A Comparative Study of Four Different Non-Isolated Bidirectional DC-DC Converters

*K V Nirmala1, S Arulmozhi2, K Sundararaman3
1ME Student, Dept. of EEE, SriVenkateswara College of Engineering, Sriperumbudur, India
2Assistant Professor, Dept. of EEE, Sri Venkateswara College of Engineering, Sriperumbudur, India
3Associate Professor, Dept. of EEE, Sri Venkateswara College of Engineering, Sriperumbudur, India
Corresponding author: *K V Nirmala

ABSTRACT

In this paper, four different topologies of Non-Isolated Bidirectional DC-DC converters are compared. Their modes of operations and the design of passive components are presented in detail for all the topologies. The selected topologies are simulated by using MATLAB/Simulink to verify the effectiveness of the converters. The simulation results and comparative studies are used to select the efficient topology. Finally, a 12-V/50-V Prototype model is implemented to verify the feasibility of the converter for the application of Uninterruptible Power Supply.

Keywords: Bidirectional DC-DC converter (BDC), Uninterruptible Power Supply (UPS), Non-isolated Bidirectional DC-DC converter (NBDC).

I. INTRODUCTION

A DC-DC converter is an electronic circuit which converts a source of direct current from one voltage level to another. In renewable DC systems, Bidirectional DC-DC converters are used for high voltage and high power applications. It has a capability of power flow in forward and backward directions and can be operated as a step up and step down converter. Bidirectional converters are the main part of a system where it is necessary to interface an energy storage device to renewable energy sources like fuel cell, solar cell etc. therefore bidirectional converters are getting more importance for past decades. Because of the increasing demand of the renewable energy source batteries are necessary for storing and supplying energy. The renewable energy system cannot provide stable power to the load; the batteries are used for sufficient power. The whole power of the renewable energy system cannot be used completely by the load some amount of energy can be used to charge the battery. In order to charge and discharge the battery, a bidirectional converter is needed which transfer the energy between two sources in both directions. The bidirectional converters can be classified into isolated and non-isolated types. In isolated type BDCs, the major concerns are high switching losses, excessive voltage, current stresses, and significant conduction losses. To overcome these difficulties non isolated BDC (NBDC) topology evolved which are highly cost effective and acceptable due to high efficiency improvement and considerable reduction in weight and volume of the system. Bidirectional DC-DC converters are widely used in many applications such as Uninterruptible Power Supply (UPS) system, aerospace, electric vehicles, PV hybrid power system and many other appliances and industries.

Figure 1. Block diagram of UPS

Bidirectional DC-DC converters are widely used in many applications such as Uninterruptible Power Supply (UPS) system, aerospace, electric vehicles, PV hybrid power system and many other appliances and industries. The block diagram of UPS system is shown in Figure 1. In normal mode the power flows from source to load and also charges the battery, if any faults occur the source gets disconnected then the battery discharges and provides power to the load. Among many topologies implemented for different applications, four topologies are selected and compared to provide the comparative evaluation of the systems.
II. OPERATING PRINCIPLES OF THE SELECTED TOPOLOGIES

The operation and analysis of the four topologies are explained for both Boost and Buck mode.

A. Topology 1

The topology 1 as shown in Figure 2 is a combination of two boost converters that are used to enhance the voltage gain. It comprises four power switches and their body diodes, two inductors and capacitors used to divide the input current which causes the efficiency to be high. Two of the switches are power switches and the remaining acts as synchronous rectifiers [1].

In Boost mode, the switches S_1 and S_2 are turned on the switches S_3 and S_4 are turned off. The DC source V_L is transferred to inductor L_2. Inductor L_1 is magnetized by the DC source V_L and the energy is stored in capacitor C. Capacitor C_H on load side is also discharged to the load.

The voltage gain is $\frac{V_H}{V_L} = \frac{1}{1-(1-D)^2}$ (1)

In Buck mode, the switches S_3 and S_4 are turned on and S_1 and S_2 are turned off. The energy of the DC source V_H is transferred to inductors L_1. Capacitors C is discharged to inductors L_2 on load side and capacitors C_L on battery side.

