
Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 39 | P a g e

Design of 32-bit Floating Point Unit for Advanced Processors

Amana Yadav
*
 Ila Chaudhary

**

Electronics and Communication Department, Faculty of Engineering and Technology,

Manav Rachna International University, Faridabad

ABSTRACT
Floating Point Unit is one of the integral unit in the Advanced Processors. The arithmetic operations on floating

point unit are quite complicated. They are represented in IEEE 754 format in either 32-bit format (single

precision) or 64-bit format (double precision). They are extensively used in high end processors for various

applications such as mathematical analysis and formulation, signal processing etc. This paper describes the

detailed process for the computation of addition, subtraction and multiplication operations on floating point

numbers. It has been designed using VHDL. The design has been simulated and synthesized to identify the area

occupied and its performance in terms of delay.

Keywords: Arithmetic operations, Floating point, IEEE standard 754, VHDL

I. INTRODUCTION
The real numbers may be described

informally as numbers that can be given by an

infinite decimal representation, such as

2.48717733398724433.... The real numbers include

both rational numbers, such as 56 and −23/129, and

irrational numbers, such as π and the square root of

2, and can be represented as points along an

infinitely long number line. They can have fixed

point as well as floating point representation.

Computation of floating point numbers needs

advanced processing techniques. Advanced

processors have dedicated floating point processor

unit which is capable of performing arithmetic

operations on real numbers with single precision

(32-bits format)[1] or double precision(64-bits

format).

Floating point notation is represented in the form as

follows[2]:

n = b
e
* m

where,

n = the number to be represented

b = base

m = mantissa

Value of b is

‘2’ for binary numbers

‘8’ for octal numbers

‘10’ for decimal numbers

‘16’ for hexadecimal numbers

In floating point arithmetic[3] user can

round off the results of the computations as per his

requirement but IEEE standard 754 defines the rules

that lead to the same result of computation by

rounding off. It prevents the existence of different

results in different computations for the same input.

Single precision 32 – bit floating point format

32- bit floating point representation as per IEEE

follows the standard shown in fig. 1

Fig. 1: IEEE 754 standard for single precision

representation

The most significant bit starts from the left.

The number represented in the single precision

format is

Value = (-1)s 2 e × 1.f (normalized) when E > 0 else

= (-1)s 2 -126 × 0.f (denormalized)

where,

f = (b23 -1 +b22 -2 + bi n +…+b0 -

23) where bi n =1 or 0

s = sign (0 is positive; 1 is negative)

E = biased exponent; Emax=255 ,

Emin=0. E=255 and E=0 are used to represent

special values.

e = unbiased exponent; e = E –

127(bias)

A bias of 127 is added to the actual

exponent to make negative exponents possible

without using a sign bit. So for example if the value

105 is stored in the exponent placeholder, the

exponent is actually -22 (105 – 127). Also, the

leading fraction bit before the decimal point is

actually implicit and can be 1 or 0 depending on the

exponent and therefore saving one bit. After the

arithmetic computation of a number it is required to

RESEARCH ARTICLE OPEN ACCESS

http://en.wikipedia.org/wiki/Decimal_representation
http://en.wikipedia.org/wiki/Rational_number
http://en.wikipedia.org/wiki/Irrational_number
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Square_root_of_2
http://en.wikipedia.org/wiki/Square_root_of_2
http://en.wikipedia.org/wiki/Number_line

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 40 | P a g e

normalize the result which means that MSB 1 is in

the most left bit of the fractional part. It is done for

representation of the number in only one way else

same number can be written in hundreds of ways if

kept in denormalized form.

