
Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 24 | P a g e

A MBSE Approach for the Development of Complex Technical

Systems

Grischa Beier*, Asmus Figge*, Stephan Marwedel**
*(Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik (IPK), Pascalstraße 8-9, 10587 Berlin,

Germany, grischa.beier@gmx.net)

**(Airbus Deutschland GmbH, Architecture and Integration, Kreetslag 10, 21129 Hamburg, Germany)

ABSTRACT
Model–-based development techniques have been successfully introduced into the design process of aircraft

systems. Examples of these techniques are performance models for digital systems and networks or 3D–models

for equipment allocation and weight assessments. However, current systems development processes usually do

not allow for a continuous usage of models reducing the potential benefits of a Model-based Systems

Engineering (MBSE) approach such as an interdisciplinary, low–effort evaluation of different design

alternatives. The paper presents a novel MBSE approach that focuses on the early development phases. It

suggests a sequence of models to be developed, provides required activities as well as data formats and considers

the complexity of modern mechatronic systems by distinguishing the required activities by the respective

abstraction level. An aircraft systems example is used to highlight the main features of the approach.

Keywords - Design quality, Modeling, Simulation, Systems Engineering, Traceability
--- ----------

Date of Submission: 25-08-2017 Date of acceptance: 17-09-2017

-- -------------

I. INTRODUCTION
The development of complex mechatronic

products requires the contribution of a multitude of

development departments creating a number of

information artifacts from different disciplines [1].

Most of these artifacts describe the to-be-developed

product from different perspectives (overall

requirements on the product, geometric parts,

electronic devices etc.) and are elaborated in several

different authoring tools. A comprehensive

development approach has to address this diversity

and support developers in efficiently creating a

reliable product that meets the initial requirements.

The aircraft manufacturer Airbus and the Fraunhofer

institute IPK jointly elaborated a model-based

development approach that considers the state of the

art in product development and allows for the

efficient development and verification of complex

mechatronic products involving a multitude of third

parties.

In this paper a novel Model–Based Systems

Engineering (MBSE) approach is presented. It

focuses on early development phases and allows for

an efficient and consistent information generation as

well as early evaluation of generated solutions. One

of the main advantages of models is simplifying the

real world’s complexity so that different solution

alternatives can be generated with comparatively

little effort. Being more simplistic, these alternatives

additionally can be interpreted more easily by

experts from different disciplines allowing for a

more holistic evaluation. The model-based

characteristics of the presented approach therefore

facilitate an involvement of experts with different

backgrounds in early stages of the development.

This early evaluation helps avoiding late and

therefore expensive design changes [2], being a

major difference in comparison to other

development approaches such as presented in [3].

The paper starts with a brief state of the art

analysis regarding already existing MBSE

approaches. It continues with a stepwise introduction

of the main processes that comprise the MBSE

approach, each explained by a common product

example. A concept on how to apply the described

MBSE approach for the development of complex

products is presented. The paper concludes with a

summary and outlook.

II. EXISTING (MODEL-BASED)

SYSTEMS ENGINEERING

APPROACHES
The aim of this paper is to define a practical

yet comprehensive approach to Systems Engineering

applicable to civil aerospace systems. Although the

focus is primarily on civil aerospace systems its

principles should be applicable to other areas as

well. The basic idea is to take the standard Systems

Engineering (SE) practices of developing the

functional, physical and operational architectures

according to a V-model as the base. See e.g. [4] for a

RESEARCH ARTICLE OPEN ACCESS

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 25 | P a g e

description of the general approach to SE. This

general approach has been discussed and extended

by the SE community intensively and a lot of system

development standards have been derived from it,

e.g. [3] and [5]. Furthermore, some organizations

defined their own version of the application of SE

principles in form of a handbook, see [6] and [7] as

examples.

The general idea of the proposed approach

to MBSE is to define a set of generic activities that

are repeatedly executed at each level in the hierarchy

of the system development process, similar to the

Incremental and Iterative Development (IID)

described in section 3.4.2 in [7]. Each activity is

supposed to be supported by a set of models which

are refined throughout the process. See Figure
1
1 for

an overview of the process steps and iterations

iterations for three hierarchical levels: Product,

System, Subsystem.

Although the type of the model used in

each step is dependent of the exact type of the

system under design a generic structure for the

models can be defined.

