
Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 33 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 33 | P a g e

DESQA a Software Quality Assurance Framework

Dr.KhaledKh. S. Kh. Allanqawi
General Subjects Department, High Institute of Energy, Public Authority of Applied education and Training,

Kuwait

ABSTRACT
In current software development lifecycles of heterogeneous environments, the pitfalls businesses have to face

are that software defect tracking, measurements and quality assurance do not start early enough in the

development process. In fact the cost of fixing a defect in a production environment is much higher than in the

initial phases of the Software Development Life Cycle (SDLC) which is particularly true for Service Oriented

Architecture (SOA). Thus the aim of this study is to develop a new framework for defect tracking and detection

and quality estimation for early stages particularly for the design stage of the SDLC. Part of the objectives of

this work is to conceptualize, borrow and customize from known frameworks, such as object-oriented

programming to build a solid framework using automated rule based intelligent mechanisms to detect and

classify defects in software design of SOA. The implementation part demonstrated how the framework can

predict the quality level of the designed software. The results showed a good level of quality estimation can be

achieved based on the number of design attributes, the number of quality attributes and the number of SOA

Design Defects. Assessment shows that metrics provide guidelines to indicate the progress that a software

system has made and the quality of design. Using these guidelines, we can develop more usable and

maintainable software systems to fulfill the demand of efficient systems for software applications. Another

valuable result coming from this study is that developers are trying to keep backwards compatibility when they

introduce new functionality. Sometimes, in the same newly-introduced elements developers perform necessary

breaking changes in future versions. In that way they give time to their clients to adapt their systems. This is a

very valuable practice for the developers because they have more time to assess the quality of their software

before releasing it. Other improvements in this research include investigation of other design attributes and SOA

Design Defects which can be computed in extending the tests we performed.

I. INTRODUCTION

Historically, the software quality

management process was focused on finding the

defects in software and correcting them. This took

place in two steps, developing software to

completion and checking for defects in the end

product. The shortcoming of this approach was that

the same defects would still be realised in another

software process [1]. It is important to consider the

uniqueness of each piece of software. They are

designed as artifacts and meant to serve the user

needs adequately. However, the processes, tools,

methodologies followed are the same. This aspect

of software development shows that the defects in

the process are likely to be repeated.

Applying quality management "control"

on the software process is being adopted as a

guarantee to achieve software quality. Total quality

management of the software design aims at

continuously improving the quality of the end [2].

Managing the software design by controlling the

end product at the design stage is a technique to

carve out the causes of defects. This technique

adopts a set of practices throughout the software

process and is aimed at consistently meeting the

end user needs.

The development of code for software

development is a practice that requires skill and

experience, producing a design defect free code

that does not have bugs is a difficult task. There are

many tools that assist the programmer with the

development of code. These help in the detection

and correction of these defects. To effectively

perform maintenance, programmers need to

accurately detect defects. The classification of

these defects would also help formulate guidelines

in correcting and avoiding them.

Therefore, this research endeavours to

develop, test and validate a framework

methodology to be used within an intelligent

approach for the purposes of detecting and

classifying defects at the design phase of software

development life cycle (SDLC) service-oriented

architecture (SOA) paradigm, while at the same

time balancing the cost and quality of addressing

such defects with business needs, functional needs

and other considerations that system developers

RESEARCH ARTICLE OPEN ACCESS

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 34 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 34 | P a g e

and designers may need to handle for the domain of

the study, as shown in figure 1.

Figure 1: The Domain of the Research

To achieve this goal, the objective of the

research is to conceptualize, borrow and customize

from known working frameworks, such as object-

oriented programming to build a solid framework

using automated rule-based intelligent mechanisms

to detect and classify defects in software design of

SOA. Already, several frameworks have been

developed with the aim of improving defect

detection and classification [2]. Each framework

has been designed in such a way that it can be

extended and contextualized to fit into any

environment, but with no emphasis on distributed

systems and services.

The use of intelligent approach will form

the core of the frameworks to define and take

advantage of informed and learning frameworks

that adapt and extend to various architectures. The

intention is not brute force investigation of all

available options; rather, an intelligent and guided

investigation of the frameworks that define the best

combination and projection of defect detection and

classification framework.

II. BACKGROUND AND CHALLENGES
Our world runs on software. Every

business depends on it, every mobile phone uses it,

and even every new car relies on code. Without

software, modern civilization would fall apart. So,

software quality is an important goal in the

software development process. But what exactly is

software quality? It’s not an easy question to

answer, since the concept means different things to

different people. One useful way to think about this

topic is to divide software quality into two aspects:

functional quality and structural quality [3].

