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ABSTRACT 
This paper addresses the problem of generating a superresolution (SR) image from a single low-resolution input 

image. Research on image statistics suggests that image patches can be well represented as a sparse linear 

combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, 

we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this 

representation to generate the high-resolution output. By jointly training two dictionaries for the low- and high-

resolution image patches, we can enforce the similarity of sparse representations between the low resolution and 

high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a 

low resolution image patch can be applied with the high resolution image patch dictionary to generate a high 

resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, 

compared to previous approaches, which simply sample a large amount of image patch pairs [1], reducing the 

computational cost substantially. The effectiveness of such sparsity prior is demonstrated for general image 

superresolution. In this case, our algorithm generates high-resolution images that are competitive or even 

superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of 

our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with 

noisy inputs in a more unified framework. 

Keywords: Super-resolution, Sparse Representation, compressive sensing, constrained optimization, dictionary 

learning. 
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I. INTRODUCTION 
 Super-resolution(SR)image reconstruction 

is currently a very active area of research, as it 

offers the promise of overcoming some of the 

inherent resolution limitations of low-cost imaging 

sensors (e.g. cell phone or surveillance cameras) 

allowing better utilization of the growing capability 

of high-resolution displays (e.g. high-definition 

LCDs). Such resolution-enhancing technology may 

also prove to be essential in medical imaging and 

satellite imaging where diagnosis or analysis from 

low-quality images can be extremely difficult. 

Conventional approaches to generating a super-

resolution image normally require as input multiple 

low-resolution images of the same  scene, which 

are aligned with sub-pixel accuracy.  

 The SR task is cast as the inverse problem 

of recovering the original high-resolution image by 

fusing the low-resolution images, based on 

reasonable assumptions or prior knowledge about 

the observation model that maps the high-

resolution image to the low-resolution ones. The 

fundamental reconstruction constraint for SR is that 

the recovered image, after applying the same 

generation model, should reproduce the observed 

low resolution images. However, SR image 

reconstruction is generally a severely ill-posed 

problem because of the insufficient number of low 

resolution images, ill-conditioned registration and 

unknown blurring operators and the solution from 

the reconstruction constraint is not unique. Various 

regularization methods have been proposed to 

further stabilize the inversion of this ill-posed 

problem, such as [2], [3], [4]. 

 However, the performance of these 

reconstruction-based super-resolution algorithms 

degrades rapidly when the desired magnification 

factor is large or the number of available input 

images is small. In these cases, the result may be 

overly smooth, lacking important high-frequency 

details [5]. Another class of SR approach is based 

on interpolation [6], [7], [8]. While simple 

interpolation methods such as Bilinear or Bicubic 

interpolation tend to generate overly smooth 

images with ringing and jagged artifacts, 

interpolation by exploiting the natural image priors 
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will generally produce more favorable results. Dai 

et al. [7] represented the local image patches using 

the background/foreground descriptors and 

reconstructed the sharp discontinuity between the 

two. Sun et. al. [8] explored the gradient profile 

prior for local image structures and applied it to 

super-resolution. Such approaches are effective in 

preserving the edges in the zoomed image. 

However, they are limited in modeling the visual 

complexity of the real images. For natural images 

with fine textures or smooth shading, these 

approaches tend to produce watercolor-like 

artifacts. A third category of SR approach is based 

on machine learning techniques, which attempt to 

capture the co-occurrence prior between low-

resolution and high-resolution image patches. [9] 

Proposed an example-based learning strategy that 

applies to generic images where the low-resolution 

to high-resolution prediction is learned via a 

Markov Random Field (MRF) solved by belief 

propagation. [10] extends this approach by using 

the Primal Sketch priors to enhance blurred edges, 

ridges and corners. Nevertheless, the above 

methods typically require enormous databases of 

millions of high resolution and low-resolution 

patch pairs, and are therefore computationally 

intensive. [11] adopts the philosophy of Locally 

Linear Embedding (LLE) [12] from manifold 

learning, assuming similarity between the two 

manifolds in the high resolution and the low-

resolution patch spaces. Their algorithm maps the 

local geometry of the low-resolution patch space to 

the high-resolution one, generating high-resolution 

patch as a linear combination of neighbors. Using 

this strategy, more patch patterns can be 

represented using a smaller training database.  

 However, using a fixed number ‗K‘ 

neighbors for reconstruction often results in 

blurring effects, due to over- or under-fitting. Patch 

database directly is too time consuming. This paper 

focuses on the problem of recovering the 

superresolution version of a given low-resolution 

image. Similar to the aforementioned learning-

based methods, we will rely on patches from the 

input image. However, instead of working directly 

with the image patch pairs sampled from high and 

low-resolution images [1], we learn a compact 

representation for these patch pairs to capture the 

co-occurrence prior, significantly improving the 

speed of the algorithm.  

