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ABSTRACT 
In this work theoretical natural frequencies and mode shape of the simply supported beam type main vibrating 

system ie used in many areas like bridges and double-beam structures is determined. Dynamic vibration 

absorber is designed and developed at one of the resonant frequencies of the main vibrating system. Natural 

frequencies and mode shapes of main vibrating system obtained theoretically and also by using FEA analysis. 

The system considered is essentially a modification of the conventional damped vibration absorber and consists 

of adding, in parallel, a subsidiary undamped absorber mass in addition to the damped absorber mass. Uses 

MATLAB to find optimize parameter to reduce the vibration amplitude. Also use ANSYS for FEA analysis of 

simply supported beam type main vibrating system. Development to test the performance of a damped and 

undamped vibration absorber for the simply supported beam type main system. The analysis clearly shows that 

it is possible to obtain an undamped antiresonance in a dynamic absorber system which exhibits a well-damped 

resonance. While the bandwidth of frequencies between the damped peaks is not significantly increased, the 

amplitudes of the main mass are considerably smaller within the operational range of the absorber. A total of 4 

models are taken for consideration for the damped vibration absorber. By comparing in between those models, 

we came to know that model (C) gives better vibration suppression and also required less damping ratio for anti 

resonance. 

Keywords: Tuned Vibration Absorber, Damped TVA, Damped Primary system, Optimum Damping ratio. 

 

LIST OF SYMBOLS                                                                                                                         

Most of the symbols are defined as they occur in the thesis. Some of the most common symbols, which 

are repeatedly used, are listed below.  

 

E = Young‘s modulus of elasticity of the beam 

 I = M I of the beam 

 ρ= density of the beam 

𝑥= distance from one of the ends of beam 

 X = amplitude of vibration  

A = c/s area of the beam 

𝑡 = time independent variable 

𝜔𝑛  = natural frequency of the system 

𝑘 = stiffness of the spring 

𝑋𝑆𝑡 = 𝐹0/ 𝑘1  =  Frequency deflection of first mass 

𝜔1 = 𝑘1/ 𝑚1 = natural frequency of main system alone  

𝜔2 = 𝑘2/ 𝑚2 = natural frequency of the absorber system alone  

𝜇 = 𝑚2/ 𝑚1 = ratio of absorber mass to the main mass 

𝑋𝑠𝑡   = F0/k1 = Static deflection of the system 

𝜔𝑎
2 = k2/m2 = Square of natural frequency of the absorber 

𝜔𝑛
2=  k1/m1 = Square of natural frequency of main mass 

f = 𝜔a/𝜔n = Ratio of natural frequencies  

g = 𝜔/𝜔n = Forced frequency ratio 

C = damping constant 

CC= 2m2𝜔n = Critical damping constant 
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𝜁= C2/CC = Damping ratio 

𝑓𝑓  = favorable tuning frequency/natural frequency of main mass 

𝑓0 = amplitude of the forcing function 
h = natural frequency of undamped absorber/natural frequency of main mass 

𝑖 =  −1 

𝑘1= Spring constant of main spring 

𝑘2= Spring constant of undamped absorber 

𝑘3= Spring constant of damped absorber 

𝑚1 = Magnitude of main system 

r = wire radius of spring 

R = coil radius of spring 

 G=modulus of rigidity 

Φ = rod diameter 

W = Suspended weight 

Kw = Wahl‘s correction factor 

c = spring index 

FRF = Frequency response function 

 

I. LITERATURE REVIEW 
Review of Literature 

The TMD concept was first applied by 

Frahm in 1909 (Frahm, 1909) to reduce the rolling 

motion of ships as well as ship hull vibrations. A 

theory for the TMD was presented later in the paper 

by Ormondroyd and Den Hartog(1928),followed by 

a detailed discussion of optimal tuning and damping 

parameters in Den Hartog‗s book on mechanical 

vibrations(1940). The initial theory was applicable 

tofrahm‘s undamped SDOF system subjected to a 

sinusoidal force excitation.Brock(1946) tooka 

different approach which is quite clever, yet 

straightforward. No differentiation was needed. 

Basedon the results, he suggested the optimum 

damping ratio can be given for model A. Kelly 

mentioned optimize parameter for model A on his 

book‗Fundamentals of Mechanical 

Vibrations(2000)’. Srinivasan give optimize 

parameter for a parallel damped dynamic 

vibrationabsorbers (1969). Kefu liu and Jieliu (2004) 

provide optimize parameter for modified modelA 

system. Extension of the theory to damped SDOF 

systems has been investigated by numerous 

researchers. 

Active control devices operate by using an 

external power supply. Therefore, they are more 

efficient than passive control devices. However the 

problems such as insufficient control-force capacity 

and excessive power demands encountered by 

current technology in the context of structural control 

against earthquakes are unavoidable and need to be 

overcome. Recently a new control approach-semi-

active control devices, which combine the best 

features of both passive and active control devices, is 

very attractive due to their low power demand and 

inherent stability. The earlier papers involving 

SATMDs may traced to 1983. 

 

Hrovatet al.(1983) presented SATMD, a TMD with 

time varying controllable damping.Under identical 

conditions, the behaviour of a structure equipped 

with SATMD instead of TMD is significantly 

improved. The control design of SATMD is less 

dependent on related parameters (e.g, mass ratios, 

frequency ratios and so on), so that there greater 

choices in selecting them.The first mode response of 

a structure with TMD tuned to the fundamental 

frequency of the structure can be substantially 

reduced but, in general, the higher modal responses 

may only be marginally suppressed or even 

amplified. To overcome the frequency-related 

limitations of TMDs, more than one TMD in a given 

structure, each tuned to a different dominant 

frequency, can be used. The concept of multiple 

tuned mass dampers (MTMDs) together with an 

optimization procedure was proposed by Clark 

(1988). Since, then, a number of studies have been 

conducted on the behaviour of MTMDs a doubly 

tuned mass damper (DTMD), consisting of two 

masses connected in series to the structure was 

proposed (Setareh 1994). In this case, two different 

loading conditions were considered: harmonic 

excitation and zero-mean white-noise random 

excitation, and the efficiency of DTMDs on response 

reduction was evaluated. Analytical results show that 

DTMDs are more efficient than the conventional 

single mass TMDs over the whole range of total 

mass ratios, but are only slightly more efficient than 

TMDs over the practical range of mass ratios (0.01-

0.05). 

Recently, numerical and experimental 

studies have been carried out on the effectiveness of 

TMDs in reducing seismic response of structures [for 

instance, Villaverde(1994)]. In Villaverde(1994), 

three different structures were studied, in which the 

first one is a 2D two story shear building the second 

is a three-dimensional (3D) one-story frame building, 

and the third is a 3D cable-stayed bridge, using nine 
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different kinds of earthquake records. Numerical and 

experimental results show that the effectiveness of 

TMDs on reducing the response of the same structure 

during different earthquakes, or of different 

structures during the same earthquake is significantly 

different; some cases give good performance and 

some have little or even no effect. This implies that 

there is a dependency of the attained reduction in 

response on the characteristics of the ground motion 

that excites the structure. This response reduction is 

large for resonant ground motions and diminishes as 

the dominant frequency of the ground motion gets 

further away from the structure's natural frequency to 

which the TMD is tuned. Also, TMDs are of limited 

effectiveness under pulse-like seismic loading. 

Multiple passive TMDs for reducing earthquake 

induced building motion. Allen J. Clark 

(1988). In this paper a methodology for designing 

multiple tuned mass damper for reducingbuilding 

response motion has been discussed. The technique 

is based on extending Den Hartog work from a single 

degree of freedom to multiple degrees of freedom. 

Simplified linear mathematical models were excited 

by 1940 El Centro earthquake and significant motion 

reduction was achieved using the design technique. 

Performance of tuned mass dampers under wind 

loads K. C. S. Kwok et al. (1995).The performance 

of both passive and active tuned mass damper 

(TMD) systems can be readily assessed by 

parametric studies which have been the subject of 

numerous research.. Few experimental verifications 

of TMD theory have been carried out, particularly  

those  involving  active  control, but the  results  of 

those experiments generally compared  well  with 

those  obtained  by parametric  studies. Despite some 

serious design constraints, a number of passive and 

active tuned mass damper systems have been 

successfully installed in tall buildings and other 

structures to reduce the dynamic response due to 

wind and earthquakes. 

