
Olawale Simon .et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -6) April 2017, pp.45-50

www.ijera.com DOI: 10.9790/9622-0704064650 45 | P a g e

Integration of Finite Element Method with Runge – Kuta Solution

Algorithm

1
Olawale Simon,

1
Ogunbiyi Moses A,

2
Alabi Olusegun and

3
Ofuyatan

Olatokunbo
1
 Department of Civil Engineering, Faculty of Engineering and Environmental Sciences, Osun State University,

Osogbo, Osun State, Nigeria
2
 Department of Mathematical and Physical Sciences, Faculty of Basic and Applied Sciences, Osun State

University, Osogbo, Osun State,Nigeria
3
 Department of Civil Engineering,college of Engineering, Covenant University, Otta, Ogun State, Nigeria

ABSTRACT

Runge – Kuta (RK) method is reasonably simple and robust for numerical solution of differential equations but

it requires an intelligent adaptive step-size routine; to achieve this, there is need to develop a good logical

computer code. This study develops a finite element code in Java using Runge-Kuta method as a solution

algorithm to predict dynamic time response of structural beam under impulse load. The solution obtained using

direct integration and the present work is comparable.

I. INTRODUCTION
 In numerical analysis, the Runge-Kuta

method is a family of implicit and explicit iterative

methods, which includes the well – known routine

called Euler methods, used in temporal

discretization for the approximate solution of

Ordinary Differential Equation (ODE) (Devries and

Hasbun, 2011). Runge-Kuta method is reasonably

simple and robust and is a good candidate for

numerical solution of differential equations when

combined with an intelligent adaptive step-size

routine (Abramowitz and Stegun, 1972).The

Runge-Kuta Algorithm is known to be very

accurate and well – behaved for a wide range of

problems but to describe it precisely we need to

develop some notation and a good logical computer

code; which this study endeavored to achieve.

II. THEORETICAL BACKGROUND
Finite Element Analysis (FEA) is a branch

of solid mechanics which can be applied to solve

multi-physics problems. Its applications include

structural analyses, solid mechanics, dynamics,

thermal analysis, electrical analysis and

biomaterials (Hughes, 1987 and Logan, 2002). The

major purpose of FEA is to determine the values of

the displacements, stresses and strains at each

material point if a force is applied on a solid (Jerry,

2006).

The Runge-Kuta algorithm works over time step

increment to implicitly calculate the responses over

time domain, starting from the initial time t0 to the

time limit tmax.

 Methodology: Study Solution Development
The equation of motion in single degree of freedom (SDF) is given by

 1

and the displacement equation in terms of shape functions and time is given by

u(x,t) = [] u(t) 2

or u(x,t) = [A] u(t) and the shape functions are defined as follows :

 =

 = 3

 =

 =

 And u(t) is the nodal displacement at time t

External forces: g(x,t) = 4

 and

RESEARCH ARTICLE OPEN ACCESS

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -4) April 2017, pp.45-

www.ijera.com DOI: 10.9790/9622-0704064650 46 | P a g e

 f (x,t) is the applied force

By the principle of virtual works:

 5

 6

 7

 where

 8

 9

 10

Equating 9 and 10

 11

Where the consistent matrices of mass, stiffness, damping and force are given below

Runge-Kuta Method of Solution

The solution to the equation of motion can

be obtained using Runge-Kuta (RK) method which

very suited to initial condition system. However,

the integration of Finite Element Method with RK

method requires some careful of considerations

because the overall global U vector is a

combination of displacement and velocity vectors.

The RK solution decomposes the equation of

motion into two equations U1 = U and U2 = dU1/dt.

Thus the initial conditions to start the solution

procedure are given below. Please note that U is

the combination of global displacement and

velocity and is different from u.

U1 = 0 (U1pre), U2 = 0 (U2pre) at t = 0

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -4) April 2017, pp.45-

www.ijera.com DOI: 10.9790/9622-0704064650 47 | P a g e

=

 (2,8) matrix 12

)

)

.