Some of the aforementioned standards and

adaptations do mention the use of models for

verification purposes. However, their use is not

generally advocated throughout the complete

development cycle. [7] does mention the use of

models in section 4.3.2.6 and encourages the use of

functional models based on the Integrated Definition

of Function Modeling (IDEF) in section 4.12.2.2 and

SysML in section 4.12.3.2 for the description of the

architecture, but does not define executable models

as an integral part of the overall system architecture

development effort.

[5] mentions modeling and simulation in

section 6.4 as possible methods for the analysis of

alternatives during the systems analysis and

implementation phases. Furthermore, models are

also referred to as a means for validation and

verification. However, there is no consistent

definition concerning the model structure and the

use of the analysis models in later phases.

Section 3.2 of [3] elaborates on model-

based design. It describes a procedure for building

and analyzing models and lists a set of commonly

used tools for model creation. This procedure

describes the main activities concerning the use of

models in a Systems Engineering context. It does not

address multiple hierarchical levels of a product

though. It is only suggesting to go repeatedly

through the macro-cycle with increasing product

maturity. Despite its focus on embedded systems

development in the automotive sector it is a good

1
 Please see all Figures at the end of the manuscript.

starting point for the development of a more general

approach that can be applied to aerospace systems.

In addition to the proposed methodologies

formal modeling languages have been developed to

formally specify technical systems. The most well-

known of which is the System Modeling Language

(SysML), a graphical modeling language derived

from a subset of the Unified Modeling Language

(UML) introduced by the Object Management

Group (OMG). SysML provides a graphical notation

and an information model. Another example of a

formal modeling language is the Object-Process

Methodology (OPM) [8]. In contrast to SysML the

OPM allows for the modeling of resources and the

representation the system structure with the

corresponding functional allocation in a single

diagram. For further details regarding Systems

Engineering methodologies or languages and Model-

based Systems Engineering see also [7, 8, 9, 10, 11,

12, 13].

The MBSE approach presented in this

paper combines different elements from the

approaches discussed in the state of the art section

before. Some mechanisms that are of great

importance in modern Systems Engineering but not

sufficiently considered in those approaches are

added in our approach. Our approach therefore

contains proposals how to deal with a complex

system of multiple hierarchical layers and how to

capture trace links between the proposed models.

III. STEPWISE INTRODUCTION OF

MBSE ACTIVITIES
One of the main goals of Systems

Engineering is to ensure a consistent process that

leads from high level product requirements to a

detailed system architecture. In the approach

presented in this paper, the scope of Systems

Engineering is extended by the notion of model–

based development. That means that all elements,

starting from the early high level requirements,

down to the detailed requirements for each

component in the system architecture, are

documented by models that allow for discovery of

interdependency, and for analyzing effects of

changes or alternative designs. The approach

presented in this paper can be regarded as model-

based for various reasons. Most importantly, all

information requested in the suggested process

phases being introduced in this section can be

represented with existing modeling tools.

Suggestions for adequate exchange formats to share

these modeled data is provided in the appendix.

Additionally, all introduced models do comply with

the prevalent criteria for models: mapping, reduction

and pragmatic [12, 14]. While the presented

approach does not focus on the actual

implementation of system components, such as

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 26 | P a g e

Computer Aided Design (CAD) modeling and

software programming, it emphasizes the importance

of synchronizing the implementation results with

higher-level simulation models. Hence, the MBSE

approach partially addresses the implementation

phase and also extends the traditional Systems

Engineering approach with respect to the

development phases that it covers. Virtual

Validation & Verification (V&V) activities are

considered to be performed during the early phases

of the development and are therefore covered by the

approach presented, while physical V&V activities

requiring a real implementation of the later product

are not covered.

The presented MBSE-approach consists of

multiple phases each creating, modifying and/or

consuming a set of models, such as a requirements

model, a system structure model, various simulation

models, etc. (see Figure 2 for the V–model

according to the proposed MBSE approach). These

models are refined and their maturity increases

during the development. The single phases of the

MBSE approach will be introduced in the upcoming

sections and elaborated by means of the following

example:

Example 1: Consider the electrical network

architecture of a civil aircraft
2
as an example. An

aircraft usually features two electrical networks:

One for electrical power supply and distribution and

one for data communication.

Most modern aircraft are equipped with two

engines, each of them driving an electrical generator

which supplies electrical power to the aircraft

systems. Current aircraft systems have different

power supply characteristics, e.g. some systems are

supplied with 28V DC, while others need 115V AC.

A safe flight is only possible if electrical power is

supplied to the essential aircraft systems. This means

that the electrical power supply and distribution

network must comply with stringent safety

objectives.

