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ABSTRACT 

Runge – Kuta (RK) method is reasonably simple and robust for numerical solution of differential equations but 

it requires an intelligent adaptive step-size routine; to achieve this, there is need to develop a good logical 

computer code. This study develops a finite element code in Java using Runge-Kuta method as a solution 

algorithm to predict dynamic time response of structural beam under impulse load. The solution obtained using 

direct integration and the present work is comparable. 

 

I. INTRODUCTION 
 In numerical analysis, the Runge-Kuta 

method is a family of implicit and explicit iterative 

methods, which includes the well – known routine 

called Euler methods, used in temporal 

discretization for the approximate solution of 

Ordinary Differential Equation (ODE) (Devries and 

Hasbun, 2011).  Runge-Kuta method is reasonably 

simple and robust and is a good candidate for 

numerical solution of differential equations when 

combined with an intelligent adaptive step-size 

routine (Abramowitz and Stegun, 1972).The 

Runge-Kuta Algorithm is known to be very 

accurate and well – behaved for a wide range of 

problems but to describe it precisely we need to 

develop some notation and a good logical computer 

code; which this study endeavored to achieve. 

 

II. THEORETICAL BACKGROUND 
Finite Element Analysis (FEA) is a branch 

of solid mechanics which can be applied to solve 

multi-physics problems. Its applications include 

structural analyses, solid mechanics, dynamics, 

thermal analysis, electrical analysis and 

biomaterials (Hughes, 1987 and Logan, 2002). The 

major purpose of FEA is to determine the values of 

the displacements, stresses and strains at each 

material point if a force is applied on a solid (Jerry, 

2006). 

The Runge-Kuta algorithm works over time step 

increment to implicitly calculate the responses over 

time domain, starting from the initial time t0 to the 

time limit tmax. 

 

 Methodology: Study Solution Development 
The equation of motion in single degree of freedom (SDF) is given by 

 1 

and the displacement equation in terms of shape functions and time is given by  

u(x,t) = [ ] u(t)   2 

or  u(x,t) = [A] u(t) and the shape functions are defined as follows : 

   =     

     =        3 

     =  

     =  

    And u(t) is the nodal displacement at time t 

External forces:     g(x,t) =  4 

  and 
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    f (x,t)  is the applied force 

By the principle of virtual works: 

                  5 

   

    6 

   7 

 where 

   

   

               8 

   

         9 

          10 

 

 
Equating 9 and 10 

 
 

         11 

      

Where the consistent matrices of mass, stiffness, damping and force are given below 

 

 

 

 
Runge-Kuta Method of Solution 

The solution to the equation of motion can 

be obtained using Runge-Kuta (RK) method which 

very suited to initial condition system. However, 

the integration of Finite Element Method with RK 

method requires some careful of considerations 

because the overall global U vector is a 

combination of displacement and velocity vectors. 

The RK solution decomposes the equation of 

motion into two equations U1 = U and U2 = dU1/dt. 

Thus the initial conditions to start the solution 

procedure are given below. Please note that U is 

the combination of global displacement and 

velocity and is different from u. 

U1 = 0 (U1pre ), U2  = 0 (U2pre ) at t = 0 
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=  

                    (2,8) matrix    12 

 

 ) 

 ) 

 

 
. 

Infact, where N x N is the size of global consistent stiffness, damp and mass matrices 

Pseudo Code 

Step 1:   Calculate the member stiffness matrix [K]4x4 , mass matrix [M]4x4and damping matrix  

[C]4x4= β [M]4x4 

Step 2:  Set start time t[0] = tini 

 Calculate the time step dt = , n being the total steps 

Step 2:   Set up [U]initial and set [U]i-1 = [U]initial 

Step 3:   Set time t[i] = t [i-1] + dt 

Step 4: Assemble the global stiffness matrix  NxNK , mass matrix  NxNM  and damping 

matrix  NxNC = β  
NxN

M  

Step 5: Compute x  

Step 6:   Compute 

  

 ( ) 

  ([𝑖−1]+ ,  [ 𝑈 ]𝑖+ ) 

  ) 

  (  ) / 6.0 

Step 7: Extract global displacement, velocities and 

compute acceleration which are N x 1 size. 