The term software architecture intuitively

denotes the high level structures of a software

system. It can be defined as the set of structures

needed to reason about the software system, which

comprise the software elements, the relations

between them, and the properties of both elements

and relations [4]. Systems should be designed with

consideration for the user, the system (the IT

infrastructure), and the business goals as shown in

figure 2.

Figure 2: Application Stakeholders [4]

Service-oriented architectures (SOA) are

based on the notion of software services, which are

high-level software components that include web

services. Implementation of an SOA requires tools

as well as run-time infrastructure software. One of

the most important benefits of SOA is its ease of

reuse [5]. But some criticisms of SOA depend on

conflating SOA with Web services. For example,

some critics claim SOA results in the addition of

XML layers, introducing XML parsing and

composition. In the absence of native or binary

forms of remote procedure call (RPC), applications

could run more slowly and require more processing

power, increasing costs [6].

SOA provides an evolutionary approach to

software development, however, it introduces many

distinct concepts and methodologies that need to be

defined and explained in order to understand the

SOA offerings in an accurate way and build a

competent architecture that satisfy the SOA vision.

The main issue is to analyze and assess the

differences of SOA from past architectural styles,

investigate the improvement that SOA has brought

to the computing environment, and apply this

knowledge to service based application

development so as to have a satisfactory SOA.

Software systems have become a crucial

part of business and commerce in the modern

world. Consequently, software quality has become

fundamental in ensuring the proper functioning of

the systems and to minimize development and

maintenance costs. The quality of software should

be guaranteed throughout the entire life cycle of

software development, which points toward

detecting errors earlier during development.

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 35 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 35 | P a g e

One obvious and common challenge

facing software quality is the detection of design

defects and their correction. The main objective of

that is to achieve complete customer satisfaction.

One of the important steps towards total customer

satisfaction is the generation of nearly zero-defect

products [7]. The defect management process

includes defect prevention, defect discovery and

resolution, defect causal analysis, and process

improvement [8].

Another challenge involves the

application architecture, because it seeks to build a

bridge between business requirements and

technical requirements by understanding all of the

technical and operational requirements, while

optimizing common quality attributes. An

architecture is the set of significant decisions about

the organization of a software system, the selection

of the structural elements and their interfaces by

which the system is composed, together with their

behaviour as specified in the collaborations among

those elements, the composition of these structural

elements and behavioural elements into

progressively larger subsystems, and the

architecture style that guides this organization —

these elements and their interfaces, their

collaborations, and their composition [9].

The Application Architecture (AA)

describes the layout of an application's deployment.

This generally includes partitioned application

logic and deployment to application server engines.

It relies less on specific tools or language

technology than on standardized middleware

options, communications protocols, data gateways,

and platform infrastructures such as Component

Object Model (COM), JavaBeans and Common

Object Request Broker Architecture (CORBA).

The application architecture is used as a

blueprint to ensure that the underlying modules of

an application will support future growth. Growth

can come in the areas of future interoperability,

increased resource demand, or increased reliability

requirements. With a completed architecture,

stakeholders understand the complexities of the

underlying components should changes be

necessary in the future. The application architect is

tasked with specifying an AA and supporting the

deployment implementation.

Another challenge relates to providing a

framework that will improve the defect prevention

process. The following aims and objectives will

lead to the model of a framework that will improve

the defect prevention process:

 Analyze SOA quality and identify the common

features of the quality models.

 Analyze the problems of automating the

detection and the correction of software design

defects.

 Find out the most common quality metrics that

can be used to assess the impacts of design

defect on software quality.

 Use multi-criteria decision-making tools to

analyze QoS quality characteristics in

accessing and making decisions on

prioritization of design patterns.

 Develop a guideline or framework to automate

the detection of design defects based on design

patterns and using design constraints.

III. CASE STUDY AND EVALUATION

3.1 Introduction

The design of the framework is only as

good as the analysis, and the basic overarching

question at this phase is ―How will the framework

actually work?‖. Thus, this section presents the

evaluation of the proposed framework, particularly

its "Design Defects Measuring Matrix" firstly using

research tool based on a questionnaire and

workshop in order to assess the different phases of

the framework. Secondly, a case study commonly

used in service-oriented systems with a number of

design approaches is considered in order not only

to evaluate the framework but also to check the

impact of different architectural styles on both

software defects and software quality.

