
Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application   www.ijera.com 

ISSN : 2248-9622, Vol. 7, Issue 4, ( Part -2) April 2017, pp.53-61 

 

 
www.ijera.com                                 DOI:  10.9790/9622-0704025361                         53 | P a g e  

 

 

 

 

 

Re-Engineering Complex Process Control Systems Using Sub-

Process Agents. 
 

Ifeyinwa Obiora-Dimson,
*
 
 
Hyacinth C. Inyiama,

*
 
 
Omijeh Bourdillon Omijeh

**
 

*
Department of Electronic and Computer Engineering. Nnamdi Azikiwe University, Awka, Nigeria 

**
Department of Electronic and Computer Engineering University of Portharcourt, Portharcourt Nigeria   

 

ABSTRACT 

A process control systems design method whose architecture incorporates the use of agents, process agents and 

subprocess agents to further reduce the complexity of the system was developed. This is an improvement on an 

earlier architecture which employed only agents and process agents in its processing. An Algorithmic State 

Machine (ASM) chart of a complex system with or without a natural divide can be segmented into sub-units and 

a sub-process agent assigned to each sub-unit. Each of these sub-process agents ensures that systems 

performance information of each sub-unit is obtained and stored. These information would be used when 

evaluating system performance or for error tracking. The information also serves for process optimization and 

maintenance. This improved architecture is therefore one that employes state agents to execute the activities of 

each of the states in an ASM chart, sub-process agents to take charge of the state agents in one sub-unit and a 

process agent to co-ordinate the activities of the sub-process agents. The upper tank control system of a 

beverage blending machine was developed using this improved architecture.  

Keywords: Agents, Complex systems, Performance, Process agents, Sub-process agents,     

 

I. INTRODUCTION 
Okafo and Inyiama [1] proposed a flexible 

automation scheme for the beverage blending 

industry as captured in fig1. This is comprised of 

three main segments namely: 

a. The upper tank control segment comprised of 

four upper tanks each meant to contain just one 

type out of four different types of pure fruit juices 

to be blended together in some ratio to form a 

beverage drink. 

b. The lower tank control segment which is 

comprised of four lower tanks each of which takes 

a known quantity of fruit juice from the upper tank 

just above it from which the ratio of juice for each 

blending process is dispensed to the mixer below it 

through a connecting pipe. 

c. The mixer control segment which receives a 

predetermined proportion of juice from each lower 

tank and blends them together into a beverage. The 

blending ratio for the fruit juices can be changed as 

desired.  Each of these three control segments calls 

for a separate state machine, thus forming a multi-

processor system which co-operatively achieves a 

complex blending operation. 

For the purpose of illustrating how a sub-process 

agent might be used to realize each state machine, 

it is sufficient to focus on just the upper tank 

control system. Fig. 2 shows the upper tank control 

segment alone.  Processed pure juice of a particular 

type (say orange juice, or apple juice or grape fruit 

juice or water melon) is poured into the lower cup 

attached to each upper tank (fig2). That causes the 

spring loaded piston below the Cup to block the 

light path of an opto-coupler arrangement and thus 

automatically triggers the pumping of the fruit juice 

from the Cup to the corresponding upper tank. The 

process happens simultaneously in all the four 

upper tank positions. The number of upper 

tank/lower cup pairs corresponds to the number of 

fruit juices used in the blending process. If only 

three fruit juices are being blended in a given ratio, 

the number of upper tank/lower cup pairs would be 

three instead of four. If five fruit juices are being 

blended, the number of upper tank/lower cup pairs 

would be five and so on. 
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Fig 1: Beverage blending machine [1] 

 

 
Fig 2: the upper tank control system 

 

The ASM chart of fig 3 shows what 

happens at each of the upper tank/lower cup 

positions as operational hands process and pour 

into the lower cup each of the pure fruit juices 

needed for beverage blending. Referring to fig 3, 

(the ASM chart for the upper tank control system) 

the state name of each state in the ASM chart is 

written at the bottom left hand corner of the state 

box and every rectangular box in the ASM chart is 

a state box. The boxes with rounded ends are not 

state boxes but rather conditional output boxes 

showing an output that would occur only when the 

control system follows the link path (i.e. the path 

from one state to another) in which there is that 

rounded ends box. The state machine produces the 

output labeled in the box with rounded ends and 

continues to the state immediately after it. Name(s) 

inserted into a rectangular box are called state 

outputs and occur whenever the state machine is in 

the state with the name(s). In the ASM chart (fig 3) 

a diamond box is a decision box containing the 

name of the qualifier or variable on which decision 

depends. A decision box has one entry path and 

two exit paths [3]. If the qualifier is at logic 1, the 

state machine follows one exit path and if it is logic 

0 the state machine follows the other exit path. The 

logic state of the qualifiers in the decision boxes 

defines when a particular link path is to be 

followed as the state machine transits from one 

state to the other. 
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Fig 3: ASM chart of the upper tank control 

 