 Our approach is motivated by recent 

results in sparse signal representation, which 

suggest that the linear relationships among high-

resolution signals can be accurately recovered from 

their low-dimensional projections [16], [17]. 

Although the super-resolution problem is very ill-

posed, making precise recovery impossible, the 

image patch sparse representation demonstrates 

both effectiveness and robustness in regularizing 

the inverse problem. 

 

a) Basic Ideas: To be more precise, let D ∈  ℝn×K 

be an over complete dictionary of K atoms (K > n), 

and suppose a signal      x ∈ ℝn can be represented 

as a sparse linear combination with respect to D. 

That is, the signal x can be written as x = Dα0 

where α0 ∈ ℝK is a vector with very few (<< n) 

nonzero entries. In practice, we might only observe 

a small set of measurements y of x: 
 

  y= Lx = LDα0,        (1) 
 

where L ∈ ℝ
k×n

 with k < n is a projection matrix. In 

our super-resolution context, x is a high-resolution 

image (patch), while y is its low-resolution 

counterpart (or features extracted from it). If the 

dictionary D is overcomplete, the equation x = Dα 

is underdetermined for the unknown coefficients α. 

The equation y = LDα is even more dramatically 

underdetermined. Nevertheless, under mild 

conditions, the sparsest solution α0 to this equation 

will be unique. Furthermore, if D satisfies an 

appropriate near-isometry condition, then for a 

wide variety of matrices L, any sufficiently sparse 

linear representation of a high-resolution image 

patch x in terms of the D can be recovered (almost) 

perfectly from the low resolution image patch [17], 

[18].  

 Recently sparse representation has been 

successfully applied to many other related inverse 

problems in image processing, such as denoising 

[19] and restoration [20], often improving on the 

state-of-the-art. For example in [19], the authors 

use the K-SVD algorithm [21] to learn an over 

complete dictionary from natural image patches 

and successfully apply it to the image denoising 

problem. In our setting, we do not directly compute 

the sparse representation of the high-resolution 

patch. Instead, we will work with two coupled 

dictionaries, Dh for high-resolution patches, and Dl 
for low-resolution ones. The sparse representation 

of a low-resolution patch in terms of Dl will be 

directly used to recover the corresponding high 

resolution patch from Dh. We obtain a locally 

consistent solution by allowing patches to overlap 

and demanding that the reconstructed high-

resolution patches agree on the overlapped areas. In 

this paper, we try to learn the two over complete 

dictionaries in a probabilistic model similar to [22]. 

To enforce that the image patch pairs have the 

same sparse representations with respect to Dh and 

Dl, we learn the two dictionaries simultaneously by 

concatenating them with proper normalization.  

 The learned compact dictionaries will be 

applied to generic image super-resolution and to 
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demonstrate their effectiveness. Compared with the 

aforementioned learning-based methods, our 

algorithm requires only two compact learned 

dictionaries, instead of a large training patch 

database. The computation, mainly based on linear 

programming or convex optimization, is much 

more efficient and scalable, compared with [9], 

[10], [11]. The online recovery of the sparse 

representation uses the low-resolution dictionary 

only the high-resolution dictionary is used to 

calculate the final high-resolution image. The 

computed sparse representation adaptively selects 

the most relevant patch bases in the dictionary to 

best represent each patch of the given low-

resolution image. This leads to superior 

performance, both qualitatively and quantitatively, 

compared to the method described in [11], which 

uses a fixed number of nearest neighbors, 

generating sharper edges and clearer textures. 

 

b) Organization of the Paper:   

 The remainder of this paper is organized 

as follows.  Section II details our formulation and 

solution to the image super-resolution problem 

based on sparse representation. Specifically, we 

study how to apply sparse representation for 

generic image super-resolution. In Section III, we 

discuss how to learn the two dictionaries for the 

high- and low-resolution image patches 

respectively. Various experimental results in 

Section IV demonstrate the efficacy of sparsity as a 

prior for regularizing image super-resolution. 

 

c) Notations:   

 X and Y denote the high- and 

lowresolution images respectively, and x and y 

denote the high and low-resolution image patches 

respectively. We use bold uppercase D to denote 

the dictionary for sparse coding, specifically we 

use Dh and Dl to denote the dictionaries for high- 

and low-resolution image patches respectively. 