Infact, where N x N is the size of global consistent stiffness, damp and mass matrices

Pseudo Code

Step 1: Calculate the member stiffness matrix [K]4x4 , mass matrix [M]4x4and damping matrix

[C]4x4= β [M]4x4

Step 2: Set start time t[0] = tini

 Calculate the time step dt = , n being the total steps

Step 2: Set up [U]initial and set [U]i-1 = [U]initial

Step 3: Set time t[i] = t [i-1] + dt

Step 4: Assemble the global stiffness matrix NxNK , mass matrix NxNM and damping

matrix NxNC = β
NxN

M

Step 5: Compute x

Step 6: Compute

 ()

 ([𝑖−1]+ , [𝑈]𝑖+)

)

 () / 6.0

Step 7: Extract global displacement, velocities and

compute acceleration which are N x 1 size.

Step 8: Increase time to t [i] = t [i -1] + dt and

repeat Step 5 to Step 7.

III. RESULTS AND DISCUSSION
This study tests the present solution of the

equation of motion by analyzing a prismatic

concrete beam of 200 x 200 mm cross section by

3.0m length. The study used material characteristic

of Young’s modulus of 48.39 MPa and yield stress

of 65.00 MPa. A triangular force excitation of

maximum value of 500KN, decaying to zero on the

positive phase of 0.015 ms was applied over a time

domain. The same problem was analyzed using

Direct Integration and Runge-Kuta methods for

both damped and un-damped situations. The results

of the comparison of the two methods are shown

below in figures 1 and 2 respectively.

The agreement between the two methods

is reasonable and indicates that Runge-Kuta

method integrated with Finite Element Method can

result in accurate prediction of the time response of

structural elements over the period of excitation.

With more attention paid to details, the two

methods can seamlessly converge to the same

solution with practically no difference.

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -4) April 2017, pp.45-

www.ijera.com DOI: 10.9790/9622-0704064650 48 | P a g e

Figure 1: Comparison of Runge-Kuta Method with Direct Integration Method for damped motion.

Figure 2: Comparison of Runge-Kuta Method with Direct Integration Method for un-damped motion.

IV. CONCLUSION

The agreement between the two methods

is reasonable and indicates that Runge-Kuta

method integrated with finite element method can

result in accurate prediction of the time response of

structural elements over the period of excitation.

REFERENCES

[1]. Abramowtiz, M. and Stegun, I.A. (1972)

Handbook of Mathematical foundation with

formulas, Graphs and Mathematical tables

9
th

 Edition, New York: Dover pp. 896-897.

[2]. Barthe K.J. (1996) The finite element

procedures. Prentice Hall.

[3]. Devries, P.L. and Hasbun, J.E. (2011) A first

course in Computational Physics (2
nd

Edition) Jones and Bartlett Publishers, pg.

215.

[4]. Huges, T.J.R. (1987) The finite element

methods: Linear static and dynamic finite

element analysis. Dove publication.

[5]. Jerry, H.Q. (2006) Finite element analysis

note book.

[6]. Logen, D.L.(2002) A first course in finite

element (3
rd

 Edition)

Appendix

Although the detailed listing of the Java

code may be required by some inquisitive readers,

effort is made to provide the Javadoc listings below

to assist in recreating the code quickly.

Java Code Definitions:

Class DynaBeamRK

 java.lang.Object

o DynaBeamRK

public class DynaBeamRK

extends java.lang.Object

o Constructor Summary

Constructors

Constructor and Description

DynaBeamRK(int numberEleme

n, float timeLimit,

int numberOfTimeStep)

o Method Summary

Methods

Modifi

er and

Type

Method and

Description

static

void

calcK1(int step,

float deltaTime)

../../../java/DynaBeamRK.html#DynaBeamRK%28int,%20float,%20int%29
../../../java/DynaBeamRK.html#calcK1%28int,%20float%29

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -4) April 2017, pp.45-

www.ijera.com DOI: 10.9790/9622-0704064650 49 | P a g e

static

void

calcK2(int step,

float deltaTime)

static

void

calcK3(int step,

float deltaTime)

static

void

calcK4(int step,

float deltaTime)

static

void
calcU(int step)

static

void
calcU0()

static

void
calcU01()

static

void
calcU02()

static

void
cofactor(float[][] num)

static

void

computeAcceleration(i

nt step)

static

void

computeElementMatri

x()

static

void

computeElemForces(int

 t)

static

void

computeForce(int step,

float addedT)

static

void

computeNodalAccel(int

 t)

static

void

computeNodalDisp(int t

)

static

void

computeNodalVel(int t)

static

void
computeTimeDispHisto

ry()

static

void
computeTimeRespHist

RK()

static

float

determinant(float[][] nu

m, int s)

static

void
initialise()

static

void
initialiseIntermediate()

static

void

main(java.lang.String[]

args)

static

void
readBasicInput()

static

void
readInputData()

static

void

transpose(float[][] num)

