
Vishal Snedan Robertson. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -7) July 2017, pp.08-10

www.ijera.com DOI: 10.9790/9622-0707070810 8 | P a g e

Application of RSAA for File Encryption

*Vishal Snedan Robertson
 1
, Krishnakant Vilas Redkar

 2

1
(Student B.E. Computer Engineering, AITD, Goa, India.

2
(Student MScIT, PRIDE, Periyar University, Salem, Tamil Nadu, India

Corresponding Author: * Vishal Snedan Robertson

ABSTRACT
Security of files for storage or transmission has become extremely important in this age. Files are used all around

us. Prevention of certain files from unauthorised access is very important. Personal or critical files need to be

safeguarded against intruders and hackers. We put forth a variable key length symmetric cryptosystem to encrypt

text files based on the RSAA algorithm. It encrypts files by dividing its contents into blocks of 256 bits block at

a time. High security is achieved even with a single character key. This algorithm is fast and can be used to

encrypt large text files quickly with ease. Brute forcing this algorithm is infeasible due to Block Cellular

Automata’s immense rule space and since key size isn’t fixed.

Keywords: File, Encryption, Decryption, Block Cellular Automata; Margolus neighbourhood; Rule Generator,

Add Key, Hashing.

--- ----------

Date of Submission: 26 -06-2017 Date of acceptance: 20-07-2017

--- ----------

I. INTRODUCTION
The objective is to apply the RSAA

algorithm to encrypt & decrypt text files. previous

work, purpose, and the contribution of the paper.

The 1
st
 section explains the research done on the

current algorithm. The 2
nd

 section describes the

designed algorithm. 3
rd

 section shows some of the

results obtained and the 4
th

 section is for the

conclusion.

II. LITERATURE STUDY
The RSAA algorithm is a symmetric key

cryptosystem [1]. It uses a single secret key used by

the sender to encrypt and by the receiver to decrypt.

The secret key need to be shared between the

communicating parties. The major operation in

RSAA is based on Block Cellular Automata and its

rules. It generates 16 Block Cellular Automata rules

dynamically based on the input key using the

RuleGen() function. The key entered by the user

undergoes hashing in the HashKey() function. The

encrypted output is in hexadecimal, whereas the

input can be any ASCII characters. Input message is

broken down into blocks of 256bits. The encryption

takes place on this 256bit block. After 16 iterations

wherein each iteration uses one of the 16 generated

Block Cellular Automata rules, the encrypted

message is shown as a sequence of 64 hexadecimal

characters per input block.

III. DESIGNED CRYPTOSYSTEM
The designed algorithm uses functions

defined in RSAA Symmetric Key Cryptosystem [1].

Functions such as RuleGen(), HashKey(), AddKey(),

Encrypt Text() and DecryptText() are used as they

are defined by the authors. Changes to the

encryption and decryption function are made so as to

encrypt and decrypt files.

2.1 Rule Generator

The RuleGen() function is applied on the

output of the HashKey() function which takes in as

input the key. The Rule Generation algorithm is as

follows.

Algorithm RuleGen(Key)

numRules is the number of rules generated.

binKey stores the key in ASCII 8bit binary.

TempMat is a matrix of size numRules x 16

TempMat stores a 4bit hex representation of binKey.

RuleMat is a matrix of size numRules x 16.

RuleMat stores the final rules and is initialized to -1.

For every row of TempMat

index i is at start of the current row ie 0 and index j

is at end of the current row ie 15

while i is less than j

Create a pair of the element at i and j which has not

been paired before, if a pair can’t be made then shift

i to the right or j to the left or both.

Store element at j, at location i of current row of

RuleMat

Store element at i, at location j of current row of

RuleMat

RESEARCH ARTICLE OPEN ACCESS

Vishal Snedan Robertson. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -7) July 2017, pp.08-10

www.ijera.com DOI: 10.9790/9622-0707070810 9 | P a g e

For every location of current row of RuleMat whose

value is -1, store value of location at location of

current row of RuleMat

Return RuleMat

2.2 Hashing Function

A hash function is applied on the input key

so as to create a key of constant length irregardless

of the user input. Various hash functions can be

used. SHA-512 is applied on the key as shown

below.

Algorithm HashKey(key)

h1 = SHA-512 on key

h2 = SHA-512 on h1

Return h1 + h2

2.3 XOR function

The AddKey() function performs bitwise

XOR on the bits in the block and corresponding bits

of the key. The AdddKey() function is as shown

below.

Algorithm AddKey(MessageMat,KeyMat)

For every bit of MessageMat

MessageMat = KeyMat XOR MessageMat

2.4 Text Encryption

The function used to encrypt text is shown

below.