Bold lowercase letters denote vectors. Plain 

uppercase letters denote regular matrices, i.e., S is 

used as a downsampling operation in matrix form. 

Plain lowercase letters are used as scalars. 

 

II. IMAGE SUPER-RESOLUTION 

FROM SPARSITY 
The single-image super-resolution problem asks: 

given a low-resolution image Y , recover a higher-

resolution image X of the same scene. Two 

constraints are modeled in this work to solve this 

ill-posed problem: 1) reconstruction constraint, 

which requires that the recovered X should be 

consistent with the input Y with respect to the 

image observation model; and 2) sparsity prior, 

which assumes that the high resolution patches can 

be sparsely represented in an appropriately chosen 

overcomplete dictionary, and that their sparse 

representations can be recovered from the low 

resolution observation. 

 

1) Reconstruction constraint: The observed low-

resolution image Y is a blurred and downsampled 

version of the high resolution image X: 

   Y = SHX         (2) 

 

Here, H represents a blurring filter, and S the 

downsampling operator. Super-resolution remains 

extremely ill-posed, since for a given low-

resolution input Y , infinitely many high-resolution 

images X satisfy the above reconstruction 

constraint. We further regularize the problem via 

the following prior on small patches x of X: 

 

2) Sparsity prior: The patches x of the high-

resolution image X can be represented as a sparse 

linear combination in a dictionary Dh trained from 

high-resolution patches sampled from training 

images: 

 x ≈ Dhα for some α∈  ℝK
 with 

  𝛼0 ≪ 𝐾.         (3) 

The sparse representation α will be recovered by 

representing patches y of the input image Y , with 

respect to a low resolution dictionary Dl co-trained 

with Dh. The dictionary training process will be 

discussed in Section III.  

 For generic image super-resolution, we 

divide the problem into two steps. First, as 

suggested by the sparsity prior (3), we find the 

sparse representation for each local patch, 

respecting spatial compatibility between neighbors. 

Next, using the result from this local sparse 

representation, we further regularize and refine the 

entire image using the reconstruction constraint (2). 

In this strategy, a local model from the sparsity 

prior is used to recover lost high-frequency for 

local details. The global model from the 

reconstruction constraint is then applied to remove 

possible artifacts from the first step and make the 

image more consistent and natural.    

 

A. Generic Image Super-Resolution from Sparsity 

1) Local model from sparse representation:  

 Similar to the patch-based methods 

mentioned previously, our algorithm tries to infer 

the high-resolution image patch for each 

lowresolution image patch from the input. For this 

local model, we have two dictionaries Dh and Dl, 

which are trained to have the same sparse 

representations for each high-resolution and low-

resolution image patch pair. We subtract the mean 

pixel value for each patch, so that the dictionary 

represents image textures rather than absolute 

intensities. In the recovery process, the mean value 

for each high-resolution image patch is then 

predicted by its low-resolution version.  
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 For each input low-resolution patch y, we 

find a sparse representation with respect to Dl. The 

corresponding highresolution patch bases Dh will 

be combined according to these coefficients to 

generate the output high-resolution patch  x. 

 

The problem of finding the sparsest representation 

of y can be formulated as: 

 

min  𝛼 0 𝑠. 𝑡.            𝐹𝑫𝑙𝜶 − 𝐹𝑦 2

2
≤ 𝜖              (4) 

 

where F is a (linear) feature extraction operator. 

The main role of F in (4) is to provide a 

perceptually meaningful constraint  on how closely 

the coefficients α must approximate y. We will 

discuss the choice of F in Section III.  

 Although the optimization problem (4) is 

NP-hard in general, recent results [23], [24] suggest 

that as long as the desired coefficients α are 

sufficiently sparse, they can be efficiently 

recovered by instead minimizing the l
1
- norm , as 

follows: 

 

min  𝛼 1 𝑠. 𝑡.        𝐹𝑫𝑙𝜶 − 𝐹𝑦 2

2
≤ 𝜖                  (5) 

 

Lagrange multipliers offer an equivalent 

formulation  

 

min𝛼    𝐹𝑫𝑙𝜶 − 𝐹𝑦 2

2
+ 𝜆 𝛼 1                            (6) 

where the parameter λ balances sparsity of the 

solution and fidelity of the approximation to y. 

Notice that this is essentially a linear regression 

regularized with l
1
 -norm on the coefficients, 

known in statistical literature as the Lasso [27]. 