The voltage gain is $\frac{V_L}{V_H} = D^2$ (2)

The minimum values of inductors can be found from the current ripples of the inductors L_1 and L_2 by using integral form of current equation [1].

$L_1 \geq \frac{(1-D^2)R_L}{2D^2f_s}$ (3)

$L_1 \geq \frac{R_L}{2f_s}$ (4)

B. Topology 2

A non-isolated bidirectional converter with fixed switching frequency and a ripple free inductor is shown in Figure 3. It utilizes a simple auxiliary circuit that consists of an additional winding to the main inductor and an auxiliary inductor. The ripple free inductor reduces the voltage ripple [2].

The Boost mode begins with turn of S_1 with an assumption that the capacitors C_1 and C_2 are very small and the time interval in this mode is very short, all the currents can be considered as constant and the voltages V_{S1} and V_{S2} vary linearly. Now the gate pulse for the switch S_2 is applied. Since the voltage V_{S2} is maintained as zero at the moment of turn on S_2, zero–voltage turn on of S_2 is achieved. Since the voltage V_{PM} across the magnetizing inductance L_M is V_{LO}, the magnetizing current increases linearly.

Now the gate pulse for the switch S_1 is applied, the voltage V_{S1} is maintained as zero at the moment of turn of S_1. In this mode the magnetizing current i_m decreases linearly.

The voltage gain is $\frac{V_H}{V_{LO}} = \frac{1}{1-(1-D)}$ (5)

From the modes of operation the inductor currents can be obtained, using those current equations the inductor L_s can be rewritten as [2]

$L_s < \eta (1 - n) V_{LO} \frac{DT}{2T}$ (6)

C. Topology 3

The converter shown in Figure 4 uses the coupled inductor technique to achieve high conversion ratio with very simple control circuits. In discharging mode the converter acts as two stage boost converter by controlling one power switch to achieve high step up conversion. In charging mode the converter acts as two cascaded buck converters that control two power switches simultaneously to achieve high step down conversion. In conventional buck-boost bidirectional converter the conversion ratio is significantly reduced by parasitic elements.

The energy stored on the leakage inductor of the
coupled inductor causes high voltage of the power switches [12].

During Boost mode the converter steps up the low battery bank voltage to high dc link voltage. Switch S1 remains off during this mode. Switch S1S is on and S2 is off and the low battery voltage is applied on the low voltage side of the circuit. If S1S is turned off, the primary \(i_{k1}\) charges the parasitic capacitances across switch \(S_1\), the secondary current \(i_{k2}\) discharges the parasitic capacitances across switch \(S_1\). The leakage inductance causes the primary current to decreases while the secondary current increases. Inductor and capacitor \(C_2\) are now connected in series to transfer the energy to high voltage side of the circuit, the energy stored in the primary and secondary discharges across the high voltage side of the circuit.

The voltage gain is
\[
\frac{V_H}{V_L} = \frac{n}{(1-D)} \quad (7)
\]

During Buck mode switch \(S_1\) remains on whereas the switches \(S_1\) and \(S_2\) are off. The current flows from high voltage side to the low voltage side of the circuit through capacitor \(C_2\) and both windings of the coupled inductor. \(D_1\) is also conducting with continuous inductor current \(i_{k1}\) into the low voltage side of the circuit. When \(S_1\) turns off, the polarities of the coupled inductor are reversed, the body diode of \(S_2\) turn on to keeps the current \(i_{k2}\) flowing. \(S_1\) body diode also turns on. Although the secondary current \(i_{k2}\) decreases, the primary current \(i_{k1}\) remains same. When \(S_1\) and \(S_2\) turns on \(C_2\) starts discharging across the low voltage side of the circuit through switch \(S_2\) and inductor \(L_1\). Thus, the secondary current is induced in reverse by discharging capacitor \(C_2\) Clamp capacitor \(C_1\) also discharges through diode \(D_2\) by adding small current \(i_{k1}\) into the secondary inductance flowing into the low voltage side of the circuit.