Mitigation of response of high-rise 

structural systems by means of optimal tuned mass 

damper. A.N Blekherman(1996). In this paper a 

passive vibration absorber has been proposed to 

protect high-rise structural systems from earthquake 

damages. A structure is modelled by one-mass and n-

mass systems (a cantilever scheme). Damping of the 

structure and absorber installed on top of it is 

represented by frequency independent one on the 

base of equivalent visco-elastic model that allows the 

structure with absorber to be described as a system 

with non-proportional internal friction. A ground 

movement is modelled by an actuator thatproduces 

vibration with changeable amplitude and frequency. 

To determine the optimum absorber parameters, an 

optimization problem, that is a minmaxone, was 

solved by using nonlinear programming technique ( 

the Hooke-Jeves method). 

Survey of actual effectiveness of mass 

damper systems installed in buildings.T.Shimazu and 

H. Araki (1996). In this paper the real state of the 

implementation of mass damper systems, the effects 

of these systems were clarified based on various 

recorded values in actual buildings against both wind 

and earthquake. The effects are discussed in relation 

with the natural period of buildings equipped with 

mass damper systems, the mass weight ratios to 

building weight, wind force levels and earthquake 

ground motion levels.  

A method of estimating the parameters of 

tuned mass dampers for seismic applications. 

FahimSadeket al. (1997). In this paper the optimum 

parameters of TMD that result in considerable 

reduction in the response of structures to seismic 

loading has been presented. The criterion that has 

been used to obtain the optimum parameters is to 

select for a given mass ratio, the frequency and 

damping ratios that would result in equal and large 

modal damping in the first two modes of vibration. 

The parameters are used to compute the response of 

several single and multi-degree of freedom structures 

with TMDs to different earthquake excitations. The 

results show that the use of the proposed parameters 

reduces the displacement and acceleration responses 

significantly. The method can also be used for 

vibration control of tall buildings using the so-called 

mega-substructure configuration, where 

substructures serve as vibration absorbers for the 

main structure.  

Structural control: past, present, and future 

G. W. Housneret al.(1996).This paper basically 

provides a concise point of departure for those 

researchers and practitioners who wishing to assess 

the current state of the art in the control and 

monitoring of civil engineering structures; and 

provides a link between structural control and other 

fields of control theory, pointing out both differences 

and similarities, and points out where future research 

and application efforts are likely to prove fruitful. 

Structural vibration of tuned mass installed 

three span steel box bridge. Byung-Wan Jo et al 

(2001).To reduce the structural vibration of a three 

span steel box bridge a three axis two degree of 

freedom system is adopted to model the mass effect 

of the vehicle and the kinetic equation considering 

the surface roughness of the bridge is derived based 

on Bernoulli-Euler beam ignoring the torsional DOF. 

The effects of TMD on steel box bridge shows that it 

is not effective in reducing the maximum deflection, 

but it efficiently reduces the free vibration of the 

bridge. It proves that the TMD is effective in 

controlling the dynamic amplitude rather than the 

maximum static deflection. 

Optimal placement of multiple tuned mass 

dampers for seismic structures. Genda Chen et 

al.(2001). In this paper effects of a tuned mass 
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damper on the modal responses of a six-story 

building structure are studied. Multistage and 

multimode tuned mass dampers are then introduced. 

Several optimal location indices are defined based on 

intuitive reasoning, and a sequential procedure is 

proposed for practical design and placement of the 

dampers in seismically excited building structures. 

The proposed procedure is applied to place the 

dampers on the floors of the six-story building for 

maximum reduction of the accelerations under a 

stochastic seismic load and 13 earthquake records. 

Numerical results show that the multiple dampers 

can effectively reduce the acceleration of the 

uncontrolled structure by 10–25% more than a single 

damper. Time-history analyses indicate that the 

multiple dampers weighing 3% of total structural 

weight can reduce the floor acceleration up to 40%. 

Seismic effectiveness of tuned mass dampers for 

damage reduction of structures. T. Pinkaew et 

al.(2002).The effectiveness of TMD using 

displacement reduction of the structure is found to be 

insufficient after yielding of the structure, damage 

reduction of the structure is proposed instead. 

Numerical simulations of a 20-storey reinforced 

concrete building modelled as an equivalent inelastic 

single-degree-of-freedom (SDOF) system subjected 

to both harmonic and the 1985 Mexico City (SCT) 

ground motions are considered. It is demonstrated 

that although TMD cannot reduce the peak 

displacement of the controlled structure after 

yielding, it can significantly reduce damage to the 

structure. In addition, certain degrees of damage 

protection and collapse prevention can also be gained 

from the application of TMD. Tuned Mass Damper 

Design for Optimally Minimizing Fatigue Damage. 

Hua-Jun Li et al.(2002). This paper considers the 

environmental loading to be a long-term non-

stationary stochastic process characterized by a 

probabilistic power spectral density function. One 

engineering technique to design a TMD under a 

long-term random loading condition is for 

prolonging the fatigue life of the primary structure. 

Seismic structural control using semi-active 

tuned mass dampers. Yang Runlin et al.(2002).This 

paper focuses on how to determine the instantaneous 

damping of the semi-active tuned mass damper with 

continuously variable damping. An off-and- towards-

equilibrium (OTE) algorithm is employed to examine 

the control performance of the structure/SATMD 

system by considering damping as an assumptive 

control action. Two numerical simulations of a five-

storey and a ten-storey shear structures with a 

SATMD on the roof are conducted. The 

effectiveness on vibration reduction of MDOF 

systems subjected to seismic excitations is discussed 

Structural vibration suppression via 

active/passive techniques.Devendra P. Garg et 

al.(2003). The advances made in the area of vibration 

suppression via recently developed innovative 

techniques (for example, constrained layer damping 

(CLD) treatments) applied to civilian and military 

structures are investigated. Developing theoretical 

equations that govern the vibration of smart 

structural systems treated with piezo-magnetic 

constrained layer damping (PMCLD) treatments and 

developing innovative surface damping treatments 

using micro-cellular foams and active standoff 

constrained layer (ASCL) treatments. The results 

obtained from the above and several other vibration 

suppression oriented research projects being carried 

out under the ARO sponsorship are also included in 

this study. 

Performance of a five-storey benchmark 

model using an active tuned mass damper and a 

fuzzy controller.BijanSamali, Mohammed Al-

Dawod(2003). This paper describes the performance 

of a five-storey benchmark model using an active 

tuned mass damper (ATMD), where the control 

action is achieved by a Fuzzy logic controller (FLC) 

under earthquake excitations. The advantage of the 

Fuzzy controller is its inherent robustness and ability 

to handle any non-linear behaviour of the structure. 

The simulation analysis of the five-storey benchmark 

building for the uncontrolled building, the building 

with tuned mass damper (TMD), and the building 

with ATMD with Fuzzy and linear quadratic 

regulator (LQR) controllers has been reported, and 

comparison between Fuzzy and LQR controllers is 

made. In addition, the simulation analysis of the 

benchmark building with different values of 

frequency ratio, using a Fuzzy controller is 

conducted and the effect of mass ratio, on the five-

storey benchmark model using the Fuzzy controller 

has been studied. 

Behaviour of soil-structure system with 

tuned mass dampers during near-source earthquakes. 

NawawiChouw(2004). In this paper the influence of 

a tuned mass damper on the behaviour of a frame 

structure during near-source ground excitations has 

been presented. In the investigation the effect of soil-

structure interaction is considered, and the natural 

frequency of the tuned mass damper is varied. The 

ground excitations used are the ground motion at the 

station SCG and NRG of the 1994 Northridge 

earthquake. The investigation shows that the soil-

structure interaction and the characteristic of the 

ground motions may have a strong influence on the 

effectiveness of the tuned mass damper. But in order 

to obtain a general conclusion further investigations 

are necessary. 