A part of framework evaluation consists

of capturing the quality attributes the architecture

must handle and to prioritize the control of these

attributes. If the list of the quality attributes is

suitable in the sense that at least all the business

objectives are indirectly considered, then, we can

keep working with the same architecture.

Otherwise, an alternative architecture that is more

suitable for the business should be considered.

These quality attributes may be conflictive for

achieving business objectives. In such a case, it

should be focused on a limited set of attributes,

especially if the evaluation of the architecture gives

a positive result in a business and a poor one in

another one figure 3.

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 36 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 36 | P a g e

Figure 3 DESQA Framework

3.2 Research Tool

The success of the preliminary evaluation

of the framework depends on how well the

questionnaire is constructed. In this section, the

research tool is a questionnaire. The designed

questionnaire examines the relationship between

service-oriented architectures (SOAs) and quality

attributes.

3.3 Results and Discussion

The main objective of this case study is to

demonstrate the usability or practical applicability

of the proposed Design Defects Measuring Matrix.

The second group required to calculate the

expected quality level of the designed software

based on the design defects using the following

formula:

Defect related to Algorithmic and Processing

Defects will affect the following quality

attributes.The weights of metrics and quality

attributes are used to calculate the total impact on

quality.

3.4Case Study: Automated Teller Machine (ATM)

This section demonstrates the applicability

and use of the framework proposed in the previous

section, and describes how its components are

deployed in a case study which is based on a

typical banking service namely, the Automated

Teller Machine (ATM) [10]. The choice of the case

study is driven by the fact that the ATM provides a

service that is communicating with a number of

banking services such as authentication,

transactions, reporting etc. within one bank as well

as communication and obtaining services from

other banks. Thus, ATM processes require

communication between a numbers of

components/services to complete a user request,

including transaction, client (user interface) and

back-end service as well as authentications etc.

ATM, as a case study, has been commonly

used in early object-oriented systems [11]. In

addition, it exhibits the service concepts reflect in

client/server architecture with the banking sector

including different modules for front end (user

interface) and back engine services. ATM services

are relatively easy to model, and can be used as a

proof of concept for evaluating the proposed

framework. In addition it can be modeled using

different designs that broadly follow the SOA

principles. Thus, it can be used for testing different

SOA architectural styles.

In order to meet comprehensive ATM

requirements and system analysis with requirement

specification both functional and non-functional

requirements need to be considered for the design

and development of service-oriented based

architectures, that can be used and compared both

in terms of potential defects and quality estimation

for different SOA architectural styles [12].

3.4.1 Requirements aspects

An ATM provides money to authorised

users who have sufficient funds on deposit. It

requires the user to provide a personal

identification number (PIN) as an authorisation.

Money is provided after a confirmation from the

bank’s computer system. Overall the main function

of the ATM is to provide a number of services to

the customer:

A customer must be able to make a cash

withdrawal from any suitable account linked to

his/her card. A customer must be able to make a

deposit to any account linked to the card, consisting

of cash and/or cheques in an envelope. The

customer will enter the amount of the deposit into

the ATM, subject to manual verification when the

envelope is removed from the machine by an

operator.

A customer must be able to make a balance inquiry

of any account linked to the card.

A customer must be able to abort a transaction in

progress by pressing the Cancel key instead of

responding to a request from the machine.

A customer must be able to print the balance, mini-

statements, receipts etc.

Transfer money, change PINs etc.

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 37 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 37 | P a g e

The ATM will service one customer at a

time. A customer will be required to insert an ATM

card and enter a PIN. The customer will then be

able to perform one or more transactions. The card

will be retained in the machine until the customer

indicates that he/she desires no further transactions,

at which point it will be returned.

The ATM will have a key-operated switch

that will allow an operator to start and stop the

servicing of customers. After turning the switch to

the "on" position, the operator will be required to

verify and enter the total cash on hand. The

machine can only be turned off when it is not

servicing a customer. When the switch is moved to

the "off" position, the machine will shut down, so

that the operator may remove deposit envelopes

and reload the machine with cash, blank receipts,

etc.

As well as functional requirements there are a

number of non-functional requirements i.e.

expected quality requirement such as:

Performance — how long does a transaction take?

Availability — what are the hours of operations?

Security — how to identify the client

Usability — is the client able to cancel the

operation?

Modifiability — how long does it take to change

the authentication mechanism?

Reusability — how easy is it to reuse existing

components?

