
Esmeralda Hysenbelliu. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 8, (Part -1) August 2017, pp.41-45

www.ijera.com DOI: 10.9790/9622-0708044145 41 | P a g e

GPU Implementation over IPTV Software Defined Networking

Esmeralda Hysenbelliu*
Information Technology Faculty, Polytechnic University of Tirana, Sheshi “Nënë Tereza”, Nr.4, Tirana,

Albania

Corresponding author: Esmeralda Hysenbelliu

ABSTRACT
One of the most important issue in IPTV Software defined Network is Bandwidth Issue and Quality of Service

at the client side. Decidedly, it is required high level quality of images in low bandwidth and for this reason it is

needed different transcoding standards (Compression of image as much as it is possible without destroying the

quality of it) as H.264, H265, VP8 and VP9. During a test performed in SMC IPTV SDN Cloud Network, it was

observed that with a server HP ProLiant DL380 g6 with two physical processors there was not possible to

transcode in format H.264 more than 30 channels simultaneously because CPU’s achieved 100%. This is the

reason why it was immediately needed to use Graphic Processing Units called GPU’s which offer high level

images processing. After GPU superscalar processor was integrated and done functional via module NVENC of

FFEMPEG Program, number of channels transcoded simultaneously was tremendous increased (more than 100

channels). The aim of this paper is to real implement GPU superscalar processors in IPTV Cloud Networks by

achieving improvement of performance to more than 60%.

Keywords - GPU superscalar processor, Performance Improvement, NVENC, CUDA

Date of Submission: 01 -05-2017 Date of acceptance: 19-08-2017

I. INTRODUCTION

In existing SMC IPTV SDN Cloud network

which offer IPTV services, was not possible to tran

code channels because it was needed too much

physical resources in the same time (Servers)

leading directly in high cost. It was thought to test

new techniques included integration of CPU with

GPU which resulted [4] in high level quality of

images processing and high performance of channels

delivering at the client side. GPU graphic cards from

the architectural overview contains hundreds to

thousands cores running slower and are very much

suitable to perform intensive computation operation

as video processing, image analysed and signal

processing delivering the best value of system

performance, price and power. In SMC IPTV Cloud

network, it was required to enhance performance of

IPTV services through implementation of GPU with

superscalar processors which employ multiple

functional units increasing and achieving high

throughput [1]. GPU trends in designee have

increased the complexity of processors and have

increased the performance in the same time by

increasing number of instructions through a pipeline

at a time.

This paper attempts to show the

implementation of GPU superscalar processor in

IPTV SDN Cloud Network (Our Smart Media

Communication IPTV Cloud Network) [2] achieving

in high improvement of performance to over than

60%. The rest of this paper is organized as follow:

Section II describes the implementation of GPU

pipeline architecture; Section III describes

performance test results after GPU implemented in

IPTV Cloud Network and Section IV and V we have

Conclusions and References.

II. GPU ARCHITECTURE IMPLEMENTATION
 In IPTV SDN Cloud Network, it is needed high

and fast video images processing. Last GPU

processor version generated by NVIDIA vendor was

at the end of February 2013 and it is delivered

significantly higher CPU and GPU performance

while improving its architectural and power

efficiency. These processors have enabled amazing

full-featured such as Web browsing, console class

gaming, fast UI and multitasking responsiveness,

and Blu-ray quality video playback [3]. This

processor is the highest performing single-chip

smartphone processor in its class and integrates an

NVIDIA i500 LTE modem and Quad Cortex-A9 r4

cores, plus a 60-core GPU.

2.1Implementation of GPU Logical Pipeline Flow

Fig. 1 shows the implementation of GPU

Logical Pipeline Flow in order to designee an

immediate-mode pipeline adapted for high-

performance and power efficiency. GPU processor is

a superscalar processor that includes on-chip vertex,

RESEARCH ARTICLE OPEN ACCESS

Esmeralda Hysenbelliu. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 8, (Part -1) August 2017, pp.41-45

www.ijera.com DOI: 10.9790/9622-0708044145 42 | P a g e

Vertexbuffer Objects Framebuffer Texture Data

VBO Cache PIXEL Cache Texture Cache

 UNIFIED MEMORY

OpenGL API Calls Primitive Processing Pixel/Bland Shader Texture

Vertex Shader Early Depth Stencil

Primitive Assembly Rasterizer

Vertex Vertex Vertex Vertex Vertex Vertex

IDX /Clip / Setup

Raster / Early Z

L2

Tex

L1

TexTexTex

L1L1L1

Memory 32b FB 32b FB

texture and pixels caches. It makes possible and

reality the reducing off-chip memory accesses which

is a very critical point to power efficiency and high

performance of images for IPTV Service over SDN

(Software Defined Networking). Also this GPU

processor insures high bit rates when servicing data

requests.