Step 8: Increase time to t [i] = t [i -1] + dt and 

repeat Step 5 to Step 7. 

 

III. RESULTS AND DISCUSSION 
This study tests the present solution of the 

equation of motion by analyzing a prismatic 

concrete beam of 200 x 200 mm cross section by 

3.0m length. The study used material characteristic 

of Young’s modulus of 48.39 MPa and yield stress 

of 65.00 MPa. A triangular force excitation of 

maximum value of 500KN, decaying to zero on the 

positive phase of 0.015 ms was applied over a time 

domain. The same problem was analyzed using 

Direct Integration and Runge-Kuta methods for 

both damped and un-damped situations. The results 

of the comparison of the two methods are shown 

below in figures 1 and 2 respectively.  

The agreement between the two methods 

is reasonable and indicates that Runge-Kuta 

method integrated with Finite Element Method can 

result in accurate prediction of the time response of 

structural elements over the period of excitation. 

With more attention paid to details, the two 

methods can seamlessly converge to the same 

solution with practically no difference. 
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Figure 1: Comparison of Runge-Kuta Method with Direct Integration Method for damped motion. 

 

 
Figure 2: Comparison of Runge-Kuta Method with Direct Integration Method for un-damped motion. 

 

IV. CONCLUSION 

The agreement between the two methods 

is reasonable and indicates that Runge-Kuta 

method integrated with finite element method can 

result in accurate prediction of the time response of 

structural elements over the period of excitation. 

 

REFERENCES 

[1]. Abramowtiz, M. and Stegun, I.A. (1972) 

Handbook of Mathematical foundation with 

formulas, Graphs and Mathematical tables 

9
th

 Edition, New York: Dover pp. 896-897. 

[2]. Barthe K.J. (1996) The finite element 

procedures. Prentice Hall. 

[3]. Devries, P.L. and Hasbun, J.E. (2011) A first 

course in Computational Physics (2
nd

 

Edition) Jones and Bartlett Publishers, pg. 

215. 

[4]. Huges, T.J.R. (1987) The finite element 

methods: Linear static and dynamic finite 

element analysis. Dove publication.  

[5]. Jerry, H.Q. (2006) Finite element analysis 

note book. 

[6].  Logen, D.L.(2002) A first course in finite 

element (3
rd

 Edition) 

 

Appendix  

Although the detailed listing of the Java 

code may be required by some inquisitive readers, 

effort is made to provide the Javadoc listings below 

to assist in recreating the code quickly. 

 

Java Code Definitions: 

Class DynaBeamRK 

 java.lang.Object 

  

o DynaBeamRK 

  
public class DynaBeamRK 

extends java.lang.Object 

o Constructor Summary 

Constructors  

Constructor and Description 

DynaBeamRK(int numberEleme

n, float timeLimit, 

int numberOfTimeStep)  

o Method Summary 

Methods  

Modifi

er and 

Type 

Method and 

Description 

static 

void 

calcK1(int step, 

float deltaTime)  

../../../java/DynaBeamRK.html#DynaBeamRK%28int,%20float,%20int%29
../../../java/DynaBeamRK.html#calcK1%28int,%20float%29
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static 

void 

calcK2(int step, 

float deltaTime)  

static 

void 

calcK3(int step, 

float deltaTime)  

static 

void 

calcK4(int step, 

float deltaTime)  

static 

void 
calcU(int step)  

static 

void 
calcU0()  

static 

void 
calcU01()  

static 

void 
calcU02()  

static 

void 
cofactor(float[][] num)  

static 

void 

computeAcceleration(i

nt step)  

 

 

 

 

 

 

static 

void 

 

 

 

 

 

computeElementMatri

x()  

static 

void 

computeElemForces(int

 t)  

static 

void 

computeForce(int step, 

float addedT)  

static 

void 

computeNodalAccel(int

 t)  

static 

void 

computeNodalDisp(int t

)  

static 

void 

computeNodalVel(int t)

  

static 

void 
computeTimeDispHisto

ry()  

static 

void 
computeTimeRespHist

RK()  

static 

float 

determinant(float[][] nu

m, int s)  

static 

void 
initialise()  

static 

void 
initialiseIntermediate()  

static 

void 

main(java.lang.String[] 

args)  

static 

void 
readBasicInput()  

static 

void 
readInputData()  

static 

void 

transpose(float[][] num)