Exceptions in floating point Unit

Various exceptions are defined by IEEE

standard 754 which helps in implementing the

arithmetic at the hardware level[5]. These

exceptions are listed below:

Invalid operations: Some arithmetic

operations are invalid, such as a division by zero or

square root of a negative number. The result of an

invalid operation shall be a NaN. There are two

types of NaN, quiet NaN (QNaN) and signaling

NaN (SNaN). They have the following format,

where s is the sign bit:

QNaN = s 11111111 10000000000000000000000

SNaN = s 11111111 00000000000000000000001

Division by Zero

The division of a number (except zero) by zero

gives infinity as a result. However, other arithmetic

operations such as addition or multiplication may

also give infinity as a result. The addition or

multiplication of two numbers may also give infinity

as a result. Therefore, to differentiate between the

two cases, a divide-by-zero exception was

implemented. Other exceptions that are defined by

the IEEE standard are listed as Inexact, underflow,

overflow, infinity and zero. Different rounding

modes used are Round to nearest even, Round-to-

zero, Round-up and Round-Down.

II. ARITHMETIC OPERATIONS
Addition / Subtractions[4]: A similar procedure is to

be followed for the implementation of addition and

subtraction. Hence, a single unit is used for these

operations.

Table 1 shows an example of two operands

considered for the computation.

Table1. IEEE standard 754 representation of the

operands considered for the inputs

 Operand A Operand B

Decimal

Values

 2.5 4.75

Sign bit 0 0

Exponent 10000000 10000001

Fraction 1.010…….02 1.00110…..02

Addition: Following are the steps followed for the

addition of two floating point operands:

1. Finding the difference of exponents

Diff = 10000001 - 10000000 = 00000001

Exponent A is smaller than exponent B by 1-bit

2. Shifting the fraction of the operand A (smaller

one) to the right

 fraction A = 0.1010…..02

3. Incrementing the exponent A by ‘1’ to equalize it

to the larger one.

4. Adding the two fraction parts

Fractout = 0.1010…..02 + 1.00110….02 =

1.11010….02

5. Normalizing the result if necessary

6. Writing the result

Output = 0 10000001 11010……02

Subtraction:- For subtraction similar procedure is

followed accept that the fraction part is subtracted.

Fig. 2. Shows the flow chart for addition and

subtraction of floating point numbers using floating

point arithmetic.

Fig. 2: Flow chart for addition / subtraction

Multiplication:

A separate block is to be provided for the

multiplication of the floating point numbers. Steps

followed for the process of multiplication are as

follows:

1. Adding two exponents and subtracting the bias

127

Exponent out = 10000000 + 10000001 - 10000010

2. Multiplying the fraction out = 1.0011 * 1.01

by standard multiplication algorithm.

Result = 1.0111111

3. Normalize the result if necessary and give the

output

Output = 0 10000010 0111110……..02

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 41 | P a g e

Fig. 3 shows the flow chart for the process of

multiplication.

Fig. 3.: Flow chart for Multiplication

Fig. 4 shows the architecture of Floating Point Unit.

Fig. 4: Architecture of floating point Unit

III. IMPLEMENTATION

Fig. 5 shows main entity of Floating Point Unit.

Fig. 5: Top level entity of FPU

Two input operands are forwarded to the

pre-normalization unit. Also, other inputs like

opcode telling the operation to be performed and

rounding mode inputs are also send to the internal

unit.

Pre-normalization unit for addition / subtraction

Function:- Input operands to the FPU are send to

pre-normalization unit for add-sub. It performs the

following functions.

1. It separates the exponent and the fraction part

with 8-bits of exponent and 23 bits of fraction.

2. Fraction is expanded as:- Carry(1) & Hidden(1)

& Fraction(23) & Guard(1) & Round(1) &

Sticky(1). Hidden bit is ‘1’ and three zeros

added at the end that help to prevent the loss of

data during rounding and shifting.

3. Checks which exponent is larger and finds there

difference.

4. Sends larger exponent as the output.

5. Shifts the fraction part of the exponent to the

right with the smaller exponent.

6. Sends the fractions to add / sub unit.

Fig. 6 shows the pre-normalize unit. Also,

inputs/outputs are described in Table 2.