 Solving (6) individually for each local 

patch does not guarantee the compatibility between 

adjacent patches. We enforce compatibility 

between adjacent patches using a onepass 

algorithm similar to that of [28].The patches are 

processed in raster-scan order in the image, from 

left to right and top to bottom. We modify (5) so 

that the super-resolution reconstruction Dhα of 

patch y is constrained to closely agree with the 

previously computed adjacent high-resolution 

patches. The resulting optimization problem is  

 

min𝛼   𝜆 𝛼 1 𝑠. 𝑡.        𝐹𝑫𝑙𝜶 − 𝐹𝑦 2

2
≤ 𝜖1,    

                                             𝑃𝑫𝑙𝜶 − 𝒘 2
2 ≤ 𝜖2, 

           (7) 

where the matrix P extracts the region of overlap 

between the current target patch and previously 

reconstructed highresolution image, and w contains 

the values of the previously reconstructed high-

resolution image on the overlap. The constrained 

optimization (7) can be similarly reformulated as:  

minα      𝑫 𝜶 − 𝒚  
2

2
+ 𝜆 𝛼 1,                              (8) 

 

Where 𝑫 =  
𝐹𝑫𝒍

𝛽𝑃𝑫𝒉
  and 𝒚 =  

𝐹𝒚
𝛽𝑤

  .The parameter 

β controls the tradeoff between matching the low-

resolution input and finding a high-resolution patch 

that is compatible with its neighbors. In all our 

experiments, we simply set β = 1. Given the 

optimal solution α
*
 to (8), the highresolution patch 

can be reconstructed as, 

 x = Dhα
*
. 

 

Algorithm - 1 (Super-Resolution via Sparse 

Representation): 

1) Input: training dictionaries Dh and Dl, a low-

resolution image Y . 

2) For each 3 × 3 patch y of Y , taken starting from 

the upper-left corner with 1 pixel overlap in each 

direction,  

• Compute the mean pixel value m of patch y. 

• Solve the optimization problem with 𝑫  and 𝒚  

defined in (8):  

• Generate the high-resolution patch x = Dhα
*
. Put 

the patch x + m into a high-resolution image X0. 

3) End 

4) Using gradient descent, find the closest image to 

X0 which satisfies the reconstruction constraint: 

 

X
*
 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋 𝑆𝐻𝑿 − 𝒀 2

2 + 𝑐 𝑿 − 𝑿𝟎 2
2 

 

5) Output: super-resolution image X
*. 

 

2) Enforcing global reconstruction constraint: 
Notice that (5) and (7) do not demand exact 

equality between the lowresolution patch y and its 

reconstruction Dlα. Because of this, and also 

because of noise, the high-resolution image X0 

produced by the sparse representation approach of 

the previous section may not satisfy the 

reconstruction constraint (2) exactly. We eliminate 

this discrepancy by projecting X0 onto the solution 

space of SHX = Y ,  

computing, 

𝑋∗ = arg 𝑚𝑖𝑛𝑋  𝑆𝐻𝑿 − 𝒀 2
2 + 𝑐 𝑿 − 𝑿𝟎  2

2      (9) 

 The solution to this optimization problem 

can be efficiently computed using gradient descent. 

The update equation for this iterative method is 

 

Xt+1 = Xt + ν[H
T
 S

T
 (Y − SHXt) + c(X − X0)],    (10) 

 

where Xt is the estimate of the high-resolution 

image after the t-th iteration, ν is the step size of 

the gradient descent. 

 We take result X
*
  from the above 

optimization as our final estimate of the high-

resolution image. This image is as close as possible 

to the initial super-resolution X0 given by sparsity, 

while respecting the reconstruction constraint. The 

entire super-resolution process is summarized as 

Algorithm 1. 
 



Efficient learning based Image Super Resolution via Sparse Representation 

 
www.ijera.com                                   DOI: 10.9790/9622-0708033949                       43 | P a g e  

 

 

3) Global optimization interpretation: The simple 

SR algorithm outlined in the previous two 

subsections can be viewed as a special case of a 

more general sparse representation framework for 

inverse problems in image processing. Related 

ideas have been profitably applied in image 

compression, denoising [19], and restoration [20]. 

