value of n). Since FA 

techniques can be modified to solve a wide variety of 

problem types, the practicality of this MGA approach 

can clearly be extended into numerous disparate 

planning applications. These extensions will be 

studied in future research. 
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