
Prajakta Chandilkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.28-32

www.ijera.com DOI: 10.9790/9622-0709022832 28 | P a g e

Development of DDR2 SDRAM Module Interface Software Core

Prajakta Chandilkar
*
, Dr. Uday Wali

**

*(M.tech Student Electronics and Communication, KLE Dr. M.S. Sheshgiri College of Engineering and

Technology, Belagavi, Karnataka, India ,prajakta0704@gmail.com

**(Professor, Dept. of Electronics and Communication, KLE Dr. M.S .Sheshgiri College of Engineering and

Technology, Belagavi, Karnataka, India, udaywali@gmail.com)

ABSTRACT
Memory module simulation is critical to testing of embedded systems. Hardware software co-design strategy

requires that clock accurate system modules be available in software. DDR2 SDRAM is one of the popular

memory modules used in embedded systems. Memory modules have their own built in controllers to interpret

and execute commands from the processor. This paper describes an implementation of the finite state machine

(FSM) of a DDR2 SDRAM module. The module can be used as a basis for hardware design of memory

modules. It can also be used as a part of hardware-software co-design tool for embedded systems using DDR2

memory modules. The technology independent FSM is implemented in Verilog HDL.

Keywords Command sets, DDR, DDR2 SDRAM, Hardware-Software co-design, Verilog
--- ----------

Date of Submission: 29-08-2017 Date of acceptance: 09-09-2017

--- ----------

I. INTRODUCTION
Developments in VLSI technology are

driven by the never ending demand for faster

processors. Faster processors need faster memory.

On chip memory is built using the same technology

as the processor but is limited in size. Many

microcontrollers have few kilo bytes to few hundred

kilo bytes of on chip RAM. However this memory is

hardly sufficient for resident operating system and

associated programs. Applications on such devices

will need large external RAM. Most of the

contemporary data is in the form of images, sound,

real time signals, etc. which require very large

memory to store and operate. Using Gigabytes of

RAM is not very uncommon in current processor

scenario. It is often seen that memory modules are

the first devices to be built and tested while

introducing a new technology. In order to facilitate

system integrators to build such systems,

standardization of device interfaces is a necessity.

Some of the standard memory interface technologies

are SDRAM, RDRAM, DDR SDRAM, etc. There

have been several advancements in DDR SDRAM

technologies. The earliest SDRAM modules had a

clock frequency of 133 MHz. DDR doubled the

transfer rate and worked at double the frequency, at

266MHz. Recent technologies support DDR

SDRAM running at 1.6 GHz. While the latest

memory technologies are used in high end

processors, embedded systems rely on DDR2

running at 266 MHz [1]. DDR family has a

common hardware interface [2]. So, it is easy to

modify an existing interface hardware to match any

other member of the DDR family.

Fig1.overview of DDR2 IP

DDR2 controller and DDR2 IP are two

separate hardware units. Implementation of

controller has been reported in literature [3][4] but

the implementation of the memory module, which

has to mirror the operations of the controller is not

available. While DDR2 IP works between the

controller and the memory, the controller itself

works between the processor and DDR2 IP. The

processor makes a request for a block of memory to

the DDR2 controller. The DDR2 controller will

perform one or many burst reads from the DDR2

memory, stores it or forwards the contents to cache.

After the process is complete, it interrupts the
processor and updates the status of memory request

as completed. Cache to memory and memory to

cache transfers occur in terms of pages of memory.

Therefore DDR should be capable of writing and

reading pages of memory, without involving the

CPU.

RESEARCH ARTICLE OPEN ACCESS

Prajakta Chandilkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.28-32

www.ijera.com DOI: 10.9790/9622-0709022832 29 | P a g e

II. OVERVIEW OF DDR2 SDRAM
Figure 2 shows the general block Diagram

of DDR2 SDRAM memory architecture. Interface

signals are differential clock inputs CK and CKbar,

chip select CS and command control signals Row

Address Strobe RAS, Column Address Strobe CAS,

and Write Enable WE.

Fig2. Overview of DDR2 SDRAM

 All the input signals and address signals are

sampled at the positive edge of CK and negative

edge of CKbar. CKE is the clock enable which

should be kept always high throughout operations.