In addition to placing our work in a larger context, 

these connections suggest means of further 

improving the performance, at the cost of increased 

computational complexity. Given sufficient 

computational resources, one could in principle 

solve for the coefficients associated with all 

patches simultaneously. Moreover, the entire high-

resolution image X itself can be treated as a 

variable. Rather than demanding that X be perfectly 

reproduced by the sparse coefficients α, we can 

penalize the difference between X and the high-

resolution image given by these coefficients, 

allowing solutions that are not perfectly sparse, but 

better satisfy the reconstruction constraints. This 

leads to a large optimization problem: 

 

𝑋
,{ }

a rg m in

ij
X 

   𝑆𝐻𝑿 − 𝒀 2
2 + 𝜆  𝛼𝑖𝑗  0

𝑖 ,𝑗

 

 +𝛾   𝐷ℎ𝛼𝑖𝑗 − 𝑃𝑖𝑗 𝑿 
2

2
+ 𝜏𝜌  (𝑿) 𝑖𝑗        (11) 

 

Here, αij denotes the representation coefficients for 

the (i, j)th patch of X, and Pij is a projection matrix 

that selects the (i, j)th patch from X. ρ(X) is a 

penalty function that encodes additional prior 

knowledge about the high-resolution image. This 

function may depend on the image category, or 

may take the form of a generic regularization term 

(e.g., Huber MRF, Total Variation, Bilateral Total 

Variation). Algorithm-1 can be interpreted as a 

computationally efficient approximation to (11). 

The sparse representation step recovers the 

coefficients α by approximately minimizing the 

sum of the second and third terms of (11). The 

sparsity term 𝛼𝑖𝑗  0
 is relaxed to 𝛼𝑖𝑗  1

, while the 

high-resolution fidelity term  𝐷ℎ𝛼𝑖𝑗 − 𝑃𝑖𝑗 𝑿 
2

2
is 

approximated by its low-resolution version             

 𝐹𝐷𝑙𝛼𝑖𝑗 − 𝐹𝑦𝑖𝑗  2
. Notice, that if the sparse 

coefficients α are fixed, the third term of (11) 

essentially penalizes the difference between the 

super-resolution image X and the reconstruction 

given by the coefficients: 

  𝐷ℎ𝛼𝑖𝑗 − 𝑃𝑖𝑗 𝑿 
2

2
≈  𝑿𝟎 − 𝑿 2

2

𝑖𝑗

 

Hence, for small γ, the back-projection step of 

Algorithm 1 approximately minimizes the sum of 

the first and third terms of (11). Algorithm 1 does 

not, however, incorporate any prior besides sparsity 

of the representation coefficients – the term ρ(X) is 

absent in our approximation. In Section IV we will 

see that sparsity in a relevant dictionary is a strong 

enough prior that we can already achieve good 

super-resolution performance. Nevertheless, in 

settings where further assumptions on the high-

resolution signal are available, these priors can be 

incorporated into the global reconstruction step of 

our algorithm. 

 

III. LEARNING THE DICTIONARY 

PAIR 
In the previous section, we discussed 

regularizing the superresolution problem using 

sparse prior which states that each pair of high- and 

low-resolution image patches have the same sparse 

representations with respect to the two dictionaries 

Dh and Dl. A straightforward way to obtain two 

such dictionaries is to sample image patch pairs 

directly, which preserves the correspondence 

between the high resolution and low resolution 

patch items [1]. However, such a strategy will 

result in large dictionaries and hence expensive 

computation.  

 

A. Single Dictionary Training 

Sparse coding is the problem of finding sparse 

representations of the signals with respect to an 

over complete dictionary D. The dictionary is 

usually learned from a set of training examples X = 

{x1, x2, ..., xt}. Generally, it is hard to learn a 

compact dictionary which guarantees that sparse 

representation of (4) can be recovered from _ 1 

minimization in (5). Fortunately, many sparse 

coding algorithms proposed previously suffice for 

practical applications. In this work, we focus on the 

following formulation: 

𝑫
,

a rg m in
D Z

  𝑿 − 𝑫𝑍 2
2 + 𝜆 𝑍 1 

      s. t  𝐷𝑖 2
2 ≤ 1    𝑖 = 1,2, … . 𝐾.                     (12) 

 

where the l1 norm  𝑍 1 is to enforce sparsity, and 

the l2 norm constraints on the columns of D remove 

the scaling ambiguity . This particular formulation 

has been studied extensively [30], [22], [31]. (12) is 

not convex in both D and Z, but is convex in one of 

them with the other fixed. The optimization 

performs in an alternative manner over Z and D: 

1) Initialize D with a Gaussian random matrix, with 

each column unit normalized. 

2) Fix D, update Z by  

𝑍 a rg m in
Z

  𝑿 − 𝑫𝑍 2
2 + 𝜆 𝑍 1                   (13)  

which can be solved efficiently through linear 

programming. 

3) Fix Z, update D by 

 

𝐷 = a rg m in
D

 𝑿 − 𝑫𝑍 2
2 

𝑠. 𝑡        𝐷𝑖 2
2 ≤ 1,       𝑖 = 1,2, ……𝐾                 (14)  
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which is a Quadratically Constrained Quadratic 

Programming that is ready to be solved in many 

optimization packages. 