Wind Response Control of Building with 

Variable Stiffness Tuned Mass Damper Using 

Empirical Mode Decomposition Hilbert Transform 

NadathurVaradarajan et al.(2004).The effectiveness 

of a novel semi-active variable stiffness-tuned mass 

damper ~SAIVS-TMD! for the response control of a 



 

 

 

  

S Pani. Int. Journal of Engineering Research and Application                                         www.ijera.com 

ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.49-77 

 

 
www.ijera.com                            DOI:  10.9790/9622-0707034977                                              53 | P a g e  

 

 

wind-excited tall benchmark building is investigated 

in this study. The benchmark building considered is a 

proposed 76-story concrete office tower in 

Melbourne, Australia. Across wind load data from 

wind tunnel tests are used in the present study. The 

objective of this study is to evaluate the new SAIVS-

TMD system,that has the distinct advantage of 

continuously retuning its frequency due to real time 

control and is robust to changes in building stiffness 

and damping. The frequency tuning of the SAIVS-

TMD is achieved based on empirical mode 

decomposition and Hilbert transform instantaneous 

frequency algorithm developed by the writers. It is 

shown that the SAIVS-TMD can reduce the 

structural response substantially, when compared to 

the uncontrolled case, and it can reduce the response 

further when compared to the case with TMD. 

Additionally, it is shown the SAIVS-TMD reduces 

response even when the building stiffness changes by 

15%. 

Effect of soil interaction on the performance 

of tuned mass dampers for seismic applications. A. 

Ghosha, B. Basu(2004).The properties of the 

structure used in the design of the TMD are those 

evaluated considering the structure to be of a fixed-

base type. These properties of the structure may be 

significantly altered when the structure has a flexible 

base, i.e. when the foundation of the structure is 

supported on compliant soil and undergoes motion 

relative to the surrounding soil. In such cases, it is 

necessary to study the effects of soil-structure 

interaction (SSI) while designing the TMD for the 

desired vibration control of the structure. In this 

paper, the behaviour of flexible-base structures with 

attached TMD, subjected to earthquake excitations 

has been investigated. Modified structural properties 

due to SSI has been covered in this paper. 

Optimal design theories and applications of 

tuned mass dampers. Chien-Liang Lee et 

al.(2006).An optimal design theory for structures 

implemented with tuned mass dampers (TMDs) is 

proposed in this paper. Full states of the dynamic 

system of multiple-degree-of-freedom (MDOF) 

structures, multiple TMDs (MTMDs) installed at 

different stories of the building, and the power 

spectral density (PSD) function of environmental 

disturbances are taken into account. The optimal 

design parameters of TMDs in terms of the damping 

coefficients and spring constants corresponding to 

each TMD are determined through minimizing a 

performance index of structural responses defined in 

the frequency domain. Moreover, a numerical 

method is also proposed for searching for the optimal 

design parameters of MTMDs in a systematic 

fashion such that the numerical solutions converge 

monotonically and effectively toward the exact 

solutions as the number of iterations increases. The 

feasibility of the proposed optimal design theory is 

verified by using a SDOF structure with a single 

TMD (STMD), a five-DOF structure with two 

TMDs, and a ten-DOF structure with a STMD. 

Optimum design for passive tuned mass 

dampers using viscoelastic materials. I Saidi, A D 

Mohammed et al.(2007). This paper forms part of a 

research project which aims to develop an innovative 

cost effective Tune Mass Damper (TMD) using 

viscoelastic materials. Generally, a TMD consists of 

a mass, spring, and dashpot which is attached to a 

floor to form a two-degree of freedom system. TMDs 

are typically effective over a narrow frequency band 

and must be tuned to a particular natural frequency. 

The paper provides a detailed methodology for 

estimating the required parameters for an optimum 

TMD for a given floor system. The paper also 

describes the process for estimating the equivalent 

viscous damping of a damper made of viscoelastic 

material. Finally, a new innovative prototype 

viscoelastic damper is presented along with 

associated preliminary results. 

Semi-active Tuned Mass Damper for Floor 

Vibration Control .Mehdi Setareh et al.(2007). A 

semi-active magneto-rheological device is used in a 

pendulum tuned mass damper PTMD system to 

control the excessive vibrations of building floors. 

This device is called semi-active pendulum tuned 

mass damper SAPTMD. Analytical and experimental 

studies are conducted to compare the performance of 

the SAPTMD with its equivalent passive counterpart. 

An equivalent single degree of freedom model for 

the SAPTMD is developed to derive the equations of 

motion of the coupled SAPTMD-floor system. A 

numerical integration technique is used to compute 

the floor dynamic response, and the optimal design 

parameters of the SAPTMD are found using an 

optimization algorithm. Effects of off-tuning due to 

the variations of the floor mass on the performance 

of the PTMD and SAPTMD are studied both 

analytically and experimentally. From this study it 

can be concluded that for the control laws considered 

here an optimum SAPTMD performs similarly to its 

equivalent PTMD, however, it is superior to the 

PTMD when the floor is subjected to off-tuning due 

to floor mass variations from sources other than 

human presence. 

Seismic Energy Dissipation of Inelastic 

Structures with Tuned Mass Dampers. K. K. F. 

Wong(2008).The energy transfer process of using a 

tuned mass damper TMD in improving the ability of 

inelastic structures to dissipate earthquake input 

energy is investigated. Inelastic structural behaviour 

is modelled by using the force analogy method, 

which is the backbone of analytically characterizing 

the plastic energy dissipation in the structure. The 

effectiveness of TMD in reducing energy responses 

is also studied by using plastic energy spectra for 

various structural yielding levels. Results show that 
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the use of TMD enhances the ability of the structures 

to store larger amounts of energy inside the TMD 

that will be released at a later time in the form of 

damping energy when the response is not at a critical 

state, thereby increasing the damping energy 

dissipation while reducing the plastic energy 

dissipation. This reduction of plastic energy 

dissipation relates directly to the reduction of 

damage in the structure. 

Dynamic analysis of space structures with 

multiple tuned mass dampers. Y.Q. Guo and 

W.Q.Chen(2008). Formulations of the reverberation 

matrix method (RMM) are presented for the dynamic 

analysis of space structures with multiple tuned mass 

dampers (MTMD). The theory of generalized inverse 

matrices is then employed to obtain the frequency 

response of structures with and without damping, 

enabling a uniform treatment at any frequency, 

including the resonant frequency. For transient 

responses, the Neumann series expansion technique 

as suggested in RMM is found to be confined to the 

prediction of accurate response at an early time. The 

artificial damping technique is employed here to 

evaluate the medium and long time response of 

structures. The free vibration, frequency response, 

and transient response of structures with MTMD are 

investigated by the proposed method through several 

examples. Numerical results indicate that the use of 

MTMD can effectively alter the distribution of 

natural frequencies as well as reduce the 

frequency/transient responses of the structure. The 

high accuracy, lower computational cost, and 

uniformity of formulation of RMM are also 

highlighted in this paper. 

Exploring the performance of a nonlinear 

tuned mass damper. Nicholas A. Alexander and 

Frank Schilder (2009).In this the performance of a 

nonlinear tuned mass damper (NTMD), which is 

modelled as a two degree of freedom system with a 

cubic nonlinearity has been covered. This 

nonlinearity is physically derived from a geometric 

configuration of two pairs of springs. The springs in 

one pair rotate as they extend, which results in a 

hardening spring stiffness. The other pair provides a 

linear stiffness term. In this paper an extensive 

numerical study of periodic responses of the NTMD 

using the numerical continuation software AUTO has 

been done. Two techniques have been employed for 

searching the optimal design parameters; 

optimization of periodic solutions and parameter 

sweeps. In this paper the writers have discovered a 

family of resonance curves for vanishing linear 

spring stiffness. 

Application of semi-active control strategies 

for seismic protection of buildings with MR 

dampers. Maryam Bitaraf et al.(2010).Magneto-

rheological (MR) dampers are semi-active devices 

that can be used to control the response of civil 

structures during seismic loads. They are capable of 

offering the adaptability of active devices and 

stability and reliability of passive devices. One of the 

challenges in the application of the MR dampers is to 

develop an effective control strategy that can fully 

exploit the capabilities of the MR dampers. This 

study proposes two semi-active control methods for 

seismic protection of structures using MR dampers. 

