
Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 119 | P a g e

Representing Non-Relational Databases with Darwinian

Networks

Paulo Roberto Martins de Andrade, Alex Volnei Teixeira
University of Regina Department of Computer Science Regina, SK, S4S 0A2, Canada

Pontificia Universidade Catolica do Parana Curitiba, PR, 80215-901, Brazil

ABSTRACT
The Darwinian networks (DNs) are first introduced by Dr Butz [1] to simplify and clarify how to work with

Bayesian networks (BNs). DNs can unify modeling and reasoning tasks into a single platform using the

graphical manipulation of the probability tables that takes on a biological feel. From this view of the DNs, we

propose a graphical library to represent and depict non-relational databases using DNs. Because of the growing

of this kind of databases, we need even more tools to help in the management work, and the DNs can help with

these tasks.

Index Terms: No SQL, Darwinian Networks, Non-Relational Database, Java-script, Software engineering

I. INTRODUCTION
The manner in which we communicate,

exchange information and create content changed

much over the years. We live in an era where web

applications have revolutionized the world in many

ways, and the trend is that this growth enables the

creation of many new applications. The large

volume of data generated by these web applications,

together with the new form of user interaction

(dynamic, efficient and intuitive), the scalability on

demand and the need for a high degree of

availability, has fostered the emergence of new

paradigms and technologies. We can cite the Non-

Relational databases (NoSQL) and the Darwinian

Networks (DNs) as a result of this demand. Non-

Relational database [2, 3], also known as NoSQL or

Not Only SQL database, is a technology designed to

support cloud applications requirements and to

overcome the scale, performance, data model and

the limitations of relational databases. Relational

databases [4] have restrictions in scalability,

requiring vertical distribution of servers. A possible

downside of this issue is that as more data is

acquired, the servers require more working memory

and hard disk space. NoSQL has a large horizontal

distribution facility. In practice, more data does not

necessarily imply higher performance to be taken by

the server. Large companies use NoSQL in

information technology, including Google, which

uses small and medium-sized computers for data

distribution. Furthermore, NoSQL databases are

error tolerant. Darwinian networks (DNs) [5, 6] are a

probabilistic framework that can be used to simplify

working with Bayesian networks (BNs) [7]. In DNs,

a conditional probability table (CPT) is represented

as a population. Graphically, a solid circle

containing smaller circles filled or not represents a

population is. The inner circles are called traits. In

DNs, traits represent variables from the problem

domain being modeled. Traits can be combative or

docile, depending on where the variable is in a CPT,

LHS or RHS, respectively. We can define a DN as a

multiset of populations. We depict a DN as a dashed

circle around its populations. We can manipulate

populations in a DN using operations, including

merge, replication, and natural selection. With these

operations, DNs can represent inference in BNs. In

this paper, we propose a graphical library to

represent and depict non-relational databases using

DNs. Our idea is to create a useful tool to help in the

management of this kind of data and its

representation. The library will be an interactive

space with a non-relational database available

through a graphical interface. Users will be able to

create and edit DNs by using the interface.

Manipulations on DNs are then translated by the

library to the correspondent non-relational database

operation. By using the DN operations available,

users will be able to perform inference graphically.

We organized the rest of the paper as follows.

Section II presents the Non-Relational database and

its main characteristics. Section III shows details

about the Darwinian Networks. In section IV we

present the created library and its use. Finally,

Section V offers some concluding remarks and final

thoughts.

II. RELATIONAL AND NON-

RELATIONAL DATABASES
The relational database has emerged as a

successor to the hierarchical network models. The

relational model became the pattern for most

Database Management Systems (DBMS). This

model brought up the Normalization process which

its goal is to apply a series of steps with certain rules

on the database table to ensure proper design of

RESEARCH ARTICLE OPEN ACCESS

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 120 | P a g e

these tables [8]. Furthermore, this model adopted a

language for the manipulation and query of these

data, the SQL (Structured Query Language) which

was created by IBM and inspired by the relational

algebra. In 1982, the American National Standard

Institute (ANSI) defined the SQL as the official

standard language for the relational environment [9].

For a long time, the relational database has been the

most widely used database type in companies that

have a high volume of data to be stored [2, 3].