By applying the framework, the potential

defects in the application development will be

identified thus the number of defects leaking to the

implementation stage will be reduced. In addition

an estimation of the quality requirements and

quality factors will be produced.

3.4.2 Design Aspects

At a high level the ATM machine is based

on four main services, Authentication Service for

user authentication including card verification, PIN

etc.

Transaction Service reflecting the required

transactions, withdraw, deposit etc. Storage Service

which is used for storing the transactions as well as

user details, and Client Service that provides the

interface to user of the ATM such as menu (Figure

4).

Figure 4: ATM System

Services are linked together for example

the Client Service provides an interface on the local

machine to invoke other services such as

Authentication and Transaction Services. The same

applies to other services for example

Authentication Service invokes a signal to other

services such as Storage Service checking and

verifying users. A number of services (use cases)

are represented in the use case diagram (Figure 5).

Figure 5 Use Case Diagram [13]

3.4.3 Design Granularity

Having considered both functional and

non-functional requirements as well as the main

services (use cases) and flow of services, the next

stage is to consider the level of granularity of

services and its impact on the software quality

factors as well as the potential defects. Thus,

different designs will be considered, but they

should reflect the basic SOA principles, and that

can be achieved through a variety of

styles/granularity. Thus, in the design of the

services and their architecture we seek to evaluate

the different granularity i.e. fine grain, coarse grain

and thick grain, and their impact on defects as well

as quality factors.

They might lead not only to serious

defects but even to software failures. Tiny service

is an SOA anti-pattern that corresponds to thin

service with a small number of methods. This often

requires several thin services that are coupled to be

used together for the composition of client

applications which adds to service management

complexity. On the other hand, multi service

corresponds to a large service that with a larger

number of methods. This might reduce service

reusability because of the low cohesion of its

methods. Thus, for the ATM case study we apply

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 38 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 38 | P a g e

the framework using different levels of granularity,

fine, coarse and thick. The aim is to produce

potential defects portfolio and quality estimation,

and providing a comparison between the different

granularity levels.

3.4.3.1 Fine Grain

The identified, from user requirements,

service candidates are mapped to a typical SOA

configuration (Figure 6) and include

Authentication, Balance Inquiry, Withdraw,

Deposit, etc. Each of the fine grain services were

designed to reflect the business logics and rules. In

summary all functional requirements and all

operations are considered as services i.e. the ATM

application is made up of all the individual

services. Clearly this is a fine grain approach (tiny

services).

Figure 6 Fine Grain Services

3.4.3.2 Coarse Grain

Next some of the operations discussed in

the previous sections are aggregated in a logical

and consistent fashion to create the ATM

application. The aim is to create coarse grain

services that are still meeting all the functional

requirements. For, example in Transaction Service

will be comprised of a number of operations such

as Withdrawal, Deposit, Balance query etc. while

Authentication will have check Id, Check PIN,

change PIN etc. As shown in Figure 7 the

operations are represented by various

components/services that follow the principles of

SOA.

Figure 7 Coarse Grain Services

3.4.3.3 Thick Grain

Finally, some of the services/components

presented in the previous section are aggregated

from the three tier architecture of the system, with

frontend, middleware and backend components,

with services/operations mapped to different

components still in a logical and consistent fashion

to create the ATM application. The aim is to create

think grain services that are still meeting all the

functional requirements as shown in Figure 8.

Figure 8 Three Tier Architecture

3.4.4 Evaluation and Observation

The next stage is to apply the framework

on the different architectural styles and produce an

estimate of defects and the impact of software

metrics such as size, complexity, coupling,

cohesion etc. and to use the metrics values to

produce a quality estimation including the most

relevant, from SOA point of view, software quality

factors that have been identified in the non-

functional requirements. This evaluation will allow

us not only to evaluate the framework but also to

make a comparison between different SOA based

architectural styles.

The first stage is to produce the defects portfolio

for the different levels of granularity as shown in

figures 9, 10 and 11.

Figure 9 Fine Grain Services

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 39 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 39 | P a g e

Figure 10 Coarse Grain Services

Figure 11 Thick Grain Services

The comparison of the various granularity

levels for the case study has shown that fine grain

style shows a lower degree of coupling, than the

other two styles, coarse and thick grain, in fact the

degree of coupling seems to be increasing as we

move from fine, to coarse and then to thick

services. In terms of complexity thick grain style

has the lower complexity followed by coarse grain

and finally by fine grain style. The experiment also

has shown that the size is highest for fine grain, and

the lowest for thick grain due to additional code

associated with each layer (Service Interface Layer,

Business Layer, and Data Access Layer).