Pulling CKE down will take memory into a low

power mode. CS, RAS, CAS and WE are active low

inputs. Data bus is a 16-bit bidirectional bus. Data

mask DQM is used to suppress (mask) specific bits

during write operation. A0 to A12 are the 13-bit

address, multiplexed into row address and column

address. A binary decoder is used as an address

multiplexer as shown in the in fig. 2. Operations of

DDR2 like Read, Write, Pre-charge, Mode Set

Register (MRS); Refresh, Bank Active etc. are

activated by using the control signals of the DDR2

SDRAM. As it is a DRAM, it will have some

memory and refresh circuits. Additional hardware is

required to implement the standard interface. Some

of the components of DDR2 RAM are discussed

below.

2.1 Memory bank array

Memory bank is a logical storage unit of

memory. A bank consists of multiple numbers of

rows and columns. The size of the memory bank is

determined by bits in a column and rows. Row

column organization of the bank may be configured

using MRS commands.

2.2 Control Registers

Control registers is used to control the

general behavior of the DDR2 command processor

(see fig. 2). Control registers are used to store

parameters related to communication protocol,

address mode, refresh rate, command pipeline, data

buffering, etc. Control registers can only be written,

not read. MRS command is used to update the

control registers. Address bus is used to supply data

to update the registers. So, the address supplied as

part of MRS command is actually content of

registers to be set.

2.3 Data Buffer

Data buffer is used to temporarily store

data, while is moved between controller and the

memory. DQ is a bidirectional data bus which is can

be used to read a data from a given address location

or write a data to a given address location. During

such transfers, data is stored temporarily in data

buffer. Data buffers are also used during refresh and

precharge cycles.

III. STATE TRANSITION DIAGRAM

AND FUNCTIONAL TABLE FOR

DDR2 SDRAM
Table 1 shows the functional table for the

DDR2 SDRAM. This table describes seven basic

commands to be implemented by the memory

module. Each command has a distinctive set of

control values to be used for a specific action to be

implemented. Note that the values are not

transitions but signal levels to be maintained at the

clock transition.

Table1. Functional table for DDR2 SDRAM

Command RASbar CASbar WEbar CSbar

NOP/Idle H H H H

Active L H H L

Read H L H L

Write H L L L

Precharge L H L L

Refresh L L H L

MRS/EMRS L L L L

Fig3. describes the state transition diagram

for DDR2 SDRAM. There are 10 states viz., Init,

Idle, Refresh, MRS, OCD, Active, Active Power

Down, Writing, Reading, Pre-charge. Command set

includes ACT, RES, REF, READ, WRITE, PRE and

NOP are the command sets to be issued. On power

up, the DDR2 module is in the Idle state which

means no operation is being performed or scheduled.

It is generally during such periods that auto refresh

works in the background to keep the memory

contents stable. On power up, pre-charge command

is applied to the memory module. If precharge

command is issued during normal usage, open row

of the active

Prajakta Chandilkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.28-32

www.ijera.com DOI: 10.9790/9622-0709022832 30 | P a g e

Fig3 State transition diagram for DDR2 SDRAM

bank is deactivated and the new bank is activated.

Therefore, the data before and after the precharge

command will not be consistent. Once all banks are

pre charged, the memory module enters idle state.

Then an EMRS command should be issued to enable

different control signal of DDR2, e.g., DLL reset,

burst length, and burst Mode etc. Next a Refresh

command should be issued. This command is used

to refresh data in selected bank. After precharge is

done, one of the banks has to be activated. This is

done by issuing a Active command. This command

opens a particular bank from the memory array. At

this point, the memory can be read or written.

Initially, memory should be written before read.

However this is not true for other kinds of memory

e.g. flash RAM. At the end pre- charge command

should be issued to deactivate the current open bank

and to return the device in idle state.

Implementing the complete memory module

requires tri state buffers to connect to the bus,

address decoders to connect to the correct memory

location, internal clock and a mechanism like DLL

to synchronize with the external clock. Most of

these are analog in nature and hence cannot be easily

converted to HDL code. Only maximum delay

timings for such operations are assumed.