The first method is the Simple Adaptive Control 

method which is classified as a direct adaptive 

control method. The controller developed using this 

method can deal with the changes that occur in the 

characteristics of the structure because it can modify 

its parameters during the control procedure. The 

second controller is developed using a genetic-based 

fuzzy control method. In particular, a fuzzy logic 

controller whose rule base determined by a multi-

objective genetic algorithm is designed to determine 

the command voltage of MR dampers. 

Vibration control of seismic structures using 

semi-active friction multiple tuned mass dampers. 

Chi-Chang Lin et al.(2010) There is no difference 

between a friction-type tuned mass damper and a 

dead mass added to the primary structure if static 

friction force inactivates the mass damper. To 

overcome this disadvantage, this paper proposes a 

novel semi-active friction-type multiple tuned mass 

damper (SAF-MTMD) for vibration control of 

seismic structures. Using variable friction 

mechanisms, the proposed SAF-MTMD system is 

able to keep all of its mass units activated in an 

earthquake with arbitrary intensity. A comparison 

with a system using passive friction-type multiple 

tuned mass dampers (PF-MTMDs) demonstrates that 

the SAF-MTMD effectively suppresses the seismic 

motion of a structural system, while substantially 

reducing the strokes of each mass unit, especially for 

a larger intensity earthquake. 

 

II. AIM AND SCOPE OF THIS WORK 
However, despite of its many advantages 

for DVA it can be effectively used only in the case of 

constant speed machines. But in many practical 

applications the excitation frequency may not be 

constant: In such cases, the concept of DVA may not 

be applicable because the absorber is designed with a 

frequency matches the excitation frequency. For a 

wide range of excitation frequencies either the mass 

or stiffness of the spring has made to be varied 

according to the variation in its excitation frequency. 

1. To improve the effectiveness of the conventional 

absorber by suitable modification, or 

2. To invent entirely different and better devices in 

the hope of replacing the conventional absorber. 

Gyroscopic vibration absorbers and impact dampers 

are but a few of the new devices that belong to the 

latter group. However, the only modification 

considered so far in the former group is the addition 
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of damping to the absorber mass. The purpose of this 

paper is to examine a further modification of the 

conventional absorber. Such a modification consists 

of adding, in parallel, a subsidiary undamped 

absorber mass in addition to the damped absorber 

mass. The system considered is shown in below Fig. 

The analysis that follows consists mainly of: 

1. the derivation of the governing equations of 

motion, and 

2. derivation of the condition for the amplitude of the 

main mass to be independent of the damping ratio 

C/Cc. 

The latter condition provides the 

frequencies at which the amplitudes of the main mass 

are independent of the damping ratio C/Cc- In 

addition, for the particular case of practical interest 

(i.e., when the absorber masses and the springs have 

the same value), the so-called favorable tuning (i.e., 

the tuning frequency at which the absolute value of 

the amplitudes independent of C/Cc is the same) has 

been determined in the form of a simple equation. 

Under this favorable tuning, the mass ratio required 

to provide the greatest spread between the 

frequencies is determined.Also, the equation which 

provides the optimum damping ratio (i.e., the ratio 

C/Cc at which the slope of the response curve is 

zero) has been derived. 

 

III. THEORETICAL ANALYSIS 
Theoretical analysis of continuous beam vibration: 

The general differential equation governing transverse vibration of a Euler-bernouli beam is given as 

EI 
𝜕4𝑋

𝜕𝑥4(𝑥,𝑡)  + 𝜌𝐴
𝜕2𝑋

𝜕𝑡2 (𝑥,𝑡)  =𝑓(𝑥,𝑡) 

 

For free,  𝑓 (𝑥,𝑡)=0 ,vibration, and so the equation of motion becomes 

 

C
2𝜕

4𝑋

𝜕𝑥4(𝑥,𝑡)  + 
𝜕2𝑋

𝜕𝑡2 (𝑥, 𝑡)  = 0      ...............................................(1) 

 

Where c =  
𝐸𝐼

𝜌𝐴
 

 

The free-vibration solution can be found using the method of separation of variables as 

X(𝑥, 𝑡) = X(𝑥)T(𝑡) …………………………....(2) 

Substituting Eq. (2) into Eq. (1) and rearranging leads to 
𝐶2

𝑋(𝑥)

𝜕4𝑋(𝑥)

𝜕𝑥4   = −
1

𝑇(𝑡)

𝜕2𝑇(𝑡)

𝜕𝑡2   = 𝑎 = 𝜔2……………………………….. (3) 

Where𝑎 =𝜔2 is a positive constant . Eq. (3) can be written as two equations: 

 
𝜕4𝑋(𝑥)

𝜕𝑥4 − 𝛽4X(x)  = 0  ………………………………………...(4) 

Where     

𝛽4 = 
𝜔2

𝑐2  = 
𝜌𝐴𝜔2

𝐸𝐼
 ………………………………..(5) 

The solution of Eq. (5) can be expressed as 

T(t) = A cos ωt + B sin ωt  ……………………………………..(6) 

X(x) = C1 cos 𝛽x + C2 sin𝛽x  + C3cosh𝛽𝑥 + C4sinh𝛽𝑥……….(7) 

Where  C1, C2, C3 and C4   ineach case, are different constants. The constants C1, C2, C3 and C4 can be found 

from the boundary conditions. The natural frequencies of the beam are computed from Eq. (5) as  

𝜔 =  𝛽2 
𝐸𝐼

𝜌𝐴
= (𝛽𝑙)2 

𝐸𝐼

𝜌𝐴𝑙4  

…………………….……..(8) 

The function X(x) is known as the normal mode or 

characteristic function of the beam and ω is called 

the natural frequency of vibration. For any beam, 

there will be an infinite number of normal modes 

with one natural frequency associated with each 

normal mode. The unknown constants to in Eq. (7) 

and the value  ᵦ of in Eq. (8) can be determined from 

the boundary conditions of the beam as indicated 

below. 

Boundary condition for a Simply supported (pinned) 

end: 

Deflection= X= 0, Bending moment =EI
𝜕2𝑋

𝜕𝑥2  =0 at both ends. 

 



 

 

 

  

S Pani. Int. Journal of Engineering Research and Application                                         www.ijera.com 

ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.49-77 

 

 
www.ijera.com                            DOI:  10.9790/9622-0707034977                                              56 | P a g e  

 

 

 
Figure III-1simply supported beam 

After utilizing the above boundary condition for simply supported beam vibration analysis, we got the below 

result as shown in table 3.1.  

 

Table 3.1First four natural frequency for different modes of vibrating simply supported beam. 

End conditions 

OfBeam 

Frequency                  

Equation                Mode shape (Normal function) 

 

Value of 𝛽𝑛 𝑙 
Pinned-Pinned 

 
 

sin𝛽𝑛 l = 0        𝑋𝑛(𝑥) = Cn[sin𝛽𝑛x] 

 
 

 

𝛽1𝑙 = 𝜋 

𝛽2𝑙 = 2𝜋 

𝛽4𝑙 = 3𝜋 

𝛽3𝑙 = 4𝜋 

 

a. Undamped Vibration Absorbers: 

 
Figure III-2Undamped dynamic vibration absorber 

 
The  dynamic vibration absorbers, in the form of dumbbell-shaped devices are hung from transmission lines to 

mitigate the fatigue effects of wind inducedvibration. 

 

The equations of motion of the masses m1 and m2 are 

 

𝑚1�̈�1+ k1x1 + k2 (x1− x2) = F0𝑠𝑖𝑛𝜔t 

𝑚2�̈�2 + k2 (x2 – x1) = 0…………………….………… (9) 

By assuming harmonic solution, 

Xj(t)  = Xj𝑠𝑖𝑛𝜔t,        j = 1,2   ………………(10) 

we can obtain the steady-state amplitudes of the masses m1 and m2 as 

𝑋1

𝑋𝑠𝑡
 = 

 1 − 
𝜔 2

𝜔 2
2 

𝜔 4

𝜔 1
2𝜔 2

2   –  1+𝜇 
𝜔 2

𝜔 1
2  + 

𝜔 2

𝜔 2
2  + 1 

……………..………. (11) 

𝑋2

𝑋𝑠𝑡
 = 

1 

𝜔 4

𝜔 1
2𝜔 2

2  –   1+𝜇 
𝜔 2

𝜔 1
2  + 

𝜔 2

𝜔 2
2  + 1 
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Therefore  there are two values of ω for which these expressions vanish. 