The second phase is to consider the impact on

software quality factors, particularly reusability and

performance as key factors for SOA applications

(Figure 12).

Figure 12 Software Quality Factors

The comparison of the various granularity

levels for the case study has shown that fine grain

styles tends to promote higher reusability than

larger grain styles. In fact the larger the granularity

the less reusable individual services become.

Performance on the other hand shows the opposite

trend, i.e. the higher the granularity the better the

performance. This is directly linked to coupling

and complexity metrics. Thus, we conclude that

there should be a compromise between reusability

and performance, so coarse grain services seem to

offer this compromise between the two factors

(figure 13), but this will at the end depend very

much on the type of applications and the user

requirements.

Figure 13 Different Granularity Impacts

Overall, fine grained services are

relatively simple and provide small and well

specified functionalities. They have the advantage

of being easily reusable, i.e. they provide high

reusability which is a very important quality factor.

They can be used by many services within an

application domain or across multiple domains and

typically require the transmission of small amounts

of data. The disadvantage is that they might

become a very large number of services which is

hard to manage. This might have negative impact

on performance which is another important

software quality factor, for example when multiple

calls to different services with real time

communication and data transfer. On the other

hand coarse grained services will be fewer

therefore they require less management, with

possibly better performance but lower reusability

.In addition they might require larger volumes of

data to be transmitted and be more complex for

other services to use. Thick grain services almost

approach full blown applications.

4. Conclusion

Ideally, one would want to optimize for all

quality attributes, but the fact is that this is nearly

impossible, because any given system has trade-off

points that prevent this. Essentially, changing one

quality attribute often forces a change in another

quality attribute either positively or negatively. The

purpose of this section was to investigate the

applicability of the DESQA framework and how

the design defects measuring matrix can assess

attributes of size, complexity, coupling, and

cohesion using quality metrics. Thus, after

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 40 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 40 | P a g e

preliminary research study and date selection to

build a defects measuring matrix, a case study was

presented where different SOA styles for the same

applications were compared using the framework.

However, there are a number of

limitations associated with the case study. Firstly,

relatively a small numbers of participants were

used to design the proposed matrix. Secondly,

implementations are not fully operational due to the

absence of experiences, although the designs and

implementations are structurally complete. Such

factors could influence matrix under investigation.

In addition, the chosen case study although it is

used as a proof of concept it is relatively

straightforward, perhaps a larger and more complex

case study needs to be considered in future work.

IV. CONCLUSIONS

Quality is an important goal in the

software development process and the detection of

design defects and their correction early in the

development process substantially reduce the cost

of subsequent activities of the development and

support phases. Bad design and software defects

often make source codes hard to understand and

lead to maintenance difficulties. Whereas detecting

and fixing defects make programs easier to

understand by developers. Implementation of

corrective and preventive actions is the path

towards improvement and effectiveness of software

quality. The correction solutions, a combination of

refactoring operations, should minimize, as much

as possible, the number of defects detected using

the detection rules.

Defect prevention practices enhance the

ability of software developers to learn from those

errors and, more importantly, learn from the

mistakes of others. Effective defect tracking begins

with a systematic process. It involves a structured

problem-solving methodology to identify, analyze

and prevent the occurrence of defects. Defect

prevention is a framework and ongoing process of

collecting the defect data, doing root cause

analysis, determining and implementing the

corrective actions and sharing the lessons learned

to avoid future defects.

Service-oriented architecture (SOA) is an

architectural design pattern based on distinct pieces

of software providing application functionality to

support service-orientation. In this research, a

detailed definition and discussion of SOA, its

characteristics and principles are presented. The

adoption and governance are also discussed. Web

services can implement an SOA. So, the web

services technology, which is the most appropriate

environment to develop SOA currently, is also

mentioned. Other technologies for implementing

SOA, such as CORBA are also considered.

Software quality measurement is about

quantifying to what extent software design

possesses desirable characteristics. In this research

software quality of service-oriented architecture

and its models (McCall quality model, Boehm's

quality model, Dromey's generic quality model and

ISO quality model) are discussed in detail. The

tools of measuring the software quality (quality

metrics) are reviewed and discussed.

V. FUTURE WORK
The important limitations of this study are

concerned with its generalizability. So, based on

the work presented in this thesis, there are a

number of areas that can be further improved and

carried forward.