Modern aircraft are controlled and monitored by

digital computers and software provides most of the

essential control and monitoring functions, e.g. for

flight control, navigation, communication,

environmental control and power management.

Current aircraft architectures make use of a

2
 The following levels are typically defined in civil

aerospace system development:

1. Aircraft level

2. System level

3. Subsystem or equipment level

common type of computer, called Core Processing

Module (CPM), that is combined with other

computers of the same type into a network. This

network provides a common computing and

communication resource for the different aircraft

systems. Additionally, other networks, e.g. for cabin

system communication and in-flight entertainment

may be installed on an aircraft.

Each of these networks require complicated

wiring within the aircraft. A comprehensive set of

rules about how to define a cable route within the

fuselage or wing assembly exist and must be obeyed,

e.g. for the separation of essential and non-essential

networks parts and to prevent electromagnetic

interference between sensitive equipment and an

electrical conductor.

1.1 Product Definition

The process starts with the definition of the

high–level requirements for the product to be

developed. This is done in the Product Definition

phase where the general product is defined based on

customer demands (e.g. via sales), mature

technological innovation and management

expectations. The demand is usually obtained by

analyzing the market, associated challenges

(competitors, legislative regulations, standards,

risks) and different product ideas. Product ideas can

also include the use of different mature technologies

and strategies to put them into the market. In this

first stage of the development process the high level

requirements of the product are defined in an

unstructured manner and passed to a project

responsible. The result of this phase usually is a set

of documents and not necessarily a model. This

phase involves the integration of technical

innovations as a result of research and development,

see Table 1 an Appendix.

Example 2: Aircraft manufacturing and

configuration capabilities are heavily impacted by

the electrical network design and interface

technology used for connecting equipment to the

network. Once the network has been designed and

installed into the aircraft it cannot easily be changed

or adapted to specific customer needs. This creates a

demand for a new approach to electrical networking

allowing for increased flexibility and a reduction in

the number of interface and cable types.

Furthermore, the replacement of a metallic cable by

other transmission means, such as wireless

technology or optical fibers, may significantly

reduce the weight impact of the network installation.

High-level product requirements:

 HL-R1: Keep systems flexible to easily meet

specific customer needs

 HL-R2: Reduce weight of the aircraft

 …

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 27 | P a g e

1.2 Product Requirements Analysis

Since the high-level requirements that are

documented in the Product Definition phase do

usually not adhere to the high formal quality

standards for proper requirements documentation

and address the entire product to be developed, they

need to be reviewed and validated, detailed and

unambiguously refined, formalized and structured.

This is done in the Product Requirements Analysis

phase. Furthermore, the requirements are

transformed into a model in this phase. That means

that they are modeled using a tool environment that

allows for storing them based on a formal data

model. That data model enables the developers to

structure, analyze and query the stored requirements

in an efficient way. If a pair of product requirements

influences each other a link has to be modeled

between them to ensure traceability
3
.

Example 3: In the future the multitude of power

supply networks shall be reduced and the general

DC supply voltage shall be increased from 28V to

240V. Furthermore, the network configuration

flexibility shall be enhanced to ease the

implementation of changes to the network after the

aircraft has entered service.

 P-R1: Use standardized interfaces [HL-R1]

 P-R2: Reduce the MEW (manufacturer’s empty

weight) of the aircraft of by 500kg [HL-R2]

 P-R3: Introduce new types of transmission

technology (e.g. wireless technology) [HL-R1,

HL-R2]

Finally, in addition to the already modeled

functional requirements, a comprehensive set of

non-functional requirements will be defined. These

requirements address the so-called −ilities, i.e.

availability (usually defined as a safety objective),

reliability, maintainability and supportability.

1.3 Functional Architecture Definition

The requirements model from the Product

Requirements Analysis phase describes requirements

for the entire product. Based on these requirements

and in order to break them down the required

product functionality is identified. In this Functional

Architecture Definition phase a functional

architecture model is derived by defining necessary

product functions and their functional parameters,

breaking them down hierarchically and modeling

their dependencies and relations. The understanding

of functional dependencies in the product to be

3
 Model elements followed by identifiers in square

brackets indicate that a trace link has to be

modeled from this element to the elements with

the respective identifiers’ text

developed is a basis for the definition of system

interfaces conducted later and can be used for

designing an optimized system structure (reducing

the number of interfaces). The last step in this phase

is the creation of links between the functional

architecture model and (product) requirements

model. This allows for the later identification which

requirements a specific function has been derived

from, and it allows for verifying whether all

functional requirements have been covered in the

functional architecture model. See Figure 3 for an

excerpt of a functional architecture.