Algorithm EncryptText(Message, Key)

Key = HashKey (Key)

RuleMat = RuleGen (Key)

RuleMat is a matrix of size 16 x 16

RuleMat stores the BCA rules generated by RuleGen

KeyMat is a matrix of size 64 x 16

KeyMat stores the bits of the Key after hashing

MessageMat is a matrix of size 16 x 16

MessageMat stores a current block of 32 characters

to be encrypted from Message

NumBlocks is the number of blocks that the

plaintext can be divided into

Pad Message with blank spaces to fill the last block.

For every block

Fill bits of current block into MessageMat

For every rule in RuleMat

Apply FBCA transformation on MessageMat

using current Rule

Apply AddKey () on MessageMat and KeyMat

using one of the 4 parts of the Key

Extract hexadecimal equivalent of the bits in

MessageMat and append it to cipherText

Return cipherText

2.5 Text Decryption

The function to decrypt text is shown below.

Algorithm DecryptText(Message, Key)

Key = hashKey (Key)

RuleMat = RuleGen (Key)

RuleMat is a matrix of size 16 x 16

RuleMat stores the BCA rules generated by RuleGen

KeyMat is a matrix of size 64 x 16

KeyMat stores the bits of the Key after hashing

CipherMat is a matrix of size 16 x 16

CipherMat stores a current block of 32 characters to

be encrypted.

NumBlocks is the number of blocks that the

plaintext can be divided into.

For every block

Fill bits of current block into CipherMat For every

rule in RuleMat Apply AddKey () on CipherMat

and KeyMat using one of the 4 parts of the Key in

reverse order Apply RBCA transformation on

CipherMat using current Rule Extract ASCII

equivalent of the bits in CipherMat and append it to

originalText

Return originalText

2.6 File Encryption

Files can be any type of text files from

word files to program files. The file to be encrypted

is read from the input path specified. Padding is

done to make the length of the file a multiple of 32.

After padding is applied the padded input is split

into blocks of 256bit. Each block is encrypted using

one of the 16 Block Cellular Automata rules. After

all the blocks are encrypted, their output is combined

to form the ciphertext, The FileEncryption()

algorithm is given below.

Algorithm FileEncryption(Key, IP_Path, OP_Path)

Data = contents of file read using ipPath

Split Data into blocks of 256bit

For each 256bit block

Output = EncryptText(Data Block, HashKey(key)))

Append Output to file using opPath

2.7 File Decryption

The file to be decrypted is read from the

input path specified. Each block is decrypted using

one of the 16 Block Cellular Automata rules applied

in reverse order. After all the blocks are decrypted,

their output is combined to form the original

message or plaintext, The FileDecryption()

algorithm is given below.

Algorithm FileDcryption(Key, IP_Path, OP_Path)

Data = contents of file read using ipPath

Split Data into blocks of 256bit

For each 256bit block

Output = DecryptText(Data Block, HashKey(key)))

Append Output to file using opPath

IV. RESULTS
Table 3.1 depicts the results obtained for

the designed algorithm. As can be seen, the

encryption ^ decryption times are almost similar.

Both the encryption and decryption times grow

linearly with an increase in file size.

Vishal Snedan Robertson. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -7) July 2017, pp.08-10

www.ijera.com DOI: 10.9790/9622-0707070810 10 | P a g e

File Size

in MB

Encryption Time

in sec.

Decryption Time

in sec.

1 3 3

2 7 6

5 15 14

10 30 30

Table 3.1

V. CONCLUSION
The designed algorithm is secure and

robust, due to the use of the hashing function. It is

fast and can be used to encrypt huge files in no time.

A limitation for this algorithm is that it can be used

only on text files and not image, audio or video files.

Applications of this cryptosystem can be to securely

store files on ones on system or to send encrypted

files to other people. Servers can use this algorithm

to store user’s files after encrypting them, such that

hackers get only encrypted files in the event of a

leak.

REFERENCES
[1] Shreedatta Sawant, Vaishnavi Kamat, Vishal

Snedan Robertson, Sneha Kamat, Anish Thali,

and Anuj Shetgaonkar, RSAA Symmetric Key

Cryptosystem, IOSR Journal of Computer

Engineering (IOSR-JCE) e-ISSN: 2278-0661,

p-ISSN: 2278-8727, Volume 19, Issue 3, Ver.

III, May - June 2017, pg 53-57

[2] Said Bouchkaren and Saiida Lazaar, A Fast

Cryptosystem Using Reversible Cellular

Automata, IJACSA International Journal
of Advanced Computer Science and

Applications, Vol. 5, No. 5, 2014

Vishal Snedan Robertson . "Application of RSAA for File Encryption." International Journal of

Engineering Research and Applications (IJERA) 7.7 (2017): 08-10.

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