Thinking that this quantity of data tends to grow

every time, you begin to see those relational

databases have certain limiting factors, especially

when we refer to a scale system [10]. We can

mention the case of Facebook, which reached the

level of petabytes (in 2011 this data volume

exceeded 30 petabytes, and less than a year before

the volume was 20 petabytes). This case is a real

example of how this data growth has expanded

rapidly [11]. For these types of organizations, the

use of relational DBMSs has been very problematic

and not as efficient. Because of this limitations, we

have the emergence of new alternative models for

the database environment that can fill this gap. One

example of these models that has gained enough

strength and space is the NoSQL(”Not Only SQL”)

[12]. the NoSQL is a generic term that defines a

non-relational database. This model came with the

proposal to meet, to organize, and to manage large

volumes of data, looking for high performance and

availability [13].

A. A new paradigm: the NoSQL

Database Thinking in solving various

problems of relational models, NoSQL designers

promoted an alternative with high storage, speed,

and great availability. They were seeking to get rid

of certain rules and structures that guide the

Relational Model. With this breach in the relational

model, we won performance and more flexible

database systems for the various features that are

unique to each company. This flexibility has become

critical to meet the high scalability requirements

needed to manage large amounts of data, as well as

to ensure high availability, a key feature for Web 2.0

applications. The proposal of NoSQL database is not

extinguishing the Relational Model, but use it in

cases where it is needed more flexibility in

structuring database [13]. This movement is very

rooted in the open source field and although there

are many databases in this category. The movement

started to gain more strength when some companies,

considered as technology giants, began to use their

proprietary implementations. We can mention

Google, which since 2004 invests in BigTable. We

also have the Cassandra, developed by Facebook to

handle the massive flow of information. In 2010,

Cassandra proved to be a consolidated database and

is now used by Twitter, which used MySQL before

[14]. NoSQL databases have some important

characteristics that make them so different from

relational databases like Horizontal scalability;

Schema-free or flexible schema; Native support for

replication; API simple to access the database.

B. Main differences between DBMSs relational

and NoSQL

When we think about the possibility of

using a NoSQL database instead of a relational

model, we need to take a few questions into

consideration, such as escalation, consistency, and

availability of data. To better understand all those

differences, Table I exemplifies concisely these

questions. We also can summarize the both kinds of

databases (Relational Model and NoSQL) and their

main characteristics as follows.

Table I: Comparative analysis of relational database and NoSQL

 Relational Databases

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 121 | P a g e

– What is: based on that all data are stored in

tables, by the concept of an entity and relationship.

The data are separated in a unique form, trying to

reduce the maximum redundancy, because the

information is created by all the data, which are the

relationships between the tables that make this

service.

– Features: tables, defined schema, hierarchy,

minimal redundancy, and entity relationship,

normal forms, ACID transactions (atomicity,

consistency, isolation, durability). – When to use:

local, financial, corporate; information security;

data consistency.

 NoSQL Databases

– What it is: an alternative solution to relational

databases, have a high scalability and performance.

– Features: records, schema-free, fault tolerance,

scalability, clustering, mapreduce, sharding.

– When to use: cloud systems, social analysis, high

scalability, performance in the query / write

replication.

III. DARWINIAN NETWORKS
Darwinian networks (DNs) [5, 6] were

proposed to simplify working with Bayesian

networks (BNs) [7]. Rather than modeling the

variables in a problem domain, DNs represent the

probability tables in the model. The graphical

manipulation of the tables then takes on a

biological feel, where a CPT P(X/Y) is viewed as

the novel representation of a population p(C, D)

using both combative traits C (coloured clear) and

docile traits D (coloured dark).

A. Definitions

Note that Figure 2 (ii) shows the merge of two

populations p(ab) and p(b), resulting on the

population p(a; b). Natural selection removes

recursively all barren populations from a DN D

with respect to another DN D .

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 122 | P a g e

IV. THE GRAPHICAL LIBRARY
In this section, we will describe how a

Darwinian network (DN) can be modeled in a non-

relational database. Furthermore, we also discuss

how evolution can be saved as collections in the

same non-relational database. By explaining that,

we are formalizing the product of this paper: a

simple javascript library for representing DNs in a

non-relational database with an intuitive and

graphical interface for the user. To ensure that the

product was well-developed and controlled during

the entire process, we used the PM5 approach to

manage this project [15].

A. Database Description

The system is formed by a non-relational

database server and a web interface to manipulate

the database. The server runs a Node.js javascript

platform, forming the backend part of the library,

which also includes handling client’s requests and

managing the database. The web interface is also

written in javascript and communicate with the

browser by offering up-to-date visualization of the

database. For drawing DNs in the browser, the web

interface uses Scalable Vector Graphics (SVG),

which is an XML-based vector image format for

two-dimensional graphics with support for

interactivity and animation. The first important

concept in the library is the representation of a trait.