  

 Methods inherited 

from 

class java.lang.Object 

clone, equals, finalize, 

getClass, hashCode, 

notify, notifyAll, 

toString, wait, wait, wait 

o Constructor Detail 

 DynaBeamRK 

 public DynaBea

mRK(int numberElemen

, 

           

float timeLimit, 

          

int numberOfTimeStep) 

o Method Detail 

 calcU01 

public 

static void calcU01() 

 calcU02 

public 

static void calcU02() 

 calcU0 

public 

static void calcU0() 

 initialiseIntermediate 

public 

static void initialiseInter

mediate() 

 calcK1 

 public 

static void calcK1(int ste

p, 

          float deltaTime) 

 calcK2 

 public 

static void calcK2(int ste

p, 

          float deltaTime) 

 calcK3 

 public 

static void calcK3(int ste

p, 

          float deltaTime) 

 calcK4 

 public 

static void calcK4(int ste

p, 

          float deltaTime) 

../../../java/DynaBeamRK.html#calcK2%28int,%20float%29
../../../java/DynaBeamRK.html#calcK3%28int,%20float%29
../../../java/DynaBeamRK.html#calcK4%28int,%20float%29
../../../java/DynaBeamRK.html#calcU%28int%29
../../../java/DynaBeamRK.html#calcU0%28%29
../../../java/DynaBeamRK.html#calcU01%28%29
../../../java/DynaBeamRK.html#calcU02%28%29
../../../java/DynaBeamRK.html#cofactor%28float[][]%29
../../../java/DynaBeamRK.html#computeAcceleration%28int%29
../../../java/DynaBeamRK.html#computeElementMatrix%28%29
../../../java/DynaBeamRK.html#computeElementMatrix%28%29
../../../java/DynaBeamRK.html#computeElemForces%28int%29
../../../java/DynaBeamRK.html#computeForce%28int,%20float%29
../../../java/DynaBeamRK.html#computeNodalAccel%28int%29
../../../java/DynaBeamRK.html#computeNodalDisp%28int%29
../../../java/DynaBeamRK.html#computeNodalVel%28int%29
../../../java/DynaBeamRK.html#computeTimeDispHistory%28%29
../../../java/DynaBeamRK.html#computeTimeDispHistory%28%29
../../../java/DynaBeamRK.html#computeTimeRespHistRK%28%29
../../../java/DynaBeamRK.html#computeTimeRespHistRK%28%29
../../../java/DynaBeamRK.html#determinant%28float[][],%20int%29
../../../java/DynaBeamRK.html#initialise%28%29
../../../java/DynaBeamRK.html#initialiseIntermediate%28%29
../../../java/DynaBeamRK.html#main%28java.lang.String[]%29
../../../java/DynaBeamRK.html#readBasicInput%28%29
../../../java/DynaBeamRK.html#readInputData%28%29
../../../java/DynaBeamRK.html#transpose%28float[][]%29
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 calcU 

public 

static void calcU(int step

) 

 readInputData 

public 

static void readInputDat

a() 

 readBasicInput 

public 

static void readBasicInp

ut() 

 initialise 

public 

static void initialise() 

 computeElementMatri

x 

public 

static void computeElem

entMatrix() 

 computeTimeDispHist

ory 

public 

static void computeTime

DispHistory() 

 computeTimeRespHist

RK 

public 

static void computeTime

RespHistRK() 

 computeNodalDisp 

public 

static void computeNod

alDisp(int t) 

 computeNodalVel 

public 

static void computeNod

alVel(int t) 

 computeNodalAccel 

public 

static void computeNod

alAccel(int t) 

 computeElemForces 

public 

static void computeElem

Forces(int t) 

 computeForce 

 public 

static void computeForc

e(int step, 

                float addedT) 

 computeAcceleration 

public 

static void computeAcce

leration(int step) 

 determinant 

 public 

static float determinant(f

loat[][] num, 

                int s) 

 cofactor 

public 

static void cofactor(float

[][] num) 

 transpose 

public 

static void transpose(flo

at[][] num) 

 main 

public 

static void main(java.lan

g.String[] args) 

 

 

 

 