“OpenGL API calls” block in Fig. 1 feeds

the Primitive Processing block. Application-level,

API calls are interpreted by the graphics driver and

the driver sends various commands and pointers to

vertex and texture data to the GPU. Vertex buffers

are fetched and cached in a VBO Cache for

subsequent reuse. Vertex shader programs called

also Vertex Shader Pipeline or Vertex Processing

Engine (VPE) execute in the Vertex Shader perform

operations such as transforms and deformations on

character and object geometry. The Primitives

Assembly stage combines vertices to assemble

primitives such as lines and triangles, and any

primitives that reside outside of the camera’s

viewing area (frustum), or are back-facing, are

removed from the pipeline. Those that are contained

both inside and outside the viewing frustum have

their outside portions clipped because they should

not be rendered. Meanwhile edge and plane

equations are calculated on the primitives in

preparation for rasterizing

 The Rasterizer converts primitives to pixels

fragments to feed the pixel shader pipelines. The

Early-Z unit can reject pixels that have depth (Z)

values and place them behind pixels in the frame

buffer. Pixel Shader pipes then operate on pixel

fragments that pass the Ztest by running pixel shader

programs on each pixel fragment. A programmable

blend stage is incorporated in the Pixel Shader

allowing any type of blend mode to be implemented,

not only those found in the OpenGL spec.

Figure 1.1 GPU logical Pipeline Flow

 The Pixel Cache (also called the Fragment Data

Cache) caches, writes to the frame buffer and in

addition to Early –Z testing, it is used to reduce off-

chip frame buffer traffic for user interface pixels or

other areas that have high reuse.

 The texture unit fetches and filters texture data to

apply to a pixel. The accessed texture data

constantly is cached in both: a) L1 texture caches

present in each Texture Unit and b) L2 texture cache

that is shared by all four texture units.

 Finally, the processed pixels can be blended with

existing frame buffer pixel information, or they can

overwrite the current frame buffer pixel data.

1.2 GPU Pipeline Architecture

Fig. 2 presents in more details the actual

physical implementation of GPU Processor

subsystem. Starting from the top, rendering

commands are fetched through Host/Front End units.

Next, indices and vertices are fetched directly from

memory and cached by the IDX unit. IDX then

passes vertices to multiple Vertex Processing

Engines (VPEs). The IDX unit also supports DX9-

level instancing, where a single draw command can

make multiple instances of a model, with each

model using a different set of per-instance data.

Figure 1.2 GPU Processor Architecture Diagram

Vertex Processing Engines - In our GPU processor,

Vertices are processed by six VPE units where each

of them includes a VEC4 ALU (arithmetic logic

unit) that contains four MAD (Multiply-Add) units

(where MAD units are more commonly known as

Vertex Cores). GPU Processor includes a total of 24

vertex cores. A 96-entry Vertex Buffer Object cache

split 16KB per VPE, allows vertex reuse and reduces

off-chip memory accesses. So using GPU processors

for providing IPTV Service bring very architectural

improvements resulting in a performance increased

over 65% where 3 processor per vertex pipe run at

the same clock. The vertex shader cores use FP32

precision for their computation to ensure geometric

accuracy. As it is described in the GPU Logical

Esmeralda Hysenbelliu. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 8, (Part -1) August 2017, pp.41-45

www.ijera.com DOI: 10.9790/9622-0708044145 43 | P a g e

Pipeline section, primitives are assembled from the

vertices. Any primitives that aren’t visible or back-

facing are culled, or if they extend beyond the view

frustum they are clipped. On primitives, during

preparation for rasterizing are calculated Edge and

plane equations.

Raster Engine Early- Z - The Raster

Engine generates pixel fragments from the

primitives and can provide eight pixel fragments per

clock to the Pixel Shader pipes:

Our GPU processor now support 2x and 4x

Multisample Antialiasing (MSAA), 24-bit Z, and 8-

bit Stencil processing. The Raster Unit generates

pixel fragments (Samples when MSAA is enabled)

with associated 24-bit Z and 8-bit stencil values.

The Early-Z unit collaborates with the Raster Unit

(have an Agreement). The Early-Z operation tests all

the pixels or samples for Z-depth and it passes only

the pixels or samples that are visible. Early-Z is able

to detect and discard hidden pixels at a rate of eight

pixels/clock (8ppc). Early-Z processing unit delivers

improved performance and power savings by

reducing memory traffic between the GPU and off-

chip memory.