IV. IMPLEMENTATION
Implementation of the DDR 2 IP is consists

of implementing interface commands in accordance

with the FSM and timing details. We have described

a couple of these command implementations in this

section. Other commands are similarly implemented.

4.1. Refresh command

Refresh means the Reading a data from

particular address location and again rewriting data

on the same address location without changing its

original value. This step will restore lost charge from

the selected memory location. Each location has to

be refreshed within a manufacturer specified limit.

This is often 64 milliseconds for DDR2. Refresh

command can be invoked automatically or by

issuing specific refresh command from the

controller. Part of the refresh address is generated

internally.
To execute the refresh command for 8 burst

cycles, we have to set the registers Refresh_counter

and Refresh_backlog_counter to 0 and 8. These

counters are incremented, decremented respectively

till refresh is complete in 8 clock cycles. In a non-

pipelined implementation, the input commands have

to be suppressed till the refresh completes execution.

In other cases, one or two commands may be

buffered while refresh command is in progress.

FSM state register is set to Refresh State, which

automatically disables incoming commands.
 //Register Initialization

 D_Refresh_reg = D_RAS
 D_Refresh_reg=D_Refresh_counter;
 D_Refresh_counter = 0;
 D_Refresh_backlog_counter = 8;
 D_Refresh_reg1 = D_Refresh_reg
 D_cState = D_sRefresh;
 //local variable initialization
 ignoreInput = 1'b1;
 blockFlowDown = 1'b1;

To implement refresh command we need a

register and a counter. As mentioned above

description, refresh command is use to rewriting the

data without modifying its originality. Refresh_reg1

is loaded Refresh_reg in the memory,

Refresh_counter is loaded with the count value of 8

bit, and Refresh_backlog_counter to count 8. While

loading the data in Refresh_reg1, Refresh_counter

should be decrement by one and when it reaches to

zero Refresh backlog_counter is incremented by one

to reload the data from Refresh_reg1 to Refresh_reg.

4.2. Bank active command

Bank active command is used to open a

particular Bank, and this is applied before Read or

Write operation Bank active command is use to open

a row address and the value of BS[2:0] selects the

bank and the value of A[12:0] selects the row.
 D_BSReg =[2:0] D_BS;
 D_RowReg =[12:0] D_ADDR;

To implement bank active command we have

used temporary register BS_reg. this register is use

to load the bank address to open a particular bank

from the memory cell array.

4.3. Precharge command

Precharge command is used to close the current

opened bank to active new bank for the next

operation. To start new operation precharge is must.

because it will bring the system in idle state.
 ignoreInput = 1'b1;
 D_RowReg = D_ADDR;
 D_cSCount = 1'bx;
 D_maddr [12:0] = D_ADDR;

 D_cState = D_sPreCharge;

Prajakta Chandilkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.28-32

www.ijera.com DOI: 10.9790/9622-0709022832 31 | P a g e

4.4. MRS command

The Mode register is used to define the specific

mode of DDR SDRAM operation, including the

selection of burst length, burst type, CAS latency,

and operating mode. The load mode register

command is loaded with the address input ADDR.
 D_ColReg [12:0] = D_ADDR;
 D_BSReg = D_BS;
 D_BurstLength = D_ADDR [2:0];
 D_BurstType = D_ ADDR [3];
 D_CASLatency = D_ADDR [6:4];
 D_TestMode = D_ADDR [7];
 D_DLL_reset = D_ADDR [8];

To implement MRS command BS_reg is

loaded with the ADDR value and depending upon

the address input Burst length, burst type, CAS

latency has implemented. Following term shows the

addresses which are required to implement MRS

command

BurstLength = ADDR[2:0]

BurstType = ADDR[3]

CASLatency = ADDR[6:4]

TestMode = ADDR[7]

DLL_reset = ADDR[8]

Write recovery time = ADDR[11:9]

4.5. Read command

The Read command is used to initiate a

read access to an active row. Read command is

implemented by holding CSbar, CASbar at low and

by pushing RASbar and WEbar at high at the CLK.