4) Iterate between 2) and 3) until converge. In our 

implementation, we used a Matlab package 

developed in [22]. 

 

B. Joint Dictionary Training 

Given the sampled training image patch pairs P = 

{X
h
, Y 

l
}, where Xh = {x1, x2, ..., xn} are the set of 

sampled high resolution image patches and Y 
l
 = 

{y1, y2, ..., yn} are the corresponding low resolution 

image patches (or features), our goal is to learn 

dictionaries for high resolution and low resolution 

image patches, so that the sparse representation of 

the high resolution patch is the same as the sparse 

representation of the corresponding low resolution 

patch. This is a difficult problem, due to the ill-

posed nature of super-resolution. The individual 

sparse coding problems in the high-resolution and 

low-resolution patch spaces are  

𝐷ℎ
{ , }

a rg m in

h
D Z

  𝑿ℎ − 𝑫ℎ𝑍 2
2 + 𝜆 𝑍 1             (15)   

and  
 

𝐷𝑙
{ , }

a rg m in

l
D Z

  𝒀𝑙 − 𝑫𝑙𝑍 2
2 + 𝜆 𝑍 1                (16)   

 

respectively. We combine these objectives, forcing 

the highresolution and low-resolution 

representations to share the same codes, instead 

writing : 

{ , , }

m in
h l

D D Z

1

𝑁
 𝑿ℎ − 𝑫ℎ𝑍 2

2 +
1

𝑀
 𝒀𝑙 − 𝑫𝑙𝑍 2

2 

+𝜆  
1

𝑁
+

1

𝑀
  𝑍 1                     (17) 

where N and M are the dimensions of the high 

resolution and low resolution image patches in 

vector form. Here, 1/N and 1/M balance the two 

cost terms of (15) and (16). (17) can be rewritten 

as, 

{ , , }

m in
h l

D D Z

 𝑿𝒄 − 𝑫𝒄𝑍 2
2 + 𝜆  

1

𝑁
+

1

𝑀
  𝑍 1,         (18)  

 

or equivalently 

 
{ , , }

m in
h l

D D Z

 𝑿𝒄 − 𝑫𝒄𝑍 2
2 + 𝜆  𝑍 1,                       (19)  

where  

𝑿𝑐 =  

1

 𝑁
𝑿ℎ

1

 𝑀
𝒀𝑙

  ,  𝑫𝑐 =  

1

 𝑁
𝑫ℎ

1

 𝑀
𝑫𝑙

                        (20) 

 Thus we can use the same learning 

strategy in the single dictionary case for training 

the two dictionaries for our superresolution 

purpose. Note that since we are using features from 

the low resolution image patches, Dh and Dl are not 

simply connected by a linear transform, otherwise 

the training process of (19) will depend on the high 

resolution image patches only (for detail, refer to 

Section III-C). Fig. 2 shows the dictionary learned 

by (19) for generic images. The learned dictionary 

demonstrates basic patterns of the image patches, 

such as orientated edges, instead of raw patch 

prototypes, due to its compactness.  

 

C. Feature Representation for Low Resolution 

Image Patches 

 In (4), we use a feature transformation F 

to ensure that the computed coefficients fit the 

most relevant part of the lowresolution signal, and 

hence have a more accurate prediction for the high 

resolution image patch reconstruction. Typically, F 

is chosen as some kind of high-pass filter. This is 

reasonable from a perceptual viewpoint, since 

people are more sensitive to the high-frequency 

content of the image. The high-frequency 

components of the low-resolution image are also 

arguably the most important for predicting the lost 

high-frequency content in the target high-resolution 

image. In the literature, people have suggested 

extracting different features for the low resolution 

image patch in order to boost the prediction 

accuracy. Freeman et al. [9] used a high-pass filter 

to extract the edge information from the low-

resolution input patches as the feature. Sun et. al. 

[10] used a set of Gaussian derivative filters to 

extract the contours in the low-resolution patches. 

Chang et. al. [11] used the first- and second-order 

gradients of the patches as the representation. In 

this paper, we also use the first- and second-order 

derivatives as the feature for the low-resolution 

patch due to their simplicity and effectiveness. The 

four 1-D filters used to extract the derivatives are: 

 

f1 = [−1, 0, 1],                f2 = f
T
1, 

f3 = [1, 0,−2, 0, 1],        f4 = f
T
3,                       (21) 

where the superscript ―T ‖ means transpose. 