By convention, a trait will be represented as one

character or a single string. For example, a trait a is

represented by character ‘a’. The second concept

that we used in this project was the convention of

unique identification codes for each collection,

called an id. The id is a randomly generated 32

characters long code. Moreover, the id is unique for

each population, rule enforced by the non relational

database server. A population is represented by a

collection in the database. The first field of the

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 123 | P a g e

collection is the population id. The second field is

dnId, that is the id for the DN from where this

population is contained. Next, the population has

two array fields: combative and docile. They both

hold a sequence of traits (characters). For the

visualization of this population, we also needed to

save the population’s position on the screen.

We can achieve that by adding two more

fields: posX and posY, saving the population’s

horizontal and vertical positions, respectively.

Lastly, we keep a field createdAt saving when the

population was created. Follows one example of

population p(a; b) as held in the database:

A DN is a collection created in order to be

referenced by populations. Its first field is the

unique id. Follows a field called name, which is a

user’s input to identify a DN in specific. DNs are

used for modeling a problem domain and they are

also used for inference. Thus, we needed a field to

distinguish between these two situations. That one

is a Boolean field isEvlotion which holds a false if

the DN is used in modeling and true if it is used in

inference. A DN collection also has a field

createdAt to save user’s creation date. Bellow is a

document from a DN collection:

The last thing the library needs to

represent in the database is evolution. The first

field is its unique id. Next, we have a field name,

used to save a familiar identification for the user.

The field most important in this collection is the

dns one. Here, we have an array type of field with

an ordered sequence of DN’s ids. These ids

correspond to DNs with the field isEvolution being

true. Thus, the evolution collection can save a

sequence of DNs, which is exactly the meaning of

the inference process in DNs. Lastly, createdAt has

similar functionality here. This is one possible

evolution document from the evolution collection:

B. Web Interface

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 124 | P a g e

The web interface is composed of screens

where the user can create, edit, and remove DNs

and evolutions. DNs are created independently

from evolutions. That is, the user can define a DN

and save it on a screen. Later, if the user wants to

perform evolution with a certain DN, the user can

select it from the DNs list and start the population

manipulations. Notice that whenever the user starts

evolution a copy of the original DN is made,

meaning that all population manipulations are not

applied to the defined DN, but to the copy. Users

can create DN, edit, and remove DNs at the DNs

list screen, as shown in Figures 5 and 6.

Figure 5: DN list screen: users can create, edit, and remove DNs.

In order to add and remove populations,

the edit screen, depicted in Figure 7 offers two

simple tools: a form for adding populations at the

top and the option of double clicking a population

for removing it. The user can list combative and

docile trait by separating them with a comma. The

interface parses the input for convenience. At the

evolution list, users edit and resume an evolution

but can not create one. Evolutions can only be

created from the DN list screen. In Figure 8, the

evolution list screen is shown. Whenever an

evolution is removed, all corresponding DNs are

also removed. But notice that the original DN is

never modified, only the copy. Next, users can

perform evolution by manipulating populations in

the evolution screen, as illustrated in Figure 9.

Populations can replicate and merge. To replicate,

it is required a double click in a population, which

triggers a pop up window asking which trait is

going to be removed in the replica. In order to

merge population, users can drag one above the

other.

Figure 6: Creating a DN: users provide a name for the DN

Figure 7: Editing a DN by adding and removing populations.

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 125 | P a g e

Figure 8: List of evolutions: users can edit names and resume evolutions.

Figure 9: Users manipulate population in order to replicate and merge them when doing evolution.

The web interface currently works in open

session, that is all users have access to the same

database. Future works will create individual

sections, restricting users to their own databases.

Future works also can also implement representing

multiple DNs. Here, the idea would be to create a

new collection for being an entity to where all DNs

are contained. This approach is similar to how

populations from a specific DN refer to the id of

that DN.

V. CONCLUSION
We proposed a representation framework

for Darwinian Networks with Non-Relational

Databases, available at https: //dns-

lab.herokuapp.com/. It is a javascript

implementation of the basic operations for

adaptation and evolution in DNs. The main

advantage of the DN graphical library is to

visualize the novel ideas and techniques of DNs.