1.4 System Structure Definition

In the System Structure Definition phase a

system structure model is created, based on the

functional architecture model. Therefore, the

functional model is the informational basis to decide

which systems and subsystems need to be included

in the system structure model. Further input comes

directly from topological parameters within the

requirements defined during the requirements

analysis, which is documented through a link

between the respective requirement and systems

structure element. The hierarchical system structure

model describes topological structure and

parameters of the system and all its elements, which

are needed to perform the required functions. The

system structure model consists of blocks

representing its elements and can be enriched with

attributes. They do not contain the detailed inner

workings of the subsystems. The amount of

parameters attached to the elements and their level

of detail increases during the development process.

Later in the process, once a behavior simulation

model is defined, the initially defined/estimated

topological parameters of the system structure are

refined and completed with behavior simulation

results.

Example 4: The top levels of a system structure

of an aircraft are pre-defined by so called ATA

chapters, which are the same for all aircraft

manufacturers. Usually the entire system structure is

reused from legacy projects and contains elements

like harnesses and connectors. Figure 4 shows a

reduced example of an aircraft system structure.

The system structure is continuously updated

during the development process. For example, if

parts of the wired communication network are

replaced by wireless technology, new elements have

to be introduced, such as transmitters, receivers and

antennas.

1.5 System Architecture Definition

Once the system structure model has been

set up, functions (that are specified in the functional

architecture) are allocated to the subsystems (i.e. the

elements of the system structure model) by creating

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 28 | P a g e

links between both models. This is done in the

System Architecture Definition phase. Links between

both models allow for verifying whether all product

functions are covered by elements of the system

structure and it allows developers of a subsystem to

easily identify which functions they have to

implement. The links between the system structure

model and the functional architecture model are

stored in the system architecture model, which may

consist of multiple layers/levels of detail. The

system architecture can be understood as an

integration model since it does neither contain nor

copy the other models but rather integrates them by

adding links without modifying the source models as

such. See Figure 5 for an exemplary system

architecture mapping functions to elements of the

systems structure

1.6 Requirements Analysis

Since the requirements from the product

requirements model are only specified for the entire

product, they need to be broken down further and

allocated to the system structure elements. The

Requirements Analysis phase covers the process of

breaking down high-level requirements and deriving

more detailed ones (and linking them to elements of

the system structure and to functions from the

functional architecture model).

Example 5: Regarding the electrical

network example the product requirements (e. g. use

standard interfaces, reduce weight) need to be

broken down into more detailed requirements:

 R1: The total weight of harnesses shall be

reduced by ca. 15% [P-R2]

 R2: The number of power supply networks shall

be reduced and the general DC supply voltage

shall be increased from 28V to 240V. [P-R1, P-

R2]

 R3: Reduce number of electrical and data

interfaces by 30% [P-R1]

An in-depth analysis shows that the

requested weight reduction cannot be achieved with

the current technological concept. For that reason

alternative technological concepts for the function

distribute data are evaluated (such as WLAN or

optical transmission).

The three phases System Structure Definition,

System Architecture Definition and Requirements

Analysis are highly interdependent as indicated in

Figure 2.

1.7 Concept Selection

Once the system structure model, the

requirements model and the system architecture

model are complete, it must be considered how new

functions from the functional architecture model can

actually be implemented by the elements of the

system structure model. This is done in the Concept

Selection phase, see Table 7. In this phase alternative

solution principles are identified for each considered

function. These solution principles are evaluated and

the most suitable one is selected to fulfill the

function under consideration. As soon as a solution

principle is selected, its functional and topological

parameters must be refined, e. g. to allocate space

within a digital mockup.

Example 6: The concept selection is a

crucial step on the way to a mature system

architecture, as it reflects the main design choices

and trade-offs. In case of the electrical network, the

exact application of new technologies, such as

optical communication technology will be

determined, i.e. what part of the data communication

network will be implemented using optical

components and how the optical components shall

be interfaced with the other parts of the network.

Furthermore, the architecture definition includes

important non–functional design choices regarding

performance, resilience and reliability. The most

important choices for the data communication

network concern the replacement of existing copper

networks by optical fibers or wireless

communications. For the power supply and

distribution part of the network concepts to be

considered are to use higher supply voltages for the

DC network and to consider passive network

extensions to allow for load balancing between parts

of the network that may be idle during specific

operational phases, such as take-off, climb or taxi.