Fig.6: Pre-normalization unit

Table 2: Inputs / Outputs of Pre-Normalize Unit

Input /

Output

No. of

bits

Description

clk1 Acts as clock for this

unit

oprnd_a_in 32 Input operand A to

FPU by user for

computation

oprnd_b_in 32 Input operand B to

FPU by user for

computation

Fraction_ao 28 Output fraction A to

add / sub unit

Fraction_bo 28 Output fraction B to

add / sub unit

exp_out 8 Larger exponent as

output to post-

normalize unit

Sign_ao 1 Sign bit of operand A

Sign_ao 1 Sign bit of operand B

Addition / Subtraction Unit:

Inputs / Outputs:- This unit takes the output of the

pre-normalize unit as the input, performs addition or

subtraction depending on the opcode. Table 3

describes the inputs / outputs of the unit and Fig. 7

shows them.

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 42 | P a g e

Fig. 7: Addition / Subtraction Unit

Table 3 Inputs / outputs of Addition / Subtraction

Unit

Input /

Output

No. of

bits

Description

clk2 Act as clock for this

unit

fpu_op_as 2 Opcode telling whether

addition or subtraction

to be performed

fraction_ai 28 Output fraction A from

pre-normalize unit

fraction_bi 28 Output fraction B from

pre-normalize unit

sign_a_in 1 MSB of the operand A

i.e. sign bit

sign_b_in 1 MSB of the operand B

i.e. sign bit

sign_out 1 Output sign of the

result after

computation

fraction_out 28 Fraction result

Post Normalization Unit:

Function:- The result obtained from the addition /

subtraction unit is fed to the post-normalize unit

shown in Fig. 8. Table 4 describes the inputs/

outputs of post-normalization unit.

It performs the normalization as follows

1. It counts the leading number of zeros in the

fraction part starting from the hidden bit.

2. Decrements the exponent by the same number

of bits.

3. Left shift the fraction by the same number of

bits

4. Makes the hidden bit finally ‘1’

5. Takes the rounding mode decision depending

on mode_in_fpu input to the main entity and

performs rounding off of the fraction part.

6. The fraction part is truncated.

7. Sends the outputs to the exception unit.

8. Checks if any data has been lost during

rounding.

Fig. 8: Post Normalization Unit

Table 4: Inputs / Outputs Post-Normalization Unit

Input No. of

bits

Description

Clk Clock input to this block

sign_in 1 Resulting sign bit from the

addition subtraction unit

exp_in 8 Resulting exponent from pre-

normalize unit

fract_in 28 Resulting fraction after

computation from addition /

subtraction

mode_in 2 Mode_in_fpu input given to

it to take rounding decesions

fract_out 23 Normalized fraction result

exp_out 9 Exponent output (9 th bit is

carry to check if the result is

overflowing after

incrementing

sign_out 1 Sign bit of the result

lost_data 1 Tells if any data has been

lost during normalization

Pre-Normalize unit for multiplication:

The input operands to the FPU main entity are

fed to the pre-normalization unit shown in Fig. 9 and

are described in Table 5. It performs the following

functions:-

1. Takes 32-bit input operands and separates the

sign bit, exponent and fraction part as per IEEE-

754 standard.

2. It recovers the hidden bit.

3. Changes the length of the exponents and adds

them.

4. Subtract the bias of 127 from the exponent so

that only 127 is the bias added to the result but

not 254

5. Calculates the sign bit and sends the results to

the multiplication unit.

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 43 | P a g e

Fig. 9: Pre-Normalize unit for multiplication

Table 5: Pre-Normalize unit for multiplication

Input /

Output

No. of

bits

Description

clk3 Clock signal for

this block

Opa 32 Input operand A of

the main entity

Opb 32 Input operand B of

the main entity

a_fract_out 24 Fraction A (with

hidden bit)

b_fract_out 24 Fraction B (with

hidden bit)

exp_out 10 Output exponent

after adding them

sign_out 1 Resulting sign of

two inputs

Multiplication Unit

It takes the fraction part from pre-normalize

unit for multiplication unit as the output and gives

the product as the output as shown in Fig. 10 and is

described in Table 6.