Thus, it is a great tool for teaching, quick

prototyping with DNs and testing. Non-relational

databases (NoSQL) are an alternative solution to

relational databases, have a high scalability and

performance. We have shown a comprehensive

comparison between relational and non-relational

databases. The motivations and basic concepts on

the non-relational database were stated as well as

examples to illustrate its main characteristics. Next,

we studied how this database paradigm compares

with relational database. We also provided

examples to elucidate the advantages and

disadvantages. By utilizing the unique features of

NoSQL we developed an intuitive framework for

visualizing working with DNs. For instance, users

can create DN, edit, and remove DNs at the DNs

list screen. Another salient feature is the DN

manipulation. By the list of evolutions, users can

edit names and resume evolutions. Users can

manipulate population in order to replicate and

merge them when doing evolution. This paper

proposed a graphical library to represent and depict

non-relational databases using DNs. In summary,

we have established four main advantages of using

DN graphical library:

 The library is an interactive space with a non-

relational database available through a

graphical interface. Users can create and edit

DNs by using the web interface.

 Manipulations on DNs are then translated by

the library to the correspondent non-relational

database operation.

 By using the DN operations available, users

can perform inference graphically.

 The framework is a great tool for learning

DNs.

 and all source code are available free online on

GitHub through the web page:

https://gitlab.com/jhonatanoliveira/dn-lab

With the framework, DNs can be applied as the

simple and yet remarkably robust tool they are,

allowing users to depict reasoning with DNs.

https://gitlab.com/jhonatanoliveira/dn-lab

Paulo Roberto Martins de Andrade. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 5, (Part -3) May 2017, pp.119-126

www.ijera.com DOI: 10.9790/9622-070503119126 126 | P a g e

ACKNOWLEDGEMENTS
The CNPq (Conselho Nacional de

Desenvolvimento Cient´ıfico e Tecnol´ogico -

”National Counsel of Technological and Scientific

Development”) supports this work.

REFERENCES
[1]. C. J. Butz, “Introducing darwinian

networks,” in Proceedings of the Twenty-

Eighth International Florida Artificial

Intelligence Research Society Conference,

2015, pp. 604–610.

[2]. C. Mohan, “History repeats itself: Sensible

and nonsensql aspects of the nosql hoopla,”

in Proceedings of the 16th International

Conference on Extending Database

Technology, 2013, pp. 11–16.

[3]. A. Lith and J. Mattsson, “Investigating

storage solutions for large data-a comparison

of well performing and scalable data storage

solutions for real time extraction and batch

insertion of data,” 2010.

[4]. D. Maier, Theory of Relational Databases.

Computer Science Pr, 1983.

[5]. C. J. Butz, J. S. Oliveira, and A. E. dos

Santos, “Darwinian networks,” in

Proceedings of the Twenty-Eighth Canadian

Artificial Intelligence Conference, 2015, pp.

16–29.

[6]. ——, “On Darwinian networks,”

Computational Intelligence, 2015.

[7]. J. Pearl, Probabilistic Reasoning in

Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[8]. E. F. Cood, The Relational Model for

Database Managment. Addison-Wesley

Publishing Company, 1990.

[9]. IBM, “Relational database,” 2012, online;

Available at http://www-

03.ibm.com/ibm/history/ibm100/

us/en/icons/reldb/, Accessed 24-July-2016.

[Online]. Available: http://www-

03.ibm.com/ibm/history/ibm100/

us/en/icons/reldb/

[10]. Uniredes, “List of the most used databases in

the would,” 2013, online; Available at

http://uniredes.org/kb/?View=

entry&EntryID=224, Accessed 24-July-

2016. [Online]. Available:

http://uniredes.org/kb/?View=entry&EntryI

D= 224

[11]. InfoQ, “Facebook - the biggest migration,”

2011, online; Available at

https://www.infoq.com/br/news/

2011/08/facebook-maior-migracao,

Accessed 24-July- 2016. [Online].

Available: https://www.infoq.com/br/

news/2011/08/facebook-maior-migracao

[12]. N. Database, “List of nosql databases,”

2015, online; Available at http://nosql-

database.org, Accessed 16-July- 2016.

[Online]. Available: http://nosql-

database.org/

[13]. MongoDB, “Mongodb for giant ideas,”

2016, online; Available at

https://www.mongodb.com/, Accessed 25-

July-2016. [Online]. Available:

https://www.mongodb. com/

[14]. NoSQLDatabases, “How to create a

consistent hasher using php,” 2010, online;

Available at http://www.

nosqldatabases.com/main/tag/consistent-

hashing, Accessed 21-July-2016. [Online].

Available: http:

//www.nosqldatabases.com/main/tag/consist

ent-hashing

[15]. P. R. M. Andrade, A. B. Albuquerque, O. F.

Frota, and J. F. S. Filho, “Pm5: One

approach to the management of it projects

applied in the brazilian public sector,” in

Proceedings of 13th International

Conference on Software Engineering

Research and Practice - SERP. WorldComp,

2015.

http://nosql-database.org/
http://nosql-database.org/