 
𝜔

𝜔2
 

2

=  1 + 
𝜇

2
 ±  𝜇 +  

𝜇2

4
  ………………………..… (12) 

The addition of  a vibration absorber is meaningful, 

if the main system is at resonance or atleast near to it. 

Under these condition we have 𝜔1 = 𝜔. But for the 

absorber to be effective, we have𝜔2 = 𝜔. Therefore 

for the effectiveness of the absorber to be obtained , 

we have to 𝜔2 = 𝜔1 𝑜𝑟 𝑘2/ 𝑚2 = 𝑘1/ 𝑚1. 

Whenthe above condition is fulfilled, the absorber is 

known as tuned absorber. 

When𝜔2 = 𝜔;    X2  =−F0/K2 

 

 
Figure III-3 Effect of undamped vibration absorber 

on the response of machine. 

 
Figure III-4 Effect of mass ratio on                                   

resonant frequency. 

 

There is many combination of K2and M2, 

but when K2is small X2is large, But for practical 

consideration X2< X1/2. It cannot be so high. If K2 is 

large, m2 is also large. Which make again a bulky 

system. So a compromise will make by taking proper 

range of mass ratio(µ)=0.05 to 0.25. These difficulty, 

we can minimize some extent by using parallel dual 

mass dynamic vibration absorber. 

 

b.  

 

c. Undamped parallel dual mass dynamic Vibration Absorbers: 

𝑚1�̈�1+ k1x1 + k2 (x1− x2) + k3(x1− x3)= 𝐹0𝑠𝑖𝑛𝜔t 

𝑚2�̈�2+ k2 (x2 – x1) =0   ………………………………… (13) 

𝑚3�̈�3+ k3 (x3 – x1) =0 

 
Figure III-5 Dual mass parallel vibration absorber 

 

By assuming harmonic solution, 

Xj(t)  = Xj𝑠𝑖𝑛𝜔t,        j = 1,2,3    

If  m2 =𝑚3    and  k2 = k3 

Then                          
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𝑋1

𝑋𝑠𝑡
 = 

 1 − 
𝜔 2

𝜔 2
2 

𝜔 4

𝜔 1
2𝜔 2

2  –   1+𝜇 
𝜔 2

𝜔 1
2  + 

𝜔 2

𝜔 2
2  + 1 

 

𝑋2

𝑋𝑠𝑡
 = 

1 

𝜔 4

𝜔 1
2𝜔 2

2  –   1+𝜇 
𝜔 2

𝜔 1
2  + 

𝜔 2

𝜔 2
2  + 1 

 

and X2 = X3   ; 𝜇 = (𝑚2+𝑚3)/ 𝑚1 

When 𝜔2 = 𝜔;   X2 =X3=−F0/2K2 

By this method we can minimize the amplitude of 

vibration of absorber mass as well as we increase the 

range of the mass ratio(µ). Dual mass DVA can‘t 

eliminate completely to frahm‘s conventional DVA 

but somewhat it is more advantages one. 

 

d. J.P. Den Hartog’s damped dynamic Vibration 

Absorbers: 

The dynamic vibration absorber described 

in the previous section removes the original 

resonance peak in the response curve of the machine 

but introduces two new peaks. Thus the machine 

experiences large amplitudes as it passes through the 

first peak during start-up and stopping. The 

amplitude of the machine can be reduced by adding a 

damped vibrationas shown in Fig.3-6The equations 

of motion of the two masses are given by 

 
Figure III-6 Damped dynamic vibration absorber model A 

 

The equations of motion of the masses m1 and m2 are    
𝑚1�̈�1+ k1x1 + k2 (x1− x2) + C2(𝑥1 −  𝑥2 ) = 𝐹0𝑠𝑖𝑛𝜔t 

𝑚2�̈�2+ k2 (x2 – x1) + C2(𝑥2 − 𝑥1 )  =0  …………….…..(14) 

 

By assuming the solution to be 

Xj(t)  = Xj𝑒
𝑖𝜔𝑡 ,        j = 1,2    

The steady state solution of  above Eqs.can be obtained: 

𝑋1

𝑋𝑠𝑡
 =  

 2𝜁g 2+  g2−f2 
2

 2𝜁g 2 g2– 1 + μg2 
2

+  μf2g2− g2− 1  g2−f2  2
 

1
2 

….…(15) 

And 

𝑋2

𝑋𝑠𝑡
 =  

 2𝜁g 2+ 𝑓4

 2𝜁g 2 g2– 1 + μg2 
2

+  μf2g2− g2− 1  g2−f2  2
 

1
2 

……(16) 

 

Eq. (15) shows that the amplitude of vibration of the 

main mass is a function of g and 𝜁 .The graph 

of  
𝑋1

𝑋𝑠𝑡
  against the forced frequency ratio g = 𝜔/𝜔n 

is shown in Fig.3-7 for f = 1  and µ = 1/20 for a few 

different values of 𝜁 . 

If damping (c2 = 𝜁= 0) is zero then resonance occurs 

at the two undamped resonant frequencies of the 
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system, a result that is already indicated in Fig.3-7. 

When the damping becomes infinite 

(𝜁=∞)  the two masses𝑚1 and𝑚2 are virtually 

clamped together, and the system behaves essentially 

as a single-degree-of-freedom system with amass 

of (𝑚1 +  𝑚2) = (21/20)𝑚 and stiffness of  k1 In 

this case also, resonance occurs with at 

g =  
𝜔

𝜔𝑛
 = 

1

 1+ 𝜇
 = 0.9759 

 

 
Figure III-7 Effect of damped vibration absorber on the response of the machine 

 

Thus the peak of  𝑋1 is infinite for c2 as well as for 

c2= ∞. Somewhere in between these limits, the peak 

of  𝑋1 will be a minimum. 

i. Optimally Tuned Vibration Absorber for 

model A. 
It can be seen from Fig.III-8  that all the curves 

intersect at points A and B regardless of the value of 

damping. These points can be located by substituting 

the extreme cases of ζ =0 and ζ= ∞into Eq. (15) and 

equating the two. This yields the following things. 

To see if there is any value of ―g‖ for 

which 
𝑋1

𝑋𝑠𝑡
 becomes independent  of ζ .The formula 

is the form  

𝑋1

𝑋𝑠𝑡
 =  

𝐴𝜁2+ 𝐵

𝐶𝜁2+ 𝐷
 

This is independent of  ζ if  
𝐴

𝐶
 = ±

𝐵

𝐷
 . 

 
1

g2− 1+ 𝜇g2 
2

 =   
g2−f2

μf2g2− g2− 1  g2−f2 
 

2

 ….……………(17) 

 
There are two values of  g for which the above 

Eq.(17) is applicable. By taking -ve sign of right-

hand side of Eq. (17), we got g=0 .this is trival but 

true solution and the other solution becomes 

g4 − 2g2  
1+ f2+ 𝜇 f2

2+ 𝜇
  + 

2f2

2+ 𝜇
=  0  ………………….…… (18) 

The two roots of Eq. (18) indicate the 

values of the frequency ratio, gA= 𝜔A/𝜔 and gB= 

𝜔B/𝜔, corresponding to the points A and B. The 

ordinates of A and B can be found by substituting the 

values of gA and gB respectively, into Eq. (11). It has 

been observed from fig.(3-7) that the most efficient 

vibration absorber is one for which the ordinates of 

the pointsA and B are equal. This condition requires 

that  

𝑋1

𝑋𝑠𝑡
 =  

1

 1 −g2 1+ 𝜇 
  ……………………………………… (19) 

substituting the values of gA and  gB in Eq. (19)  we got 

 
1

 1 −g𝐴
2  1+ 𝜇 

  =  
1

 1 −g𝐵
2  1+ 𝜇 

 …………………….……… (20) 

 

By simple algebra method the Eq.(20) corrected and  becomes 

g𝐴
2  + g𝐵

2  = 
2

1+ 𝜇
 ……………………………...………… (21) 

In Eq.(18) the sum becomes 

g𝐴
2  + g𝐵

2  = 
2 1+ f2+ 𝜇 f2 

2+ 𝜇
 ………………………………. (22) 
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Equating Eq.(21) and (22), result becomes 

𝑓  =  
1

1+ 𝜇
 ………………………………………… (23) 

An absorber satisfying Eq. (23) can be 

correctly called the tuned vibration 

absorber.Although Eq. (23) indicates how to tune an 

absorber, it does not indicate the optimal value of the 

damping ratio ζ and the corresponding value of 
𝑋1

𝑋𝑠𝑡
. 