Fig. 10: Multiplication Unit

Table 6: Inputs / Outputs for Multiplication

Input / output No. of

bits

Description

clk4 Act as clock for this

block

fracta_in 24 Fraction of operand

A i.e. output of pre-

normalize unit

fractb_in 24 Fraction of operand

A i.e. output of pre-

normalize unit

product_out 49 Product output of two

fraction inputs

Post-normalization unit for multiplication

It is shown in Fig. 11 and is described in Table 7. It

performs the following functions:-

1. Count the number of zeros starting from the left.

2. Decrements the value of exponent accordingly

3. Shifting the fraction part to the left by the

number of zeros.

4. Rounding the result depending on the

mode_in_fpu signal of the FPU unit.

5. Truncates the fraction part

6. Also, checks if there is any loss of data.

7. Sends the sign bit, exponent and fraction part and

information about the loss of data to the

exception unit.

Fig. 11 Post-Normalize unit for Multiplication

Table 7: Inputs / Outputs for post-normalization of

multiplication

Input /

Output

No. of

bits

Description

clk5 Act as clock to this

unit

sign_mul_in 1 Output from the pre-

normalization unit

denoting the sign of

the result

exp_mul_in 10 Exponent output from

pre-normalize unit.

fract_mul_in 49 Product result of the

multiplication unit

mode_in_mul 2 Rounding mode

decisions are taken

depending on its value.

sign_mul_out 1 Sign bit of the result

exp_mul_out 9 Exponent part of the

result

fract_mul_out 23 Fraction part of the

result

data_mul_lost 1 Data lost or not during

truncation of the

fraction part

Exception Unit

This unit shown in Fig 12 allows

implementing the special values in the floating point

unit and signals them whenever necessary i.e.

invalid input or invalid operation. Foe example ∞

+/- ∞. The interface of the unit is described in Table

8.

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 44 | P a g e

Table 8 Inputs / Outputs of Exception Unit

Input / Output No. of

bits

Meaning

clk_in_exc Act as clock for this

unit

opa_in_exc 32 Operand A to check

exception foe input

opb_in_exc 32 Operand B to check

exception foe input

sign_in_exc 1 Sign bit of the result

exp_in_exc 9 Exponent of the result

fract_exc 23 Fraction part of the

result

data_lost_exc 1 Data lost (output from

post-normalization

unit

fpu_op_exc 2 Opcode input to FPU

output_exc 32 Combined result after

computatin

nan_in_exc 1 If the input is

zero_exc 1 If an input is NaN

in_exact_exc 1 If there is a loss of

data

overflow_exc 1 If the result is

exceeding the

maximum limit

op_nan_exc 1 If an invalid operation

is performed

Inputs to FPU Two 32-bits operands in

IEEE-754 floating point format along with the

opcode, rounding mode select and clock are given as

inputs to FPU. Table below shows the inputs and

their functioning.

Fig. 12 Exception Unit

FPU Unit

Interface of top level entity is shown in Fig. 12 and

are described in Table 9.1 and Table 9.2.

Table 9.1 Inputs of FPU

Input No.

of

bits

Descripti

on

Values

clk_in_fpu Give

clock

signal to

FPU and

all its

internal

blocks

opa_in_fpu 32 Operand

input A to

the unit

opb_in_fpu 32 Operand

input B to

the unit

mode_in_fpu 2 Select

rounding

mode

“00” – Round

up

“01” – Round

down

“10” – Round

to zero

“11” – Round

to even

op_code 2 Selects

the

operation

“00” –

Addition

“01” –

Subtraction

“10” –

Multiplication

“11” – Left

for future use

Table 9.2 Output of FPU

Outputs No. of

bits

Meaning

Output 32 Result of arithmetic

operation

nan_in 1 Either of the input is

NaN

Overflow 1 Result exceeding

maximum limit

in_exact 1 Loss of data while

rounding

Zero 1 Result is zero in

fraction part

op_nan 1 Invalid operation

performed

IV. SIMULATION RESULTS
The design has been simulated and

synthesized on Xilinx 13.1 ISE Design Suite. It has

been synthesized on Vitex 5 FPGA module. Fig.

