

 P.A.Tijare. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -1) July 2017, pp.17-20

www.ijera.com DOI: 10.9790/9622-0707011720 17 | P a g e

Achieving Load Balancing through Program Slicing

P.A.Tijare*, Dr. P.R.Deshmukh**
*(PhD Student, CSE, Sipna College of Engineering & Technology, Amravati, MS, India

Email: pritishtijare@rediffmail.com)

** (Department of Computer Science & Engineering, Amravati, MS, India

Email: pr_deshmukh@yahoo.com)

ABSTRACT
Implementing load balance in parallel program is very important. It may reduce running time and improve

performance of program. This paper proposes a slicing algorithm in which we did not use any slicing criteria but we

use slicing point. It is designed only for iterative programs as most of the programs or applications are developed for

performing repetitive tasks. We found better results by achieving load balancing through program slicing.

Keywords: Load balancing, parallel computing, partitioning, slicing

I. INTRODUCTION
Load balancing is nothing but the

distribution of a load on the host system to other

computing resources present in the network. The

computing resources can be computer, computer

clusters, network of workstations, CPUs, disk drives

etc. The main aim to achieve load balancing is to

utilize the resources in the network, minimize

response time, maximize throughput and also to

minimize the overload of any single system.

Reliability and availability through redundancy can

be achieved through load balancing [1]. Load

balancing can be achieved by using program slicing.

Program slicing is a method to simplify the programs

by concentrating on selected part of semantics [2]. In

program slicing, program is decomposed by

analyzing their data flow and control flow [3]. Slicing

transfers program to a minimal form by maintaining

the original program behavior. Such minimal form is

called as ‘slice’. Different sorts of slicing methods

exist such as Forward Slicing, Backward Slicing,

Static Slicing, Dynamic Slicing, Conditioned,

Amorphous etc. The distinctive slicing strategies

have different application domains such as software

maintenance, program analysis, software testing,

software optimization etc.

Figure 1: Variants of Slicing

While going for program slicing one should consider various parameters as follows:

Table 1: Parameters for Program Slicing

Parameter Meaning

Slicing Point Point where the programmer is interested repeat the number of the time till the

logic of the program is complete

Slicing Variable Variable mentioned in the slicing criteria

Scope Intra procedural or inter procedural

Slicing Direction Forward or Backward

Abstraction Level Procedure or Statement

Information Type Static or Dynamic

Result Equivalent to the program of few set of statements from the program

RESEARCH ARTICLE OPEN ACCESS

 P.A.Tijare. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -1) July 2017, pp.17-20

www.ijera.com DOI: 10.9790/9622-0707011720 18 | P a g e

1. Program Representation

To have an intermediate representation of a

program is the best way to understand large

programs. For computing slice, the program source

code has to be transformed into intermediate

representation. In most of the slicing algorithms,

programs are represented by directed graph such as

Control Flow Graph (CFG), Data Dependence Graph

(DDG), Control Dependence Graph (CDG), Program

Dependence Graph (PDG), System Dependence

Graph (SDG), Extended System Dependence Graph

(ESDG) etc. [4,5,6]

2. Need of Slicing

Program slicing techniques are used for

various applications like program understanding,

program verification, parallelization of a program,

software probability analysis, program integration,

compiler optimization etc.

II. PARALLEL COMPUTING
Parallel computing is nothing but

the computation in which many computations or the

process execution are carried out in parallel

way. Frequently, large problems are divided into

smaller parts, and then these small parts can be

solved at the same time. There are several variants of

parallel computing: bit-level, instruction-level, data,

and task parallelism. Parallelism has been employed

for many years, mainly in high-performance

computing, but interest in it has grown lately due to

the physical constraints preventing frequency scaling.

To solve any computational problem, the

simultaneous use of multiple compute resources, is

nothing but parallel computing. Basic concept of

parallel computing is to break down a computational

task in several very similar sub tasks that can be

processed independently and the results are combined

after the completion of the task. One of the greatest

barriers to achieve parallel computing is

communication and synchronization in between

different sub tasks. Effective use of Parallel

Computers in practical applications can be achieved

by proper Knowledge of Algorithm, Computer

Architecture and Parallel Languages.

1. To provide concurrency: As single computing

resource can only solve one thing at a time.

Multiple computing resources can be doing

many things simultaneously at a time.

2. To solve larger problems: Some computations

are so large and/or complex that it is impractical

or impossible to solve them on a single

computer, especially when limited computer

memory is available

2.1 Partitioning

To design a parallel program, is to break the problem

into discrete groups of work that can be distributed to

multiple tasks. This is known as partitioning. There

are two basic ways of partitioning computational

work among parallel tasks: domain

decomposition and functional decomposition

To save time and/or money: As the number of

resources are more to solve a task will reduce its time

to complete, with potential cost savings.

To use non-local resources: Using computing

resources on a network, when local compute

resources are insufficient for demand.