The ASM chart of fig 3 has four identical sub-units, each for the processing of pure beverage from a 

lower 

cup to the corresponding upper tank. Each 

upper tank has two sensors one to sense when the 

tank is low on stock (i.e. UBVT1L, UBVT2L, 

UBVT3L and UBVT4L) and the other to sense 

when the tank is full (i.e. UBVT1F, UBVT2F, 

UBVT3F and UBVT4F). UBVT1L means upper 

beverage tank 1 low and UBVT1F means upper 

beverage tank 1 full and so on for the other tanks in 

the arrangement. Sub-unit 1 is comprised of states 

ST0, ST1, ST2 and ST3. Sub-unit 2 is comprised of 

state ST4, ST5, ST6, and ST7. Sub-unit 3 is 

comprised of states ST8, ST9, ST10 and ST11 

while the fourth sub-unit is comprised of states 

ST12, ST13, ST14 and ST15.  

The sub-units and their constituents are as 

summarized in table I. Because the sub-units are 

identical, one per upper tank position it suffices to 

explain in detail what happens in one of the four 

upper tank positions, namely upper tank 1 

comprised of states ST0, ST1, ST2 and ST3. The 

sub-unit starts from state ST0. The state machine 

checks if the upper beverage tank is full of 

processed beverage. (i.e. if UBVT1F=1). If not, it 

checks if new fruit juice has been poured into the 

lower cup attached to tank 1 (i.e. if NBV1=1). If 

so, it turns ON the beverage pump 1 (i.e. 

BVPMP1) to pump fruit juice from the lower cup 

to upper beverage tank 1. The pumping of fresh 

juice into upper tank 1 continues until either upper 

tank 1 is full or until there is no fresh fruit juice in 

the lower cup attached to upper tank 1. 

If upper tank 1 becomes full (i.e. UBVT1F =1) the 

state machine goes to state 2 and at the next clock 

pulse it continues to state ST3. If however upper 

tank 1 is not full (i.e. UBVT1F=0) but there is no 

fresh juice to pump into the upper tank (i.e. 

NBV1=0), the state machine goes straight to state 

ST3. 

At state ST3, the state machine checks if upper 

tank 1 is low on stock. If it is not low, (i.e. if 
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UBVT1L=0), the state machine goes to state ST4 

to commence processing for upper tank 2. If upper 

tank 1 is low on stock (i.e. if UBVT1L=1) and 

fresh fruit juice has now been poured in the lower 

cup attached to upper tank 1 (i.e. NBV1=1) the 

state machine goes back to state ST1 to pump it 

into the upper tank 1. If however, upper tank 1 is 

low on stock (i.e. if UBVT1L=1) but there is no 

fresh fruit juice processed into the lower cup 

position attached to upper tank 1 (i.e. NBV1=0), 

the conditional output meant to serve as beverage 

alarm to the processing hands (i.e. NBV1AL) is 

output and the state machine immediately goes to 

state ST4 to commence processing for upper 

tank 2.  

 

Table I: Variable parameters of the sub-units for the pseudo code 

SUB-UNITS States Qualifiers Outputs Conditional 

outputs 

Tank ID 

SUB UNIT 1 STO 

ST1 

ST2 

ST3 

UBVT1F 

UBVT1L 

NBV1 

 

BVPMP1 NBV1AL UPPER 

BEVERAGE 

TANK 1 

 

SUB UNIT 2 ST4 

ST5 

ST6 

ST7 

UBVT2F 

UBVT2L 

NBV2 

BVPMP2 NBV2AL UPPER 

BEVERAGE 

TANK 2 

SUB UNIT 3 ST8 

ST9 

ST10 

ST11 

UBVT3F 

UBVT3L 

NBV3 

BVPMP3 NBV3AL UPPER 

BEVERAGE 

TANK 3 

SUB UNIT 4 ST12 

ST13 

ST14 

ST15 

UBVT4F 

UBVT4L 

NBV4 

BVPMP4 NBV4AL UPPER 

BEVERAGE 

TANK 4 

 

II. STATE AGENT BASED CONTROL 

SYSTEMS 
If a control system to control the four sub-

units that handle the tracking of fresh fruit juices 

into upper tank 1 through 4 were to be 

implemented using only state agents and a 

coordinating process agent, the control system will 

have the architecture shown in fig 4. Since each 

state is typically handled by one state agent, 16 

state agents activated one after the other by the 

process control agent would have to be deployed in 

such a control system. [4]  

This arrangement has one major 

drawback. The notion of sub-units comprising the 

control system is lost during the control process. 

System performance information that needed to be 

stored after each sub-process is not obtained. The 

state agents simply work in an order determined by 

the qualifiers as processing progresses from upper 

tank 1 to upper tank 4.  