DDR2 is having one special function that is CAS

Latency. CAS latency is the delay occurred between

the access the read command and actual output

operation occurs that is output present at the data

bus. Here Read command is entering at ‘1’ Clock,

but the stored data has read after clock cycle of ‘3’.
 if (D_cState == D_sReading) begin
 if (D_cSCount < D_CASLatency) begin
 D_cSCount ++;
 end
 else begin//equal or greater
 if (D_burstCount < 8) begin
 D_data_out
 =X[D_BSReg][D_RowReg][D_maddr];
 D_cSCount = D_cSCount + 1;
 D_burstCount = D_burstCount + 1;
 D_maddr = D_maddr + 1;
 end
 end
 end

To implement read command, cSCount is

initialized to zero; CASLatency is initialized to three

and burst count to 8. When burstCount is three then

data will write on a given address location as data is

writing Burstcount is getting incrementing by 1and

maddr also by one. 1

4.6. Write command

Write command is used to store data on a

given address location given by the column address

of the active bank. Write command is implemented

by holding CSbar, CASbar and WEbar at low and by

pushing RASbar at high at the clock. Write

command is completed with the Write latency, write

latency is the delay occurs in the clock cycle

between the actual command is activated and the

data is writing on the data bus.
 if (D_cState == D_sWriting) begin
 if (D_cSCount < D_WriteLatency)begin
 D_cSCount = D_cSCount + 1;
 D_burstCount = 0;
 end
 else begin
 if (D_burstCount < 8) begin
 X[D_BSReg][D_RowReg][D_maddr]
 =D_data_in;
 D_burstCount = D_burstCount + 1;
 D_cSCount = D_cSCount + 1;#1
 D_maddr = D_maddr + 1;
 end
 end
 end
 end

V. SIMULATION RESULTS
The proposed system is implemented by

using verilog language using Icarus verilog software

[5] and waveforms are viewed on GTKWave

platform [6].

Fig 4 Simulation result for write command

Fig 5 Simulation result for read command

Prajakta Chandilkar. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.28-32

www.ijera.com DOI: 10.9790/9622-0709022832 32 | P a g e

Fig4. Shows the simulation result for write

command. Write command is implemented by

holding CSbar, CASbar and WEbar at low and by

pushing RASbar at high simultaneously at the clock

edge.

Fig5. shows the simulation result of read

command. Read command is implemented by

holding CSbar, CASbar at low and by pushing

RASbar and WEbar at high at the clock.

VI. CONCLUSION
The paper present the implementation of

the DDR2 SDRAM commands sets. Some of the

command implementation results are shown

graphically. The proposed system is used for high

speed data transmission and storage purpose. The

proposed method has been implemented successfully

on Icarus Verilog simulation tool.

ACKNOWLEDGEMENTS
I thank the management, Principal, HOD

and staff of VLSI and EC Department, K.L.E.

Dr.M.S. Sheshgiri College of engineering and

technology, Belagavi, Karnataka, India and my

special thanks to C-Quad Research, Belgaum for

encouraging me to take up this work.

REFERENCES
[1] JEDEC Standard DDR2 SDRAM

Specifications, JESD79-2B (JEDEC Solid

State Technology Association), 2005

[2] Transcend Corporation, “Difference between

SDRAM, DDR SDRAM, DDR2 SDRAM,”

Available online at

https://www.transcendinfo.

com/Support/FAQ-296

[3] Priyanka Bibay, Anil Kumar Sahu, Vivek

Kumar Chandra “Design and Implementation

of DDR SDRAM Controller using Verilog”

International Journal of Science and

Research (IJSR), India Online ISSN: 2319-

7064.

[4] TMS320DM357 DMSoC DDR2 Memory

Controller, User’s Guide, Literature number

SPRUG38, (Texas Instruments), 2008

[5] Ioannis Konstadelias “Icarus Verilog

+GTKWave Guide with support for MIPS

architecture implementation”, Available from

http://iverilog.icarus.com and

infserver.inf.uth.gr/~konstadel/resources/Icaru

s_verilog_GTKWave_guide_pdf

[6] Virtex-6 FPGA Memory interface solution,

Xilinx San Jose CA, March 2011, Product

Specifications DS186 VI. Issue 7

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

Prajakta Chandilkar. “Development of DDR2 SDRAM Module Interface Software Core.”

International Journal of Engineering Research and Applications (IJERA) , vol. 7, no. 9, 2017,

pp. 28–32.