1.8 Behavior Modeling and Simulation

The behavior modeling and simulation

phase is the core activity of the proposed approach.

Up to this phase all models that have been created

were either purely functional models or static

structural models as described in sections 3.3 and

3.4. Typically a standardized description is used for

these two types of models in order to facilitate

information exchange between different

stakeholders. SysML is the most widely used

modeling language for this purpose.

However, this is not sufficient for a real

architecture analysis and trade-off study of a given

system design. In order to perform such a study, a

comprehensive executable model of the system

under design must be build, validated and executed

with a variety of parameter sets that allow for a

thorough analysis of the system behavior. In contrast

to purely functional models this model must include

all resources required by or pertinent to the system.

This is especially important as modern system

architectures usually represent cyber-physical

systems, i.e. mechanical, electrical or chemical

systems digitally controlled and monitored by

networked electronics and software [15]. In order to

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 29 | P a g e

evaluate such architectures, an executable model of

all parts of the architecture is needed to analyze the

complete dynamics of the coupled system, i.e. the

mechanical, electrical or chemical process plus the

digital network and the transmission protocols

employed for control and monitoring. This means

simulating a hybrid system, i.e. a system with

continuous and discrete parts in a joint model which

allows for understanding the complex dynamics of

the overall system. See [16] for details on hybrid

systems modeling.

The Object Process Methodology (OPM)

mentioned in section 2 presents an interesting

approach for describing the system behavior in a

way that is usable for developing a simulation

model. This description can be used as the base for

creating the comprehensive system simulation model

[17].

The comprehensive executable system

model requires thorough validation before it can be

employed for architecture studies. Validation usually

relies on either the availability of a similar system

supplying data, e.g. from a measurement campaign

of a mechanical, electrical or chemical system or a

well defined mathematical algorithm for scheduling

and transmission protocol state events. Once

validation has been performed the model can be

regarded as a virtual prototype of the system under

design.

During the equipment test and integration

phase one usually performs accelerated life testing in

order to find any flaws in the real system design.

This can be prepared with the validated executable

system model by performing system boundary

behavior studies. For such a study the simulator is

supplied with a set of parameters that are

deliberately close or even beyond the specified

design limits of the system. The simulation results

then show how the system would behave if any of

the parameters or a combination of those will be out

of the specified range during operation. This might

either directly show unapparent design flaws or

serve as a sensitivity analysis that shows possible

limitations of the system design that might require

further investigation.

It is important to emphasize that a system

simulation model must include all system elements

at a level of detail that are required to understand the

system dynamics. At the top level, i.e. the system

under design, a comprehensive system model would

include the system itself and all the interfaces to

other systems that are relevant for the overall

dynamics. When performing iterations as depicted in

Figure 1 it must be ensured that all simulation

models created at a lower level of the architecture

are consistent with the models one layer above. This

requires the definition of an interface between the

models.

For example, when developing a networked

control system, such as a flight control system of an

aircraft, the top level model would include the

complete network with its communication channels,

the underlying protocols and all components

communicating over that network together with their

behavior. This allows for studying overall system

dynamics and emergent behavior. Each component

connected to the network may be a complex system

by itself. When refining the simulation model of

such a component it is important to retain the

interfaces of the component model to the overall

system model. This permits for validation of the

refined model in the context of the overall

architecture and allows for early detection of any

unwanted emergent behavior. In order to ensure

consistency across all architectural levels, it is vital

to choose the right level of abstraction for each

simulation model. At higher architectural levels

models can be more abstract while they will cover

more details at lower levels. However, at each level

sufficient detail must be provided to fully understand

the respective dynamics.

The results of the behavior simulation are

used to update the parameters in the functional

architecture and the system structure. Furthermore,

the models themselves need to be linked to the other

existing models in order to ensure integrity. The

updated system architecture model then allows for

performing an integrated verification of the overall

architecture. Since the Behavior Modeling and

Simulation phase affects the models created in prior

phases this may lead to iterative corrections of those

phases.