 Methods inherited

from

class java.lang.Object

clone, equals, finalize,

getClass, hashCode,

notify, notifyAll,

toString, wait, wait, wait

o Constructor Detail

 DynaBeamRK

 public DynaBea

mRK(int numberElemen

,

float timeLimit,

int numberOfTimeStep)

o Method Detail

 calcU01

public

static void calcU01()

 calcU02

public

static void calcU02()

 calcU0

public

static void calcU0()

 initialiseIntermediate

public

static void initialiseInter

mediate()

 calcK1

 public

static void calcK1(int ste

p,

 float deltaTime)

 calcK2

 public

static void calcK2(int ste

p,

 float deltaTime)

 calcK3

 public

static void calcK3(int ste

p,

 float deltaTime)

 calcK4

 public

static void calcK4(int ste

p,

 float deltaTime)

../../../java/DynaBeamRK.html#calcK2%28int,%20float%29
../../../java/DynaBeamRK.html#calcK3%28int,%20float%29
../../../java/DynaBeamRK.html#calcK4%28int,%20float%29
../../../java/DynaBeamRK.html#calcU%28int%29
../../../java/DynaBeamRK.html#calcU0%28%29
../../../java/DynaBeamRK.html#calcU01%28%29
../../../java/DynaBeamRK.html#calcU02%28%29
../../../java/DynaBeamRK.html#cofactor%28float[][]%29
../../../java/DynaBeamRK.html#computeAcceleration%28int%29
../../../java/DynaBeamRK.html#computeElementMatrix%28%29
../../../java/DynaBeamRK.html#computeElementMatrix%28%29
../../../java/DynaBeamRK.html#computeElemForces%28int%29
../../../java/DynaBeamRK.html#computeForce%28int,%20float%29
../../../java/DynaBeamRK.html#computeNodalAccel%28int%29
../../../java/DynaBeamRK.html#computeNodalDisp%28int%29
../../../java/DynaBeamRK.html#computeNodalVel%28int%29
../../../java/DynaBeamRK.html#computeTimeDispHistory%28%29
../../../java/DynaBeamRK.html#computeTimeDispHistory%28%29
../../../java/DynaBeamRK.html#computeTimeRespHistRK%28%29
../../../java/DynaBeamRK.html#computeTimeRespHistRK%28%29
../../../java/DynaBeamRK.html#determinant%28float[][],%20int%29
../../../java/DynaBeamRK.html#initialise%28%29
../../../java/DynaBeamRK.html#initialiseIntermediate%28%29
../../../java/DynaBeamRK.html#main%28java.lang.String[]%29
../../../java/DynaBeamRK.html#readBasicInput%28%29
../../../java/DynaBeamRK.html#readInputData%28%29
../../../java/DynaBeamRK.html#transpose%28float[][]%29

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -4) April 2017, pp.45-

www.ijera.com DOI: 10.9790/9622-0704064650 50 | P a g e

 calcU

public

static void calcU(int step

)

 readInputData

public

static void readInputDat

a()

 readBasicInput

public

static void readBasicInp

ut()

 initialise

public

static void initialise()

 computeElementMatri

x

public

static void computeElem

entMatrix()

 computeTimeDispHist

ory

public

static void computeTime

DispHistory()

 computeTimeRespHist

RK

public

static void computeTime

RespHistRK()

 computeNodalDisp

public

static void computeNod

alDisp(int t)

 computeNodalVel

public

static void computeNod

alVel(int t)

 computeNodalAccel

public

static void computeNod

alAccel(int t)

 computeElemForces

public

static void computeElem

Forces(int t)

 computeForce

 public

static void computeForc

e(int step,

 float addedT)

 computeAcceleration

public

static void computeAcce

leration(int step)

 determinant

 public

static float determinant(f

loat[][] num,

 int s)

 cofactor

public

static void cofactor(float

[][] num)

 transpose

public

static void transpose(flo

at[][] num)

 main

public

static void main(java.lan

g.String[] args)