To limit to serial computing: There are many

reasons to apply significant constraints to build ever

faster serial computers:

2.2 Parallelism

Parallel processing is an important part of

any high performance computing model. Parallel

Processing involves the use of computing resources

such as CPU and Memory to complete the task.

Parallel processing involves the division of a task

into several sub tasks and making the system work on

each of these smaller tasks in parallel. If multiple

nodes or processor are engage in doing a

computational task it execution time is faster than the

single processor. Parallel processing improves the

response time and throughput by utilizing all the

computing resources in the network.

The goal of Parallel Processing is to obtain

high performance with the minimum programming

efforts, minimum resource requirements and with

flexible architecture. We would like to obtain good

speedup over the best sequential program that solves

the same problem. This requires that we ensure a

balanced distribution of work among processors,

reduce the amount of inter processor communication

which is expensive, and keep the overheads of

communication, synchronization and parallelism

management low.

2.2.1 Types of Parallelism

Various forms of parallel computing are:

1. Bit-Level Parallelism
2. Data Level Parallelism
3. Instruction-Level Parallelism
4. Task Parallelism
5. Loop Level Parallelism

Loops are the main target area in our work

for parallelization. Loops are contained by most of

the application. Long running application contain

 P.A.Tijare. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -1) July 2017, pp.17-20

www.ijera.com DOI: 10.9790/9622-0707011720 19 | P a g e

large loop that have many iteration to perform. We

can divide the large number of iterations of such

loops among the different processing nodes. If the

amount of work performed in each iteration is

roughly the same, simply dividing the iterations

evenly across processors will achieve maximum

parallelism.

III. SLICING THE PROGRAM
We have designed a slicing algorithm in

which we did not use any slicing criteria but we use

slicing point. It is designed only for iterative

programs as most of the programs or applications are

developed for performing repetitive tasks. So we

consider “for loop” as our slicing point in our

algorithm.

In the iterative programs, same code is

repeated number of times and system has to execute

all the code till the condition is true. Slicing point is

the point from where we can slice the program.

Number of slices can be created according to

requirement or demand. Calculating slicing point

value is dependent on number of slices to be created

and initial & last value for all iterations will vary

accordingly.

Steps for proposed Slicing Algorithm are as follows:

1. Form CFG of a program.

2. Identify slicing point in the program

3. Calculate initial and last value in iteration

according to slicing point

4. Divide slicing point in number of iterations from

last value of iteration by the formula (LV - FV)

+1 / No of slices

5. Make slice ready for execution by inserting

remaining program code into newly created slice

We can create the slices of the program as

per users need since we are forming the slices by

giving the value to the program to divide into n

number of parts. New slice of the program is

considered as a new program and will be transfer for

execution on another system in the network.

IV. LOAD BALANCING PROCESS
When each task received, we are

partitioning the work equally. We have evenly

distributed the data set among the tasks, for those

operations where each task performs similar type of

work. For loop iterations where the work done in

each iteration is similar, evenly distribute the

iterations across the tasks.

The program slicer slices the program and

converted into executable files. Now these files will

be transferred to remote systems present in the

network. After execution of slices on remote systems,

the result files generated by each remote system will

be transferred back to host system. After getting the

result files back, the file output and time to execute

slice on each remote system will be calculated.

Since we divide the program in to slices

transferred them on number of remote systems to

execute parallel by achieving load balancing, we

shown the time required to execute overall program

is reduces.

V. RESULTS

Figure: 2: Execution time of a program with different iterations

 P.A.Tijare. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -1) July 2017, pp.17-20

www.ijera.com DOI: 10.9790/9622-0707011720 20 | P a g e

VI. CONCLUSION
Thus we have created the slices of the

program as per users need by applying proposed

program slicing algorithm. We are forming the slices

by dividing a program into n number of parts. Thus

we have achieved load balancing through program

slicing in parallel computing.

REFERENCES
[1]. Amit Chhabra, Gurvinder Singh, Sandeep

Singh Waraich, Bhavneet Sidhu, and Gaurav

Kumar "Qualitative Parametric Comparison of

Load Balancing Algorithms in Parallel and

Distributed Computing Environment", Proc.

World Academy of Science, Engineering and

Technology (PWASET) ISSN 1307-6884, Vol

16, pp. 39-42, November 16, 2006

[2]. Mark Harman and Robert M. Hierons, “An

overview of program slicing”,

http://www0.cs.ucl.ac.uk

/staff/mharman/sf.html

[3]. Mark Weiser, “Program Slicing”, IEEE

transactions on Software Engineering, vol SE-

10, No.4, July 1984

[4]. F. Tip., “A survey of program slicing

techniques”, Journal of Programming

Languages 3(3):121–89, 1995

[5]. J. Ferrante, K. Ottenstein, and J. Warren. “The

program dependence graph and its use in

optimization”, ACM Transactions on

Programming Languages and Systems

9(3):319–49, 1987

[6]. K. Ottenstein and L. Ottenstein, “The program

dependence graph in software development

environment”, SIGPLAN Notices 19(5):177–

84, 1984