Example 7: The behavior model has to

cover the relevant properties of the architecture and

thus permit a sound design decision. This includes

models for performance evaluation of the digital

protocols to be used for data communication, the

physical behavior of the transmission channels, such

as wave propagation in an optical fiber or short

distance microwave transmission. Furthermore,

reliability models must be created to assess, if the

architecture is capable of fulfilling the necessary

safety and supportability objectives. The challenge

in case of the new electrical architecture is that

previous experience with a similar design does not

exist. This makes it difficult to validate the

simulation models. Thus, model development is an

incremental process during this phase. Although the

functions of the system will essentially remain the

same the system structure has to be adapted. For

example, consider a replacement of parts of the

wired communication network by wireless links. This

will introduce new elements into the system

structure, such as transmitters, receivers and

antennas. Alternatively, an optical fiber link may

replace copper wire for some parts of the network,

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 30 | P a g e

also introducing new elements, such as light

sources, optical transducers and optical switches.

1.9 Subsystem Requirements Analysis and

Specification

When the overall system architecture and

all other linked models have been verified and

validated successfully, the specifications containing

the expected characteristics and parameters for the

system to be implemented (i.e. subsystems) must be

created. This is done in the Subsystem Requirement

Analysis and Specification phase. The resulting

specifications can be handed over to different

development parties that can also be external

suppliers. A specification for one subsystem

contains detailed requirements, parts of the system

architecture (i.e. system structure elements and

assigned functions), behavioral models for this

specific subsystem and a simulation model template.

The simulation model template is an executable

simulation model comprising a mock-up of the

subsystem to be developed (i.e. a black-box with a

simple behavioral function) and the interfaces of that

subsystem to other systems and subsystems

(modeled as black-boxes). The resulting simulation

model can then be used for validating the

functionality of the subsystem. If a physical

subsystem (and not software) is to be developed then

that specification also contains a space allocation

model.

Example 8: For the described subsystems,

requirements specifications are created based on the

previously defined models (requirements, behavior,

system architecture, space allocation). Especially

important in the specifications are the interface

requirements, as they address the interfaces of the

aircraft system components with the newly designed

network.

In order to ensure that the subsequently

developed components comply with the

specifications and the overall system behavior is as

expected, results from the component development

phase are used to successively refine and

complement the behavior simulation model and

(indirectly via this model) the functional and

topological parameters in the system architecture.

This iterative routine should be defined in the

specification in order to make sure that models

developed by suppliers or other organizations are

compatible with those used in the Behavior

Modeling and Simulation phase.

Example 9: In order to start validation

early, a simulation model at product level, i.e.

aircraft level, covering all relevant components of

the aircraft is used at Airbus. First, each component

is modeled according to the original specification

with an abstract model. As specifications are passed

to suppliers responsible for the detailed component

design, more detailed models are developed. These

detailed models are subsequently delivered by the

suppliers to Airbus for integration into the overall

simulation model. This permits for constant

monitoring of both supplier design quality and

behavior of the overall system architecture at

product level. At the final stage real hardware is

connected to the overall model replacing the

component simulation models retaining only the

simulation of the aircraft environment. This

approach requires an interface between higher level

simulation models and detailed component models

that are shared between Airbus and their suppliers.

To this end, Airbus has developed such an interface

definition and provides a toolbox supporting

common simulation tools together with an

integration process definition to system designers

and suppliers.

IV. APPLICATION OF MBSE APPROACH

ON COMPLEX PRODUCTS
For easier understanding complex products

are designed in hierarchical structures [18]. Their

system structure is usually defined by multiple

abstraction levels ranging from the overall product

via systems, subsystems and other levels to

components. Depending on the complexity of the

product some of the presented MBSE steps should

be repeated subsequently for each abstraction level

until a precise specification of a component can be

achieved. For a product with the aforementioned

four abstraction levels Figure 2 indicates the

sequence of process steps that need to be executed

on the respective abstraction level. Information

models from prior abstraction levels can be used and

refined in later stages. It is not necessary to build up

separate models for every abstraction level.

To ensure consistency between all modeled

data two main mechanisms have been applied. On

the one hand, data from subsequent phases are used

to refine and complement models having been

created in prior phases (see section 3). Additionally,

do entities of two consecutive models get linked

through trace links to ensure full coverage of

requirements or functionalities. For further insights

into mechanisms for traceability capture, usage and

visualization see [19, 20, 21]. However, it might be

helpful to add further procedural mechanisms or

algorithms to check the consistency of models when

implementing this approach in real development

projects.

Example 10: The challenge concerning

subsystem requirements analysis for the aircraft

electrical architecture is to give any developers of

an equipment or subsystem enough freedom to make

their own design choice while at the same time

retaining a valid overall architecture. This can only

be achieved if an overall architectural model was

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 31 | P a g e

created before subsystem development starts. This

model is then subsequently used as the central point

of integration during the complete development

process. For example, developers of an optical

transceiver might choose specific hardware for this

type of equipment. Only when their design is

documented by an executable model and this model

can successfully be integrated into the overall

architecture model, the design can be regarded as

valid. The same applies to all other components of

the architecture, such as wireless transceivers,

semiconductor power switches, network control

software and digital communication protocol

designs.