The optimal value of  ζ can be found by making the 

response curve as flat as possible at peaks A and B. 

This can be achieved by making the curve horizontal 

at either A or B, as shown in Fig. 3-8. For this, first 

Eq. (23) is substituted into Eq.(15) to make the 

resulting equation applicable to the case of optimum 

tuning. Then the modified Eq.(15) is differentiated 

with respect to g to find the slope of  
𝑋1

𝑋𝑠𝑡
. The curve 

of By setting the slope equal to zero at points A and 

B, we obtain 

 

 
Figure III-9 Tuned vibration absorber 

 

𝜁2 = 
𝜇 3− 

𝜇

𝜇  +2 
 

8 1+ 𝜇 3         for point A     ……………………. (24) 

And  

𝜁2 = 
𝜇 3 +  

𝜇

𝜇  +2 
 

8 1+ 𝜇 3         for point B     …………..………. (25) 

 

 

A  convenient average value of 𝜁2 given by Eqs. (24) and (25) is used in design so that  

𝜁𝑜𝑝𝑡𝑖𝑚𝑎𝑙
2  =  

3𝜇

8 1+ 𝜇 3……………………….……. (26) 

 

The corresponding optimal value of 
𝑋1

𝑋𝑠𝑡
 obtains by putting the value g from Eq.(18)  in Eq.(19) becomes 

 
𝑋1

𝑋𝑠𝑡
 
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 =  
𝑋1

𝑋𝑠𝑡
 
𝑚𝑎𝑥

 =  1 + 
2

𝜇
  …………..…… (27) 

 

It can be seen from Eq. (16) that the amplitude of the 

absorber mass (X2)  is always much greater than that 

of the main mass(X1) Thus the design should be able 

to 

 Accommodate the large amplitudes of the 

absorber mass. 

 Since the amplitudes of (M2) are expected to be 

large, the absorber spring (K2) needs to be designed 

from a fatigue point of view. 

According to S.G.Kelly on his book ―Fundamentals 

of Mechanical Vibrations‖, If the damping ratio is 

defined 
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as 𝜁 = 
𝐶2

2𝑚2𝜔𝑎
  

Then 𝜁𝑜𝑝𝑡  =  
3𝜇

8(1+ 𝜇)
 

Subsequently, Brock took a different approach which 

is quite clever, yet straight forward. No 

differentiation was needed. Based on the results, he 

suggested that the optimum damping ratio for 

constant tuning. The constant tuning is defined as the 

case when 𝑓 = 1 can be given by 

𝜁𝑜𝑝𝑡  =  
𝜇 3+ 𝜇  1+  

𝜇
 2+ 𝜇   

8 1+ 𝜇 
 

 

e. Optimum parameters of model B: 

𝑋1

𝑋𝑠𝑡
 =  

 2𝜁g 2+  g2−f2 
2

  1 + μf2−g2 2 2𝜁g 2+   1−g2  f2−g2 −μf2g2 2 

1
2 

…... (28) 

𝑋2

𝑋𝑠𝑡
 =  

 2𝜁g 2+ f4

  1 + μf2−g2 2 2𝜁g 2+   1−g2  f2−g2 −μf2g2 2 
1

2 

….... (29) 

 

 
Figure III-10 Dynamic vibration absorber model B(a)skyhook damper(b)groundhook damper 

 

Kefu Liu and Jie Liu, ―The damped dynamic 

vibration absorbers: revisited and new result‖,  has 

been provided the optimum parameter on model B. 

𝑓 =  
1

 1 − 𝜇
 

 
𝑋1

𝑋𝑠𝑡
 
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 =  
𝑋1

𝑋𝑠𝑡
 
𝑚𝑎𝑥

 = 
2 1−𝜇 

 2𝜇
 

𝜁𝑜𝑝𝑡  = 
1

2
 

3𝜇

(1−𝜇) 2−𝜇 
 

Brock also found the result for constant tuning. In 

the case of model B, the ordinate of point B is 

greater than that of point A: We found that the 

optimum damping ratio is of the form: 

𝜁𝑜𝑝𝑡  =  
 𝜇 𝜇  + 6− 𝜇 𝜇+2  

4
 

Brock employed a perturbation method instead of 

differentiating a high-order equation. For model B 

to be optimum, a larger damping ratio is required. 

Overall, model B gives better vibration suppression. 
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f. Optimum parameters of model C: 

 
Figure III-11 Dynamic vibration absorber model C 

The equation of motion for Model C is given by: 

 
𝑚1 0
0 𝑚2

  
𝑥1 
𝑥2 

  +  
𝑐1 0
0 𝑐2

  
𝑥1 
𝑥2 

  +  
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
  

𝑥1

𝑥2
 =  

𝐹0

0
 sin(𝜔𝑡) 

After solving the above equation of motion of model C. 

The normalized amplitude of the steady-state response of the primary mass is given as: 

 

 
𝑋1

𝑋𝑠𝑡
 
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 =  
 1−

g2

f2  
2

+ 4 𝜁𝑎
g

f
 

2

 
g4

f2 − 
4𝜁𝑎 𝜁𝑝

f
 + 

1

f2  +  μ+1  g2+ 1 

2

+  4 g 𝜁𝑝 + 
𝜁𝑎
f
 −

g3

f
 𝜁𝑎 + 

𝜁𝑝

f
 + gf𝜁𝑎𝜇 

2
…...... (30) 

 
𝑋2

𝑋𝑠𝑡
 
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 =  
1+ 4 𝜁𝑎

g

f
 

2

 
g4

f2 − 
4𝜁𝑎 𝜁𝑝

f
 + 

1

f2  +  μ+1  g2+ 1 

2

+  4 g 𝜁𝑝 + 
𝜁𝑎

f
 −

g3

f
 𝜁𝑎 + 

𝜁𝑝

f
 + gf𝜁𝑎𝜇 

2
..........(31) 

 

Where 

𝜁𝑝  = 
𝐶1

2𝑚1𝜔𝑝
  ,    𝜁𝑎  = 

𝐶2

2𝑚2𝜔𝑎
 

Kefu Liu and Gianmarc Coppolahas been provided the optimum parameter on model C. 

𝑓 =   
1−4𝜁𝑝

2

1−𝜇
  , 𝜁𝑎(𝑜𝑝𝑡𝑖𝑚𝑎𝑙 )

∗  = 
1

2
 

3𝜇

2−𝜇
 

It has been found that with an increase of the 

damping ratio ζp or the mass ratio µ , the optimum 

tuning parameter f decreases and the optimum 

damping ratio ζa increases. 

g. Optimum parameters of model D: 

Analysis of Parallel Damped Dynamic Vibration 

Absorbers: 

The equations of motion can be readily written as: 

𝑚1�̈�1 + k1x1 + k2 (x1− x2) + k3 (x1– x3) +  C(𝑥1 − 𝑥2 ) = 𝐹0𝑒
𝑖𝜔𝑡  

𝑚2�̈�2+ k2 (x2 – x1) =0 ……………………..……..….. (32) 

𝑚3�̈�3+ k3 (x3 – x1) + C(𝑥3 − 𝑥1 ) = 0 
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Figure III-12 parallel dual mass damped dynamic vibration absorber 