VLIW Pixel Fragment Shader Pipelines - Each of

the four Pixel Fragment Shader pipes in our GPU

processor includes three ALUs, and each ALU

contains four MAD units, for a total of 48 pixel

shader cores (4 x 3 x 4). Each of ALU contains a

single MFU (Multi-Function Unit) which has in total

12 MFU units. The MFU units process all

transcendental math (logs, exponents, trigonometric,

functions), reciprocals, square roots, and MOV

operations. The Fragment Shader pipelines

implement a VLIW architecture, in which a mix of

different instructions can be issued to the four MAD

units and affected also the MFU unit in each ALU.

Examples of different VLIW instruction mixes are

4x MAD, 2x DP2A + MFU, 1x DP3A + 1xMAD +

MFU, 1x DP2A + 2xMAD + MFUP, 1x DP4 +

MFU. A total of 16KB of Pixel Cache is divided into

four 4K L1 cache slices depicted in the architecture

diagram. It brings benefits in some cases like

reducing off-chip frame buffer access by over 50%.

It is also used rather than unified architecture for

power efficiency reasons separate vertex and pixel

shader architecture. The power savings derived from

separate vertex and pixel shaders in the GPU

processor architecture outweigh the workload

flexibility advantages of unified shaders.

Texture Filtering Units - Each pixel

shader unit also includes a Texture filtering unit

capable of FP16 texture filtering, which enables

High Dynamic Range (HDR) rendering. Each of the

four texture units have their own L1 cache. The 16K

L2 texture cache improves performance by reducing

texture fetches from external memory. The

combination of L1 and L2 texture caches reduces

off-chip texture accesses by over 80% in most cases

because of the typical locality of texture memory

accesses by the four texture units.

 Some of additional GPU Features include many

other enhancements and features that help deliver

richer visuals, higher performance, and more

immersive graphics experiences in mobile devices.

III. IMPLEMENTATION OF GPU SMC

CLOUD NETWORK
 In SMC Cloud Network Data Center, requests

for delivering IPTV Services are increased rapidly

and in the same time the quality of images

processing above client requests. It was emergently

needed to implement GPU processors in order to

process big data instructions in pipeline mode and to

decrease existing CPU of processor. The new idea

developed in this paper is the possibility to control

quality levels of services delivered in clients (like

Quality of service, Performance of service, low

latency, high quality of service, high performance

and Bluray Disk) via new features added and used

by NVENC of FFEMPEG program. NVENC is an

API developed by NVIDIA which enables the use of

GPU cards to perform H.264 and HEVC encoding.

After installation of FFEMPEG program [5] together

with applications, libraries and respective drivers

required, there are performed follow comparison:
3.1.1.1 Before implementing GPU superscalar

processors, CPU utilization was very high

(us column):

root@iptv1.smc.com.al:#vmstat -w -n -1

Procs cpu

r b cs us sy id wa st

9 0 10101 81 0 19 0 0

5 0 11630 80 0 19 0 0

12 0 11792 75 0 25 0 0

9 0 10742 83 0 17 0 0

14 0 10767 84 0 15 0 0

15 1 10504 80 0 20 0 0
3.1.1.2 GPU Card Implementation and

Utilization

The NVENC utilization can be seen in the

“enc” column. As it is showed, all work for

transcoding channels now belongs to GPU Processor

and CPU operates in low levels of usage. The “sm”

column is the CUDA workload. CUDA [6] is an

excellent choice for computationally datasets and

designed to work on Nvidia’s graphic cards. It can

also run on CPUs but not as fast as in GPU.

root@iptv1.smc.com.al:# nvidia-smi dmon -i 0

mailto:root@iptv1.smc.com.al:#

Esmeralda Hysenbelliu. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 8, (Part -1) August 2017, pp.41-45

www.ijera.com DOI: 10.9790/9622-0708044145 44 | P a g e

GPU Video Encoder (nvenc(6))

GPU Video Encoder (nvenc(0))

GPU Video Encoder (nvenc(1))

GPU Video Encoder (nvenc(2))

GPU Video Encoder (nvenc(3))

GPU Video Encoder (nvenc(4))

GPU Video Encoder (nvenc(5))

Output File

Input File

Video
Decoder

GPU Resize
(nvresize)

H264

1080p30

1080p30

720p30

572p30

480p30

360p30

240p30

120p30

H264

CUDA operates in such a way that achieves to

support other computational interfaces including

Khrono’s Group’s OpenCL, Microsoft's direct

compute. Also by using third party wrappers, it is

made possible to support Python, Perl, Fortan, Java,

Ruby, Lua, Haskell, MATLAB and IDL.