Applying these four filters yields four feature 

vectors for each patch, which are concatenated into 

one vector as the final representation of the low-

resolution patch. In our implementation, the four 

filters are not applied directly to the sampled low 

resolution image patches; instead, we apply the 

four filters to the training images. Thus, for each 

low resolution training image, we get four gradient 

maps, and we extract fours patches from these 

gradient maps at each location, and concatenate 

them to become the feature vector. Therefore, the 

feature representation for each low resolution 

image patch also encodes its neighboring 

information, which is beneficial for promoting 

compatibility among adjacent patches in the final 

super-resolution image.  

 In practice, we find that it works better to 

extract the features from the upsampled version of 

the low-resolution image instead of the original 

one. That is, we first upsample the low resolution 

image by factor of two  using Bicubic interpolation, 

and then extract gradient features from it. Since we 
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know all the zoom ratios, it is easy to track the 

correspondence between high resolution image 

patches and the up sampled low resolution image 

patches both for training and testing. Because of 

the way of extracting features from the low 

resolution image patches, the two dictionaries Dh 

and Dl are not simply linearly connected, making 

the joint learning process in(19) more reasonable. 

 

IV. EXPERIMENTAL RESULTS 
 In this section, we first demonstrate the 

super-resolution results obtained by applying the 

above methods on both generic images. We then 

move on to discuss various influential factors for 

the proposed algorithm including dictionary size, 

noise with inputs, and the global reconstruction 

constraints. In our experiments, we magnify the 

input low resolution image by a factor of 3 for 

generic images, which is commonplace in the 

literature of single frame super-resolution. In 

generic image super-resolution, for the low-

resolution images, we always use 3 × 3 low-

resolution patches (upsampled to 6×6), with 

overlap of 1 pixel between adjacent patches, 

corresponding to 9×9 patches with overlap of 3 

pixels for the high-resolution patches. For color 

images, we apply our algorithm to the illuminance 

channel only, since humans are more sensitive to 

illuminance changes. We therefore interpolate the 

color layers (Cb, Cr) using plain Bicubic 

interpolation. We evaluate the results of various 

methods both visually and qualitatively in Root 

Mean Square Error (RMSE). Even though RMSE 

is a common criterion in image processing for 

recovery, it is not quite reliable for rating visual 

image quality [32], as we will see in the following 

parts. Note that since we only work on illuminance 

channel, the RMSE reported is carried out only on 

the illuminance channel. 

 

A. Single Generic image super-resolution: We 

apply our methods to generic images such as 

flowers, human faces and architectures. The two 

dictionaries for high resolution and low resolution 

image patches are trained from 100,000 patch pairs 

randomly sampled from natural images collected 

from the internet. We preprocess these images by 

cropping out the textured regions and discard the 

smooth parts. Unless otherwise explicitly stated, 

we always fix the dictionary size as 1024 in all our 

experiments, which is a balance between 

computation and image quality (Section IV-B will 

examine the effects of different dictionary sizes). In 

the super-resolution algorithm (8), the choice of λ 

depends on the level of noise in the input image, 

which we will discuss further in Section IV-C. For 

generic low-noise images, we always set λ = 0.1 in 

all our experiments, which generally yields 

satisfactory results.  

 In Figure.1 we compare our method with 

several more state-of-the-art methods on an image 

of the Parthenon used in [7], including back 

projection (BP) [33], NE [11], and the recently 

proposed method based on a learned soft edge prior 

(SE) [7]. The result from back projection has many 

jagged effects along the edges. NE generates sharp 

edges in places, but blurs the texture on the 

temple‘s facade. The SE method gives a decent 

reconstruction, but introduces undesired smoothing 

that is not present in our result. We also give the 

RMSEs for all the methods in the followed 

parentheses in the caption. Again   besides the 

visual quality, our method achieves the lowest 

RMSE among these methods as well. 

 