 

f = 𝜔3 / 𝜔1, g = 𝜔 / 𝜔1, h = 𝜔2 / 𝜔1, µ2 = m2/m1, µ3 = m3/m1 ,𝜁 = C/Cc=  𝐶 2𝑚2𝜔𝑝
  

𝑋1

𝑋𝑠𝑡
 = 

 1− 
g2

f2  − 
g2

h 2  +  
g4

f2h2 + 𝑖2𝜁
g

f2 1− 
g2

h 2 

 
  1+ 𝜇2h2+ 𝜇3f2−g2  1− 

g2

f2  − 
g2

h 2  +  
g4

f2h 2 + 𝜇2h2 
g2

f2  − 1 + 𝜇3f2 
g2

h 2  − 1  

+ 𝑖2𝜁g𝜇3  1− 
g2

f2  − 
g2

h 2  +  
g4

f2h 2 +  1− 
g2

h 2  
𝜇 2
𝜇 3

h 2

f2  + 
1

𝜇 3

1

f2  − 
1

𝜇 3

g2

f2  − 1  − 
𝜇 2
𝜇 3

h 2

f2  
 

  ………… (33) 

𝐷
𝑋2

𝑋𝑠𝑡
 =  1 −

g2

f2  + 𝑖2𝜁
g

f2 

𝐷
𝑋3

𝑋𝑠𝑡
 =  1 −

g2

h2  1 +  𝑖2𝜁
g

f2 ………………………… (34) 

It can be easily shown that 
𝑋1

𝑋𝑠𝑡
 is independent of the damping ratio provided if  

𝐴

𝐶
= ±

𝐵

𝐷
   ….…………….……………………………(35) 

Omitting the minor details of calculation, the above equation may be shown to reduce to (when the minus sign 

is chosen): 

𝜇3g4 h2 − g2 2 = 0  ………………………..…..… (36) 

This is a trivial, but true, equation. According to 

Eq.(33), the vibratory displacement of the main mass 

X1 is independent of damping when g = 0, i.e., when 

the forcing frequency is zero or when h = g, i.e., 

when the forcing frequency is the same as the natural 

frequency of the undamped absorber mass. 

Thus, the required nontrivial equation is obtained by 

choosing the plus sign in Eq. (35), and may be shown 

to be by taking  µ2 = µ3= µand k2= k3, Eq. (33) 

reduces to 

 

 g4 2 +  μ −  2g2 2μf 2 + f 2 +  1 +  2f 2  g2 − f 2  = 0…… (37) 

 

Since g = f corresponds to the null, the dimensionless frequencies g at which the amplitudes 
𝑋1

𝑋𝑠𝑡
  are independent 

of damping are given by 

g4 −
2g2 2μ f2+ f2+ 1 

 2+ μ 
+  

2f2

 2+ μ 
 = 0 ………………….… (38) 

 

Eq. (38) is a quadratic in g
2
 and provides the two 

required values of g (say g1 and g2). Using the values 

of g1and g2, the corresponding values of the ratio 
𝑋1

𝑋𝑠𝑡
 

may be computed from a simplified equation 

obtained from Eq. (33) i.e., 

 

 
𝑋1

𝑋𝑠𝑡
 

g1 ,g2

=  
𝑓2− g2

g4−g2 2μ𝑓2+ 𝑓2+ 1 +𝑓2………………… (39) 

The amplitudes at g1and g2 as computed from Eq. (39) are in general but not equal. By doing some 

mathematical calculation, we got 

𝑓2 = 
1−𝜇

 1+2𝜇 2………………………………..………… (40) 

The required tuning, the so-called favorable tuning, 

which gives equal amplitudes can be calculated from 

Eq. (40). 36.6 percent of the main mass is required 

for the absorber mass in order to attain a maximum 

bandwidth of ( g1− g2). 

However, such a mass ratio is too high and 

prohibitive to tie of any practical use.The  parallel 

absorber appears to be superior to the conventional 

clamped absorber if a comparison is made between 

the response curves for a damping ratio such as ζ = 

0.32

 

IV. SYSTEM DESIGN 
a. Primary System Design: 

 Simply supported  Beam 

 Material = Mild steel 

 Density(ρ) = 7850kg/m
3
 

 Mass per unit length(m)=3.84kg/m 

 Length(l) = 0.415 meters 

 Breadth(b) =0.05 meters  
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 Height(d) =0.0098 meters   

 Mass =1.5963kg 

 Natural Frequency(ωn)=  𝛽𝑙 2 
𝐸𝐼

𝜌𝐴𝑙4 

 

Table4.2 First four natural frequency for different modes of vibrating simply supported beam. 

Mode  Theoretical frequency(ωn) in 

(rad/sec) 

FE analysis frequency   

in(rad/sec) 

1 818.35 132.63 x 2π =833.33 

2 3273.4 527.15 x 2π =3312.18 

3 7365.15 1170.1 x 2π =7352 

4 13903.6 1995.2 x 2π =12536.211 

 

Amplitude and mode shape of simply supported 

beam can be calculated by using ansys software at its 

corresponding(ωn).The steps have been followed for 

the solutions are given in Fig  4-1. 

 
Figure IV-1 Solution steps in ANSYS 
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Figure IV-2 First 4 Natural Frequencies for different modes of vibration for simply supported beam 

 
It is seen that those values are obtained from 

theoretically and obtained from FE analysis are given 

in table No.1 and they are somewhat deviate from 

each other but nearly equal. 
b. Design of dual mass dynamic vibration 

absorber: 

The dynamic vibration absorbers are designed for 

Simply supported beam type main vibrating system, 

when main systems are excited at its fundamental 

naturalfrequency. An absorber mass of 25% of the 

mass of main system [i.e. µ = 0.25] is taken for 

design. Absorber consist of a cantilever beam type 

arm having Specifications Are As Follows: 

For rod ϕ= 5mm 

Length=70 mm  

 Material =mild steel(MS), E=200Gpa , ρ = 7850 

kg/m
3
 

 M. I .of the beam I = πd
4
/64 =3.068 x 10

-11
m

4
 

But as absorber arm is made up of 2 rods of 70mm. 

MI of the arm, I = 2I1 = 3.068 x 10
-11

 x 2 = 6.135923 

x 10
 -11

 m
4 

From mathematical model of absorber system, 

Mass of absorbers= ma+mb=0.25x mass or the simply 

supported beam type main vibrating system= 0.25 x 

1.5963 =0.3991 kg. 

ma =  mb = 0.1995 kg. 

At tunning condition ωn= ωa. 

𝜔n
2
= k2/m2 

therefore , 

At fundamental natural frequency, designed  k2 

=818.35
2×0.1995=  133.604KN/m. 

But secondary mass attached to primary system acts 

as a cantilever beam.therfore length of absorber 

system will be calculated using the formula ,k1 = p/y 

= 3EI /ll
3
. 

Therefore l1=65.073mm. 

Analysis of parallel dual-mass DVA for a spring 

instead of a rod in secondary system design. By 

using the stiffness formula 

𝐾 =  
 𝑟4𝐺 

 4𝑅3𝑁 
where r = wire radius,R = coil radius, 

G=modulus of rigidity 

From the above formula we can findout the no. of 

turns(N) of a spring by taking the value of r,R and G 

from the available spring in the market. The 

commonly used spring in the market are made up 

material like ASTM A228(high carbon spring) and 

ASTM A231(alloy steel). According to the load, we 

take proper material so that its deflection and stress 

can‘t be increased up to its desired limit. 

 

Table 4.3 Typical properties of common spring materials: 

Material/Specication Elastic 

modulus(E) in 

(GPa) 

Shear 

Modulus(G) in  

(GPa) 

Density(ρ

) in  

Kg/m
3 

Maximum service 

Temperature(
0
C) 

Principal 

characteristic 

High-carbon steels 

Music Wire ASTM A 

228 

Hard Drawn ASTM A 

227 

 

207 

 

207 

 

79.3 

 

79.3 

 

7840 

 

7840 

 

120 

 

120 

High strength; 

excellent fatigue 

life; general purpose 

use; poor fatigue life 

Stainless steels 

Martensitic(AISI 

410,420) 

Austenitic(AISI 

 

200 

 

193 

 

75.8 

 

68.9 

 

7750 

 

7840 

 

250 

 

315 

Unsatisfactory for 

sub-zero 

application. 

Good strength at 
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301,302) moderate. 

Copper based alloys 

Spring brass(ASTM 

B134) 

Phosphor 

bronze(ASTM B159) 

Beryllium copper 

(ASTM B197) 

 

110 

 

 

103 

 

 

131 

 

41.4 

 

 

43.4 

 

 

44.8 

 

8520 

 

 

8860 

 

 

8220 

 

90 

 

 

90 

 

 

200 

Low cost; High 

conductivity; Poor 

Mechanical 

properties . 