The perception of quality differs from

individual to individual, a further improvement can

be added by redeploying the design defect

measuring matrix using large numbers of

participants when building it and increasing the

number of quality attributes, the number of quality

metrics and the number of design attributes. The

main purpose of that is to standardize them, to

build the trust and the confidence level between the

provider and the consumer and will continue to

evolve as more new technologies emerge on the

horizon.

Although there are areas that could have

helped improve the framework significantly, the

work presented so far has been able to demonstrate

how the aim can be analyzed. The case study

discussed in this thesis is limited to one application,

the first suggestion is related to the fact that the

implementation was carried out in a simulated

environment with the results presented. It would be

of great benefit for this to be tested in a real-life

case. It also will be interesting if the scope is

expanded to includelarge number of applications

which form part of the whole business. The

DESQA framework can be adapted in the design

process using its measuring matrix components and

can incorporate metrics to measure design defects.

A reverse engineering methodology can be added

to this system to improve the traceability of

individual components of the system or incorporate

changes easily. To improve granularity a refined

pattern can be added to the future expansion.

The second relates to the extension of

framework applications. As seen in the evaluation

of the results, the framework was designed with the

possibility to extend it to adapt additional quality

metrics. The extension can be considered in future

work by building complexities to adapt more

different design attributes and quality metrics. The

last suggestion relates to testing the framework for

the impact of larger and potentially conflicting

Dr.KhaledKh. S . Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -3) April 2017, pp.33-41

www.ijera.com DOI: 10.9790/9622-0704033341 41 | P a g e www.ijera.com DOI: 10.9790/9622-0704033341 41 | P a g e

quality requirements in non-controlled

environments.

BIBLIOGRAPHY
[1]. Moha, Gueheneuc& Leduc (2009). Bad

Smell in Design Patterns.Journal of the

Object Oriented Technology.

[2]. Kessentini, M.,Sahraoui,

H.,&Boukadoum, M. (2008). Model

Transformation as an Optimization

Problem.Proc.MODELS: 159-173 Vol.

5301 of LNCS. Springer.

[3]. Pressman, S. (2005). Software

Engineering: A Practitioner's Approach

(Sixth International ed.). McGraw-Hill

Education. Pp. 388.

[4]. Clements, P., Bachmann, F., Bass,

L.,Garlan, D.,Ivers, J., Little, R.,Merson,

P., Nord, R.,&Stafford, J. (2010).

Documenting Software Architectures:

Views and Beyond, Second Edition.

Addison-Wesley,Boston.

[5]. Bell, M. (2008). Introduction to Service-

Oriented Modeling. Service-Oriented

Modeling: Service Analysis, Design, and

Architecture. Wiley & Sons.

[6]. M. Riad, Alaa, E. Hassan, Ahmed, & F.

Hassan, Qusay (2009). Investigating

Performance of XML Web Services in

Real-Time Business Systems. Journal of

Computer Science & Systems Biology 02

(05): 266–271.

[7]. Gopalakrishnan Nair, T.R.,& Suma, V.

(2010). The Pattern of Software Defects

Spanning across Size Complexity.

International Journal of Software

Engineering.

[8]. Jäntti, M.,Toroi, T.,&Eerola, A. (2006).

Difficulties in Establishing a Defect

Management Process: A Case Study.

Journal of Software Engineering.Springer.

[9]. Booch, G., Rumbaugh, J.,& Jacobson,I.

(1999). The Unified Modeling Language

User Guide. Addison-Wesley.Reading,

MA.

[10]. Frost, R., Hafiz, R. & Callaghan, P.

(2007). Modular and Efficient Top-Down

Parsing for Ambiguous Left-Recursive

Grammars., 10th International Workshop

on Parsing Technologies (IWPT), ACL-

SIGPARSEJune 2007, Prague. Pp 109-

120.

[11]. Yingxu, W., Yanan, Z., Philip, C., Xuhui,

L. & Hong, G., (2010). The Formal

Design Model of an Automatic Teller

Machine (ATM). International Journal of

Software Science and Computational

Intelligence, 2(1): 102-131.

[12]. RajniPamnani, PramilaChawan, Satish

Salunkhe. Object Oriented UML

Modeling for ATM Systems. Department

of computer technology, VJTI University,

Mumbai.

[13]. Wikipedia. ―ATM System‖

www.wikipedia.org/wiki/Automated_telle

r_machine

http://www.wikipedia.org/wiki/automated_teller_machine
http://www.wikipedia.org/wiki/automated_teller_machine