13.a, b, c, d shows the simulated waveform for the

pre-normalized, addition / subtraction and post-

normalized units, output of addition from FPU top

module.

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 45 | P a g e

Fig. 13a. Pre-Normalize FPU for addition /

subtraction

Fig. 13b: Addition / Subtraction Unit

Fig. 13c Post-Normalize Unit for addition /

Subtraction

Fig. 13d: Output of FPU Top for addition

Similarly pre-normalize unit for

multiplication, multiplication and post-normalize

unit for multiplication have been implemented and

final output of multiplication from FPU top have

been simulated. Product output of two floating point

numbers by FPU is shown in Fig. 14.

Fig. 14: Product output of Multiplier

Fig. 15a, b, c shows the schematic,

synthesis report for device utilization summary and

timing report respectively.

Fig.15a: Schematic of the FPU Unit

Fig.15b: Device Utilization Summary of FPU

Amana Yadav. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -5) June 2017, pp.39-46

www.ijera.com DOI: 10.9790/9622-0706053946 46 | P a g e

Fig. 15c: Timing Summary of FPU

Table 10 shows the hardware requirement of the

design.

Table 10: Hardware Utilization Summary

S.No. Slice Logic Utilization

1 Number of Slice

Registers

845 out of

28800 2%

2 Number of Slice

LUTs

2683 out of

28800 9%

3 Number used as

Logic

2532 out of

28800 8%

4 Number used as

Memory

151 out of

7680 1%

6 Number of IOs: 106

7 Number of

BUFG/BUFGCTRLs

1

V. CONCLUSION
In this paper, floating point unit has been

designed, simulated and then synthesized in order to

obtain its performance in terms of the area occupied

and delay on Vitex 5 FPGA Module. For the data

path opb_in_fpu to opb_in_sig_0 total

combinational logic delay and routing delay is

1.154ns and total overflow to overflow delay is

3.259ns. Hardware requirements have also been

specified in the paper. Prenormalization and post-

normalization units of the FPU can be further

optimized to reduce the hardware requirement as

well as delay.

REFERENCES

[1]. K. K. Lasith, Anoop Thomas “Efficient

implementation of single precision

floating point processor in FPGA”,

Proceedings Emerging Research Areas:

Magnetics, Machines and Drives

(AICERA/iCMMD), 2014 Annual

International Conference on 4-26 July

2014, Kottayam, India

[2]. Seungchul Kim, Yongjoo Lee,

Wookyeong Jeong “Low cost floating

point arithmetic unit design”, ASIC, 2002.

Proceedings. 2002 IEEE Asia-Pacific

Conference on 8-8 Aug. 2002, Taipei,

Taiwan, Taiwan.
[3]. Naresh Grover, M. K. Soni, “Design of

FPGA based 32-bit Floating Point Arithmetic

Unit and verification of its VHDL code 9

using MATLAB”, I. J. Information

Engineering and Electronics Business, Jan.

2014, pp 1-14

[4]. A. Malik, “Seok-Bum Ko, Effective

implementation of floating-point adder using

pipelined LOP in FPGAs,” Proceedings

Electrical and Computer Engineering, 2005.

Canadian Conference on, vol., no., pp. 706–

709, 1-4 May 2005.

[5]. Sayali A. Bawankar, Prof. G. D. Korde,

“Review on 32 bit single precision Floating

point unit (FPU) Based on IEEE 754

Standard using VHDL”, International

Research General of Engineering and

Technology, Vol. 4, Issue 02, Feb. 2017, pp

1077-1082.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20K.%20Lasith.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Anoop%20Thomas.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895220
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895220
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895220
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895220
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Seungchul%20Kim.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Yongjoo%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Wookyeong%20Jeong.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8021
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8021
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8021