Ability to withstand 

repeated flexures 

High yield and 

Fatigue strength; 

Hardenable 

Nickel-based alloys 

Inconel 600 

Inconel X-750 

Ni-span C 

 

214 

214 

186 

 

75.8 

75.8 

66.2 

 

8500 

8250 

8140 

 

315 

600 

90 

Good strength; High 

corrosion resistance 

Precipitation 

hardening for high 

temp 

Constant modulus 

over a wide 

temperature range. 

 

Shear stress of  spring ,  

𝜏 =  𝐾𝑤

8𝑊𝐷

𝜋𝑑3
 

The combined effect of direct shear and curvature correction is accounted by Wahl‘s correction factor(Kw) and 

is given as: 𝐾𝑤  =
4𝑐−1

4𝑐−4
 + 

0.615

𝑐
     ( c = d/D) . 

Deflection of spring, 

X = 
8𝑊𝐷3𝑁

𝐺𝑑4  . 

 

V. RESULTS AND DISCUSSIONS 
The responses of the main mass and the 

absorber masses have been represented graphically 

as functions of the frequency ratio g by using 

MATLAB. In order to judge the effectiveness of the 

parallel vibrationabsorber, the responses of the 

conventional absorber are compared with those of 

the corresponding parallel vibration absorber. 

a.  

b. Optimisation of model A damped dynamic 

vibration absorber: 

Using MATLAB, we plot the variations of 

vibration amplitudes of the main and auxiliary 

masses of a vibration absorber model(A) of Eqs. (15) 

and (16) as functions of the frequency ratio(g). 
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Figure V-1 Response of combined system at different mass ratio and damping ratio for model A 

 
Figure V-2 Subplot response of combined system at different mass ratio and damping ratio for model A 

From the above curve, we see the non-linear 

variation of amplitude of vibrating system.For model 

A, the ordinate of point A is greater than that of point 

B: The optimum damping ratio is considered to be 

the value for which the FRF curve passes 

horizontally through point A and it goings to 

optimize atζ = 0.27 and f = 0.8 for µ = 0.25.  

Similarly the effect of mass ratio and also the effect 

of variation of the primary system damping factor of 

the remaining models are simulated as follows, 

c.  

d. Optimisation of model B damped dynamic 

vibration absorber: 

Using MATLAB, we plot the variations of 

vibration amplitudes of the main and auxiliary 

masses of a vibration absorber model(B) of Eq. (28) 

and (29) as functions of the frequency ratio(g). 
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Figure V-3 Response of combined system at different mass ratio and damping ratio for model B compared with 

optimal 

 
Figure V-4 Response of combined system at different mass ratio and damping ratiofor model B at const. 

tunning 

From the above curve, we see the non-linear 

variation of amplitude of vibrating system.For model 

B, the ordinate of point B is greater than that of point 

A. The optimum damping ratio is considered to be 

the value for which the FRF curve passes 

horizontally through point Band it goings to optimize 

at ζ = 0.378 and f = 1.1547 for µ = 0.25.  

 

e. Optimisation of model C damped dynamic 

vibration absorber: 

Using MATLAB, we plot the variations of vibration 

amplitudes of the main and auxiliary masses of a 

vibration absorber model(C) of Eqs. (30) and (31) as 

functions of the frequency ratio(g). 
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Figure V-5 Response of combined system at different mass ratio and damping ratiofor model C compared with 

optimal 

 
Figure V-6 Response of combined system at different mass ratio and damping ratio for model C at const. 

tunning 

 

From the above curve, we see the non-linear 

variation of amplitude of a vibrating system For 

model C, the ordinate of point A is greater than that 

of point B: The optimum damping ratio is considered 

to be the value for which the FRF curve passes 

horizontally through point Aand it goings to optimize 

at ζ = 0.3273 and f = 1.13137 for µ = 0.25.  

f. Optimisation of model D damped dynamic 

vibration absorber: 

Using MATLAB, we plot the variations of 

vibration amplitudes of the main and auxiliary 

masses for a vibration absorber model(D) of Eqs. 

(33) and (34) as functions of the frequency ratio(g). 
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Figure V-7 Response of combined system at different mass ratio and damping ratio for model D compared with 

optimal 

 

 
Figure V-8 Subplot response of combined system at different mass ratio and damping ratio for model D at 

const. tunning 
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Figure V-9 Response of combined system at different mass ratio and damping ratio for model D at const. 

tunning 

 

As compared to other model,this model 

suppress the amplitude of vibration so high but at a 

small range of excitation it shows large amplitude, in 

order to avoid it we got the optimize damping 

coefficients of  ζa=0.32. 

 

g. Comparisons among the model: 

From the above curve, we see that the 

amplitude of the absorber mass is always much 

greater than that of the main mass. Thus the design 

should be able to accommodate the large amplitudes 

of the absorber mass. For the model(A) as shown in 

Figures, as the mass ratio increases amplitude of 

vibration decreases. As mass ratio increases the 

optimum damping also increases. One observation 

we can made from the Frequency response function‘s 

curve is the response curve becomes flatter as the 

mass ratio increases. 

If we draw the comparison curve of all 4 

model in one glance by using MATLAB plot and 

also using optimal parameters of all the model, we 

came to know that For model B to be optimum, a 

larger damping is required as compared to model A 

.Overall, model (C) gives better vibration 

suppression and also required damping in between 

model(A) and model (B).The parallel absorber 

appears to be superior to the conventional clamped 

absorber if acomparison is made between the 

response curves for a damping ratio such as ζa= 0.32. 

The parallel damped vibration absorber  for this ratio 

of ζa prohibitively large amplitudes with in the 

operational range of the vibration absorber. 

 

Table 5.4 Comparison of the four models at µ = 0.25. 

MODEL 𝑓𝑡𝑢𝑛𝑒𝑑  𝜁𝑜𝑝𝑡  
 
𝑋1

𝑋𝑠𝑡

 
𝑓𝑐𝑜𝑛𝑠𝑡 .𝑡𝑢𝑛𝑛𝑖𝑛𝑔

  
𝑋1

𝑋𝑠𝑡

 
𝜁𝑜𝑝𝑡 , 𝑓𝑡𝑢𝑛𝑒𝑑

 

A 0.8 0.27 6.1308 3.2581 

B 1.1547 0.378 4.2249 2.2228 

C 1.13137 0.3273 2.0743 2.1334 

D 0.7483(µ = 0.125) 0.32 7.1034 7.3945 
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Figure V-10 Comparisons between 4 optimal model 

 
Figure V-11 Subplot Comparisons between 4 optimal model 
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VI. CONCLUSION AND FUTURE SCOPE 

OF WORK 
a. CONCLUSION 

Now a days, in construction industry wants 

taller and lighter structures, which are flexible with  

having  quite low damping value. This increases 

failure possibilities. 

Problems from serviceability point of view, 

Several techniques are available today to minimize 

the vibration of the structure, out of which concept of 

using of TMD is one. Effectiveness of using TMD 

for controlling  vibration of structure. A  MATLAB 

script was developed to optimize the different model. 
Following conclusions can be made from this study:  

1) It has been found that the TMD can be 

successfully used to control vibration of  the 

structure. 

2) TMD used effectively in reducing the 

displacement responses of structures with low 

damping  ratios . But, it is less effective for 

structures with high damping ratios (14 ). 

3) Applying the two earthquake loadings, first is 

the one corresponding to compatible time 

history as per spectra of IS-1894(Part -1):2002 

for 5% damping at rocky soil and second being 

the 1940 El Centro Earthquake it has been found 

that increasing the mass ratio of the TMD 

decreases the displacement response of the 

structure.  

b. Further Scope for study 

  

1) Both the structure and Damper model 

considered in this study are linear one; this 

provides a further scope to study this problem 

using a nonlinear model for TMD as well as for 

structure. 

2) The model considered here is two-dimensional, 

which can be further studied to include 3-

dimensional structure model. 

3) Further scope, also includes studying the 

possibility of constructing Active TMD. 
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