V. CONCLUSION
The paper presents a novel MBSE approach

that focuses on the early development phases and

takes the complexity of modern mechatronic systems

into account by distinguishing the required activities

by the respective abstraction level. It has been

initially evaluated by experienced developers at

Airbus, whose feedback was used to adapt the first

drafts of the approach. Furthermore, the approach

was applied on the development of a simple

exemplary product for verification purposes.

However, this MBSE approach has not yet

been applied in practice on highly complex technical

systems. This clearly limits its validity. In a next

step the approach should be validated with the help

of a more complex technical system to gather

lessons learned and to verify its suitability for

Systems Engineering.

Additionally, future research should

investigate if the feedback loops can also be applied

to later life cycle phases of the product, such as

production and usage. The product-related

information gathered in these phases could be used

to continuously improve the digital model of the

product. Production engineers as well as users gain a

valuable detailed knowledge by spending a lot of

time with the product. Knowledge obtained by

maintenance staff is especially important, as they

have expertise to easily map their knowledge of

product flaws onto the corresponding data set in the

digital product model.

Therefore, the presented MBSE approach

not only provides a contribution to the Systems

Engineering community but can also be seen as a

sound starting point for future research.

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 32 | P a g e

REFERENCES

[1] G. Beier, U. Rothenburg, R. Woll and

R. Stark, Durchgängige Entwicklung mit

erlebbaren Prototypen - Modellbasiertes

Systems Engineering. Digital

Engineering, 3/2012, 14-17.

[2] NIST, The Economic Impacts of

Inadequate Infrastructure for Software

Testing, Technical Planning Report 02-3

(National Institute of Standards and

Technology, Gaithersburg, USA, 2002).

[3] VDI 2206, Entwicklungsmethodik für

mechatronische Systeme, Technical

Report ICS 03.100.40; 31.220 (Verein

deutscher Ingenieure, Düsseldorf,

Germany, 2004).

[4] D. Buede, The Engineering Design of

Systems: Models and Methods (John

Wiley & Sons, 1st edition, 2000).

[5] ISO/IEC/IEEE, Systems and software

engineering — System life cycle

processes, ISO/IEC/IEEE 15288 (2015).

[6] NASA. Systems Engineering Handbook,

Technical Report SP-2007-6105 Rev1

(National Aeronautics and Space

Administration, Washington, USA,

2007).

[7] INCOSE, Systems Engineering

Handbook. A guide for system life cycle

processes and activities, version 3.2

(International Council on Systems

Engineering, 2010).

[8] D. Dori, Object–Process Methodology. A

Holistic Systems Paradigm (Springer

Verlag, 2002).

[9] B. S. Blanchard and W. B. Fabrycky,

Systems Engineering and Analysis

(Prentice Hall, 4th edition, 2005).

[10] INCOSE, Survey of Model-Based

Systems Engineering (MBSE)

Methodologies (International Council on

Systems Engineering, 2008).

[11] OMG, Systems Modeling Language 1.3

(Object Management Group, 2012).

[12] A. L. Ramos, J. A. Ferreira, and

J. Barcelo, Model-based systems

engineering. an emerging approach for

modern systems. IEEE Transactions on

Systems, Man and Cybernetics, 2012,

101–111.

[13] R. E. Thompson, J. M. Colombi, J. Black

and B. J. Ayres, Disaggregated Space

System Concept Optimization: Model-

Based Conceptual Design Methods,

Systems Engineering, 18(6), 2015, 549-

567

[14] H. Stachowiak, Allgemeine

Modelltheorie (Springer Verlag, 1973).

[15] E. A. Lee and S. A. Seshia, Introduction

to Embedded Systems. A Cyber–Physical

Systems Approach (MIT Press, 2017).

[16] R. Goebel, R. G. Sanfelice, and

A. R. Teel, Hybrid Dynamical Systems:

Modeling, Stability, and Robustness

(Princeton University Press, 2012).

[17] M. Schulz, V. Zerbe, and S. Marwedel,

Using the object process methodology to

build simulation models. Proc. 3rd

International Conference on Model–

based Systems Engineering, Fairfax,

Virginia, United States, 2010.