 From the CPU overview, it was observed that

usage of software resize caused a CPU intensive and

bottlenecks quickly the ability to encode. In many

scenarios multiple output formats are created at the

same time from the input format. For that reason,

NVIDIA has implemented a GPU zero-copy engine

to share frames between plugins as well as a video

filter that does GPU resize (“nvresize”). In the Fig. 2

follow, the video is resized into 7 formats and

combined as different video streams in a single

output container.

Fig 2 A typical 1:n resize scenario

The audio stream is copied from the input container

to the new output container.

IV. TEST RESULTS
 In the following example we will take a

1080p30 input file and downsize it to 5 formats,

each stream is encoded with NVENC and then the

output stream is put in its own container output file

along with a copy of the audio (if present).

a) Software resize provided resized frames at 75fps

(375fps total - using 37% NVENC utilization).

b) GPU resize provided resized frames at 190fps

(950fps total - capped by 100% NVENC

utilization).

Software bases resize figure is given follow:

~/ $ time ffmpeg -y -i INPUT.mp4 \

-acodec copy -vcodec nvenc -b:v 5M -s hd1080

out1sw.mkv \ -acodec copy -vcodec nvenc -b:v 4M

-s hd720 out2sw.mkv \ -acodec copy -vcodec nvenc -

b:v 3M -s hd480 out3sw.mkv \-acodec copy -

vcodec nvenc -b:v 2M -s wvga out4sw.mkv \

-acodec copy -vcodec nvenc -b:v M -s cif

 out5sw.mkv

Fig 3. 1 Software based resize

GPU accelerate resize figure is given follow:

~/ $ time ffmpeg -y -i INPUT.mp4 -filter_complex \

nvresize=5:s=hd1080\|hd720\|hd480\|wvga\|cif:readb

ack=0[out0][out1] [out2][out3][out4] \

-map [out0] -acodec copy -vcodec nvenc -b:v 5M

out0nv.mkv \ -

map [out1] -acodec copy -vcodec nvenc -b:v 4M

out1nv.mkv \ -

map [out2] -acodec copy -vcodec nvenc -b:v 3M

out2nv.mkv \ -

map [out3] -acodec copy -vcodec nvenc -b:v 2M

out3nv.mkv \ -

map [out4] -acodec copy -vcodec nvenc -b:v 1M

out4nv.mkv

Fig 3. 1 GPU Resize

Esmeralda Hysenbelliu. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 8, (Part -1) August 2017, pp.41-45

www.ijera.com DOI: 10.9790/9622-0708044145 45 | P a g e

 From the graphics in Fig. 3.1 and Fig. 3.2, it is

clear that with GPU resize we achieve performance

improvement with 63%, that means all the

functionalities for transcoding input files like

channels, passed directly from GPU and its high

utilization shows the increased number of channels

transcoded (more than 100 channels) simultaneous.

V. CONCLUSIONS
In this paper, we implemented a Superscalar GPU

processor over SMC SDN Cloud Network due to

bottleneck issue faced with CPU utilization (100%).

GPU is a powerful unit used mostly in the field

where IPTV and Video streaming services are

delivered with high quality of images processing,

high power efficiency and high performance. GPU

resize feature applied in our example lighted out the

key benefits of GPU which is improvement of

performance with more that 60%. Even though the

cost of GPU is high, this might be to the key for the

future of Processor technology.

REFERENCES
[1] Kwang-yeob Lee, Nak-woong Eum, Jae-

chang Kwak 'Superscalar GP-GPU design of

SIMT architecture for parallel processing in

the embedded environment', Advanced

Science and Technology Letters (Vol.43

Multimedia2013), pp.67-70

[2] Esmeralda Hysenbelliu “A cloud Based

architecture for IPTV as a Service,”

Proceeding of 2015 Balkan Conference on

Informatics: advances in ICT, pp. 59–64,

2015.

[3] https://www.nvidia.com/

[4] Sukanya.R, Swaathikka.K, Soorya.R

'Enhancing Computational Performance using

CPU-GPU Integration', International Journal

of Computer Applications (0975 – 8887)

Volume 111 – No 7, February 2015.

[5] https://www.ffmpeg.org/

[6] http://www.nvidia.com/object/cuda_home

new.html

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

Esmeralda Hysenbelliu. “GPU Implementation over IPTV Software Defined Networking.”

International Journal of Engineering Research and Applications (IJERA), vol. 7, no. 8, 2017,

pp. 41–45.

https://www.nvidia.com/
https://www.ffmpeg.org/