B. Effects of Dictionary Size 

 The above experimental results show that 

the sparsity prior for image patches is very 

effective in regularizing the otherwise ill-posed 

super-resolution problem. In those results, we fix 

the dictionary size to be 1024. Intuitively, larger 

dictionaries should possess more expressive power 

(in the extreme, we can use the sampled patches as 

the dictionary directly as in [1]) and thus may yield 

more accurate approximation, while increasing the 

computation cost. In this section, we evaluate the 

effect of dictionary size on generic image super-

resolution. From the sampled 100,000 image patch 

pairs, we train four dictionaries of size 256, 512, 

1024 and 2048, and apply them  to the same input 

image. We also use the 100,000 image patches 

directly as the dictionary for comparison. The 

results are evaluated both visually and 

quantitatively in RMSE. Fig. 2 shows the 

reconstructed results for the Lena image using 

dictionaries of different sizes. While there are not 

many visual differences for the results using 

different dictionary sizes from 256 to 2048 and the 

whole sampled patch set, we indeed observe the 

reconstruction artifacts will gradually diminish 

with larger dictionaries. The visual observation is 

also supported by the RMSEs of the recovered 

images. In Table I, we list the RMSEs of the 

reconstructed images for dictionaries of different 

sizes. As shown in the table, using larger 

dictionaries will yield smaller RMSEs, and all of 

them have smaller RMSEs than those by Bicubic 

interpolation. However, the computation is 

approximately linear to the size of the dictionary; 

larger dictionaries will result in heavier  

computation. Fig. 3 shows the computation time in 

seconds with ―Lena‖ as the test image. The 

algorithm is written in Matlab without optimization 

for speed, and ran on a laptop of Core i3 @ 1.83G 

with 4G memory. To compare with [1], the 

computation time is almost an hour, much slower 

than our current solution with trained compact 

dictionaries. In practice, one chooses the 
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appropriate dictionary size as a trade-off between 

reconstruction quality and computation. We find 

that dictionary size 024 can yield decent outputs, 

while allowing fast computation. 

 

 
Fig .3. The computation time on ―Lena‖ image 

with dictionaries of different sizes (in seconds). 

 

C. Robustness to Noise 

 Most single input super-resolution 

algorithms assume that the input images are clean 

and free of noise, an assumption which is likely to 

be violated in real applications. To deal with noisy 

data, previous algorithms usually divide the 

recovery process into two disjoint steps: first 

denoising and then superresolution. However, the 

results of such a strategy depend on the specific 

denoising technique, and any artifacts during 

denoising on the low-resolution image will be kept 

or even magnified in the latter super-resolution 

process. Here we demonstrate that by formulating 

the problem into our sparse representation model, 

our method is much more robust to noise with input 

and thus can handle super-resolution and denoising 

simultaneously. Note that in (6) the parameter λ 

depends on the noise level of the input data; the 

noisier the data, the larger the value of λ should be. 

Fig.4 shows how λ influences the reconstructed 

results given the same noiseless input image. The 

larger λ, the smoother the result image texture gets.  

 

V. CONCLUSION 
This paper presented a novel approach 

toward single image super-resolution based on 

sparse representations in terms of coupled 

dictionaries jointly trained from high- and low 

resolution image patch pairs. The compatibilities 

among adjacent patches are enforced both locally 

and globally. Experimental results demonstrate the 

effectiveness of the sparsity as a prior for patch-

based super-resolution for generic However, one of 

the most important questions for future 

investigation is to determine the optimal dictionary 

size for natural image patches in terms of SR tasks. 

Tighter connections to the theory of compressed 

sensing may yield conditions on the appropriate 

patch size, features to utilize and also approaches 

for training the coupled dictionaries. 
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Fig. 1. Results on an image of the Parthenon with magnification factor 3 and corresponding RMSEs. Top row: 

low-resolution input, Bicubic interpolation (RMSE: 12.724), BP (RMSE: 12.131). Bottom row: NE (RMSE: 

13.556), SE [7] (RMSE: 12.228), and our method (RMSE: 11.817). 

 

 
Fig. 2. The effects of dictionary size on the super-resolution reconstruction of Lena. From left to right: 

dictionary size 256, 512, 1024, 2048 and the whole sampled patch set respectively. 

 

Table I: The Rmse‘s Of The Reconstructed Images Using Dictionaries Of Different Sizes 
 

Images Bicubic D256 D512 D1024 D2048 

Lena 7.360 6.587 6.572 6.359 6.232 

Fruits 3.530 3.266 3.271 3.212 3.164 

Girl 5.912 5.606 5.603 5.491 5.473 

Statue 9.873 8.826 8.777 8.342 8.237 

 

Table II: The Rmse‘s Of The Reconstructed Images From Different Levels Of Noisy Inputs 
Noise levels/Gaussian σ 0 4 6 8 

Bicubic 9.873  10.423  11.037  11.772 

Neighbor Embedding 9.534  10.734  11.856  13.064 

SE 8.26  9.124  11.678  14.434 

Our Method 8.359  9.240  10.454  11.448 

 

 
Fig. 4. The effects of λ on the recovered image given the input. From left to right, λ = 0.01, 0.05, 0.1, 0.2, 0.3. 

The larger λ  is, the smoother the result image gets. Note that the results are generated from the local model 

only. 
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