The voltage gain is
\[
\frac{V_H}{V_L} = \frac{D}{1+n-nD} \quad (8)
\]

The inductor of Boost and Buck mode can be expressed from the average current and load current [12].

\[
L_{M(\text{boost})} = \frac{D(1-D)^2RT_s}{(n)^2} \quad (9)
\]

\[
L_{M(\text{buck})} = \frac{(1-D)(1+n-nD)RT_s}{2(n)^2} \quad (10)
\]

D. Topology 4

NBDC for charging and discharging the battery bank through single circuit in applications of Uninterruptible Power Supplies and hybrid electric vehicles is given in Figure 5. This converter operates under zero-voltage switching condition and provides large voltage diversity in the both modes of operation. This enables the circuit to step up the low-battery bank voltage to high dc-link voltage, and vice versa by employing only three switches, a coupled inductor, and an additional voltage clamped circuit [10].

In Boost mode, switch \(S_1\) and diode \(D_2\) are turned on. The energy stored in the leakage inductor \(L_{K2}\) is released to capacitor \(C_2\), and \(i_{k1}\) and \((i_{k2})\) are gradually decreased. The battery voltage \(V_L\) releases energy into the leakage inductor \(L_{K1}\). Thus, the leakage inductor current \(i_{k1}\) rapidly increases. \(V_L\) charges the magnetizing inductor \(L_{M}\) and the leakage inductor \(L_{K1}\). The magnetizing-inductor current \(i_{LM}\) and the leakage-inductor current \(i_{K1}\) are linearly increased. \(S_1\) is turned off, and \(D_{32}\) and \(D_{33}\) are turned on. The energy of \(L_{m}\) is released to \(C_H\) via the coupled-inductor and \(D_{32}\). \(L_{LM}\) linearly decreases, and the energy stored in \(C_2\) is transferred to \(C_H\) and \(R_H\).

The voltage gain is
\[
\frac{V_H}{V_L} = \frac{2+nD}{1-D} \quad (11)
\]

Buck mode, switches \(S_2\) and \(S_3\) are turned on, and \(D_4\) is turned off. The voltage source \(V_H\) charges \(L_{M}\). The voltage across the primary winding is equal to \(V_P\), \(i_{LM}\) linearly increases. The DC bus voltage \(V_H\) releases its energy to \(C_2\), \(C_1\), and \(R_1\). If \(S_2\) and \(S_3\) are turned off, \(D_{32}\) is turned on. \(L_m\) not only releases its energy into \(C_1\) and \(R_1\) but also transfers energy to \(C_2\) via \(N_3\) and \(D_4\). \(i_{LM}\) linearly decreases. The voltage gain is
\[
\frac{V_L}{V_H} = \frac{D(1-D)}{2n(1-D)^2+1} \quad (12)
\]

The inductor should be designed as high enough to minimize the ripples and associated losses. The minimum critical inductance can be obtained from inductor ripple current, average input and output inductor current [12].

\[
L_m = \frac{D(1-D)^2}{2n^2}T_s \quad (13)
\]

Table 1 lists the design parameters of the four topologies used in simulation. The low voltage side, high voltage side and switching frequency are common for all the four selected topologies. The passive device values are calculated with help of above mentioned analysis.