[18] M. E. Sosa, A. Agrawal, S. D. Eppinger,

and C. M. Rowles, A Network Approach

to Define Modularity of Product

Components. Proc. 17th ASME

International Conference on Design

Theory and Methodology, 2005, 435–

446.

[19] A. Figge, Effiziente Erfassung und Pflege

von Traceability-Modellen zur

Entwicklung technischer Systeme,

doctoral diss., Technische Universität

Berlin, 2014.

[20] G. Beier, Verwendung von Traceability-

Modellen zur Unterstützung der

Entwicklung technischer Systeme,

doctoral diss., Technische Universität

Berlin, Germany, 2014.

[21] E. Brandenburg, A. Figge, S. Zander and

G. Beier, Recommendations for

Tracelink Decisions – An Empirical

Investigation of Visualization Methods,

Proc. 5th International Conference on

Applied Human Factors and Ergonomics,

Krakow, Poland, 2014.

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 33 | P a g e

Figures

Figure 1: Process iterations for three hierarchical levels: Product, System, Subsystem

Figure 2: V–model according to the proposed MBSE approach

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 34 | P a g e

Figure 3: Excerpt of a functional architecture

Figure 4: Excerpt of a system structure

Figure 5: Exemplary system architecture mapping functions to elements of the systems structure

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 35 | P a g e

Appendix: Tables providing Characteristics for respective Process Steps

Table 1: Product definition phase characteristics

Input Output Exchange
format

Acting roles

 Product ideas, innovations

 Customer needs and
demands, market analysis

 Management expectations

 Technology and trend
reports

 Legal constraints, standards

 Unstructured high level
product requirements

 Requirement
Interchange
Format
(ReqIF)

 Management,

 Sales,

 Research &
Development

Table 2: Product requirements analysis

Input Output Exchange
format

Acting roles

 High-level product
requirements

 Product requirements
model

 Requirement
Interchange
Format
(ReqIF)

 Requirements Analyst,

 Business Expert,

 Project Manager

Table 3: Functional architecture definition

Input Output Exchange
format

Acting roles

 Product requirements Functional
architecture

 Mapping of functions
on corresponding
product
requirements

 Prioritized functions

 Systems
Modeling
Language
(SysML)

 System Engineering
or Architect

 Function Modeler

Table 4: System structure definition

Input Output Exchange
format

Acting roles

 Functional
architecture

 Requirements model
(incl. topological
parameters)

 Later: topological
parameter values
from the behavior
model

 Functional
architecture

 Mapping of functions
on corresponding
product
requirements

 System structure
model with
topological
parameters

 Systems
Modeling
Language
(SysML)

 System Engineering
or Architect

Grischa Beier. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -5) September 2017, pp.24-36

www.ijera.com DOI: 10.9790/9622-0709052436 36 | P a g e

Table 5: System architecture definition

Input Output Exchange
format

Acting roles

 Functional
architecture

 System structure

 System requirements

 System architecture Systems
Modeling
Language
(SysML)

 Traceability
tools

 System Engineering
or Architect

Table 6: Requirements analysis

Input Output Exchange
format

Acting roles

 Product
requirements model

 Functional
architecture model

 System structure
model

 System
requirements model

 Requirement
Interchange
Format
(ReqIF)

 Requirements
analyst

 System Engineering
or Architect

Table 7: Concept selection

Input Output Exchange
format

Acting roles

 System Architecture

 System
Requirements

 Existing evaluation
criteria

 Evaluated solution
principles

 Allocation of
documented solution
principle to
architecture

 Requirement
Interchange
Format
(ReqIF)

 Requirements
analyst

 Design Engineer

 Software Architect

Table 8: Behavior modeling and simulation

Input Output Exchange
format

Acting roles

 System Architecture

 System
Requirements

 Selected Concepts

 Behavior model

 Simulation results

 Updated and
revised parameters

 Depends on
problem
definition

 Simulation Expert

 Software Architect

Table 9: Subsystem requirements analysis and specification

Input Output Exchange
format

Acting roles

 System Architecture

 System
Requirements

 Behavior Models

 Subsystem
requirements
specification

 Optional: Simulation
model template

 Requirement
Interchange
Format (ReqIF)

 Requirements
Engineer

 Simulation Expert

 Purchasing
department

Grischa Beier. “A MBSE Approach for the Development of Complex Technical Systems.”

International Journal of Engineering Research and Applications (IJERA), vol. 7, no. 9, 2017,

pp. 24–36.