<table>
<thead>
<tr>
<th>Table 1. Design specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPOLOGY 1</td>
</tr>
<tr>
<td>(P_o)</td>
</tr>
<tr>
<td>(f_s)</td>
</tr>
<tr>
<td>(L_1)</td>
</tr>
<tr>
<td>(C)</td>
</tr>
</tbody>
</table>
III. SIMULATION AND RESULTS

The simulation is carried out using MATLAB - SIMULINK software. Except topology 1, the other topologies are having coupled inductor with turns ratio N=3. Coupled inductor design

\[M = K \sqrt{L_1 L_2} \]

Where \(k = \) coupling coefficient,

\(L_1, L_2 = \) primary and secondary inductance

![Simulink Model (a) Topology 1, (b) Topology 2, (c) Topology 3, (d) Topology 4](image)

The switches which are controlled for discharging and charging mode with duty ratio is given separately for all the four topologies in table 2. The input, output voltage and output power is common for all the topologies. Only the input power varies due to the large inrush of

<table>
<thead>
<tr>
<th>TOPOLOGIES</th>
<th>BOOST SWITCHES</th>
<th>DUTY RATIO</th>
<th>BUCK SWITCHES</th>
<th>DUTY RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>0.69</td>
<td>3.4</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.8</td>
<td>3</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.7</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.6</td>
<td>1.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

(c) Topology 3, (d) Topology 4

The switches which are controlled for discharging and charging mode with duty ratio is given separately for all the four topologies in table 2. The input, output voltage and output power is common for all the topologies. Only the input power varies due to the large inrush of
current at the input side. So the efficiency also varied. In Boost mode, for a given input voltage of 24 V the maximum output voltage obtained as 250 V. Similarly in Buck mode, the input voltage is given as 260 V the output voltage obtained as 24 V. The efficiency is calculated for all the topologies by using below equations.

\[
\text{Efficiency (\%)} = \frac{\text{Output power}}{\text{Input power}} \\
\text{Output power} = \text{output voltage} \times \text{output current} \\
\text{Input power} = \text{input voltage} \times \text{input current}
\]

The efficiency of the third topology is better than the other topologies in both boost and buck mode which is shown in figure 4.

Figure 4. Efficiency of discharging and charging mode for all the topologies

Table 3. Design specifications

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power switch MOSFET</td>
<td>IRFP250</td>
</tr>
<tr>
<td>MOSFET Driver IC</td>
<td>IR2110, 2A, 500V</td>
</tr>
<tr>
<td>Voltage Regulator IC</td>
<td>LM 7812, LM 7912, 5V</td>
</tr>
<tr>
<td>Step down transformer</td>
<td>230/18 V</td>
</tr>
<tr>
<td>Diodes</td>
<td>IN5408, IN4007</td>
</tr>
<tr>
<td>High frequency fast recovery diodes</td>
<td>BY299, BY399, 3 amps, 500V</td>
</tr>
<tr>
<td>High frequency transformer(coupled inductor type)</td>
<td>ETD 39 ferrite core</td>
</tr>
</tbody>
</table>

Table 4. Comparison of four topologies

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of switches</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Voltage gain (Boost)</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{1}{(1-D)^2})</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{1}{(1-D)^2})</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{n}{(1-D)})</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{2 + nD}{1 - D})</td>
</tr>
<tr>
<td>Voltage gain (Buck)</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{V_{\text{H}}}{V_{\text{L}}} = \frac{n}{(1-nD)})</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{D}{(1 + nD)})</td>
<td>(\frac{V_{\text{H}}}{V_{\text{L}}} = \frac{D(1-D)}{2N(1-D)^2} + 1)</td>
<td></td>
</tr>
<tr>
<td>Duty cycle (Boost)</td>
<td>0.69</td>
<td>0.60</td>
<td>0.7</td>
<td>0.58</td>
</tr>
<tr>
<td>Duty cycle (Buck)</td>
<td>0.30</td>
<td>0.25</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>Efficiency of Boost mode</td>
<td>90%</td>
<td>90%</td>
<td>92%</td>
<td>88%</td>
</tr>
<tr>
<td>Efficiency of Buck mode</td>
<td>86%</td>
<td>85%</td>
<td>89%</td>
<td>85%</td>
</tr>
<tr>
<td>Coupled inductor</td>
<td>-----</td>
<td>Used</td>
<td>Used</td>
<td>Used</td>
</tr>
<tr>
<td>No. of passive components</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

The table 4 provides the comparison of Boost and Buck mode for all the topologies. From the table, the minimum number of switches used in topology 2 but the number of passive components and operation of the circuit is complex then the efficiency is also reduced when compared to the other topologies. With very low duty cycle, the output voltage was obtained in topology 4 still the active and passive components are high and the efficiency is less than the other topologies. In topology 3 there are three switches used, the number of passive components and the efficiency is better. Also the circuit operation is like two stage Buck /Boost converter. Hence it gives high efficiency.
IV. EXPERIMENTAL VALIDATION

Hardware is done as a lab-scale model considering the cost, compactness and availability of the devices. The main 230 V AC is stepped down to 50 V is given to full bridge AC-DC rectifier which reduce the ripples and provide DC voltage. Now the DC voltage is converter into AC voltage to feed the AC load by using single phase full bridge inverter. At the same time DC bus voltage charges the battery to 12 VDC through the Non-isolated Bidirectional DC-DC converter. If the supply is off, the battery provides supply to the load. The PWM controller (IC based) circuit is used to operate the switches of the converter. The components used for hardware is listed in table 3.

Experimental results for inverter

Here Sinusoidal PWM approach is used. In this method a triangular wave is compared to a sinusoidal wave of desired frequency and the relative levels of the two waves is used to control the switching of devices in each phase leg of the inverter. The input waveforms of sinusoidal and triangular waves are shown in figure 6(b),(c). The Amplitude modulation index \(M_A \) is defined as the ratio of reference amplitude and carrier amplitude.

\[
M_A = \frac{A_r}{A_c} \quad (0 \leq M_A \leq 1) \quad \text{if } M_A > 1 \text{ for over modulation.}
\]

Here the reference voltage of the inverter is set to \(A_r = 4 \text{V} \), the carrier voltage is always constant \(A_c = 5 \text{V} \) then,

\[
M_A = 0.8
\]

Since the single phase full bridge inverter has four switches, the gate pulse for switches \(S_A, S_B \) and \(S_B, S_C \) is shown in figure 6(d). Inverter output voltage \(= 0.8 \times V_{IN} = 40 \text{V} \)

The output voltage across the AC load was 40 V is shown in figure 6(e).

Experimental results for converter

In charging mode, the voltage gain is \(\frac{V_L}{V_H} = \frac{D}{(1+n-nD)} \)

\[
D = 0.5 \quad \text{(Where } V_L = 12 \text{V, } V_H = 50 \text{V, } n = 3. \text{)}
\]
In Discharging mode, the voltage gain is:

$$D = 0.4 \quad \text{(Where } V_L = 12V, V_H = 50V, n = 3.)$$

When the supply is on, the DC bus voltage feeds the AC load and charging the battery. At this time, the Non-isolated Bidirectional DC-DC converter acts as Buck mode by turning on the switches S_2 and S_3 to reduce the voltage. In order to distribute the continuous voltage to the load even when there is no power supply, the Non-isolated Bidirectional DC-DC converter acts as Boost mode by turning on the switch S_1 to increase the voltage to 52.4V from the 12V battery.

V. CONCLUSION

A Non-Isolated Bidirectional DC-DC Converter (NBDC) of various topologies is selected due to their unique characteristics compared with isolated type. Many topologies are implemented for different applications here four topologies are selected for Uninterruptible Power Supply system (UPS) because of the increased demand of power. The circuit principle and their operating modes for both step up and step down conversion are explained in detail. The design calculation and specifications are also discussed. All the topologies of low voltage side is connected with 24V and high voltage side is connected with 260V. The simulation is done in Matlab/Simulink environment. From the simulation results and comparative study, the third topology is selected as the effective topology by considering the number of switches used, number of passive components and efficiency. A prototype model of 12V/50V is implemented to verify the effectiveness of the converter.

REFERENCE

International Journal of Engineering Research and Applications (IJERA) is UGC approved Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV 80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.