 

Fig 4: Process-agent and agent relationship [4, 8] 
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III. SUB-PROCESS AGENTS IN 

NATURALLY SEGMENTED 

CONTROL SYSTEMS 
The upper tank control is concerned with a 

number of identical sub-units, in this case, four 

sub-units. It would be nice if management and/or 

maintenance information is obtained and kept after 

each subunit (upper tank 1 say) is processed before 

proceeding to other sub-units one after the other 

(i.e. sub-units 2, 3 and 4). Such information 

obtained after processing each sub-unit would be 

very helpful when checking system performance, 

tracking errors, and also in process optimization. A 

new control architecture (fig 5) is therefore 

proposed to facilitate this approach.  

In fig 5, a sub-process agent is defined to 

handle each sub-unit. Sub-process agent 1 handles 

upper tank 1 processing, sub-process agent 2 

handles upper tank 2 processing, sub-process agent 

3 handles upper tank 3 processing while sub-

process agent 4 handles upper tank 4 processing. If 

there were more or less upper tanks in the control 

scheme used, there would be one sub-process agent 

per upper tank. Also, because this control process 

is naturally segmented into identical sub-units one 

segment per upper tank, it is possible to have just 

one sub-process agent for all the upper tanks and 

merely change the actual parameters as one moves 

from one upper tank processing to the next. 

The operation of the architecture of fig 5 

is as follows. The process control agent initiates the 

control process by calling the sub-process agent 

once per upper tank but supplying the formal 

parameters when invoked at the beginning of each 

upper tank processing. In pseudo code one can 

depict it as follows: 

ProcessAgent void() 

Do  

    Call SubProcessAgent (ST0, ST4) 

    Obtain and store needed information for upper 

tank 1 

    Call SubProcessAgent (ST4, ST7) 

    Obtain and Store Needed Information for Upper 

Tank 2  

    Call SubProcessAgent (ST7, ST12) 

    Obtain and Store Needed Information for Upper 

Tank 3 

    Call SubProcessAgent (ST12, ST15)  

    Obtain and Store Needed Information for upper 

tank 4 

Forever. 

 

 
Fig 5: Block diagram of the sub-process agent based control system 

 

A sub-process begins processing from the 

first state in the actual parameters and stops when it 

encounters the first state of the next upper tank. 

Both the process agent and the sub-process agent 

have access to the input/output ports. Once a sub-

process agent is called, it continues invoking all the 

State Agents under it until the particular upper tank 

is fully processed. It then returns control to the 

Process Agent which then obtains feedback and 

other necessary housekeeping information needed 

at that stage before invoking the Sub Process Agent 

with new formal parameters for the processing of 

the next upper tank in sequence. 
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IV. SUB-PROCESS AGENTS FOR SUB-

DIVIDED COMPLEX CONTROL 

SYSTEM 
The control systems using sub-process 

agents would work equally well for complex 

control systems that are not naturally segmented 

into subunits. A sub-process agent as defined here 

begins processing from the first state mentioned in 

the formal parameter list until it encounters the last 

state mentioned in the formal parameters list but 

merely treats it as an indication that it has 

completed its current control tasks. Therefore, any 

complex control system can be subdivided into 

sub-units with equal or unequal number of states 

per subunit and a sub-process agent can be used to 

process each subunit beginning from the first state 

mentioned in its parameter list and returning 

control to the process agent when it encounters the 

last state name in its parameter list. This becomes a 

convenient means of dividing any complex control 

system into subunits for easy processing using sub 

process agents, with provision for feedback and 

pertinent management/maintenance information 

procurement in between sub-units. 

V. CONTROL SYSTEM DESIGN USING 

SUB-PROCESS AGENTS 
When designing digital control systems 

represented by an ASM chart, the first step is to 

transform the ASM chart into a state transition 

table (STT) which contains the same information as 

the corresponding ASM chart but is in a form more 

amenable for use to conclude the remaining design 

stages. [5] The STT is a must whether one is using 

state agents only or state agents controlled via a 

sub-process agent or doing a conventional logic 

design not based on agents. Table II shows the 

State Transition Table (STT) corresponding to the 

ASM chart of fig 3. It is important to bear in mind 

the capacity of the microcontroller in terms of 

input/output ports needed for the control process. 

Typically for an 8051 microcontroller, there are a 

total of 4 I/O ports but because of the control of 

keypad and Liquid Crystal Display (LCD) etc 

which take up some of the I/O ports, it is safer to 

assume that the control system under design has 

available to it just one 8-bit port for input and one 

8-bit port for output.  

 

Table: II State transition table corresponding to fig 3 ASM chart. 

Link 

path 

Present state 

code 

Qualifiers Next state 

code 

State 

outputs 

Conditional output 

 D C B A 

U
B

T
1

F
  

U
B

T
1

L
 

 N
B

V
1

 

U
B

T
2

F
 

 U
B

T
2

L
  

N
B

V
2

 

U
B

T
3

F
 

 U
B

T
3

L
  

N
B

V
3

 

U
B

T
4

F
 

 U
B

T
4

L
 

 N
B

V
4

 

  

D′C′B′A′ 

B
V

P
M

P

1
 

B
V

P
M

P

2
 

B
V

P
M

P

3
 

B
V

P
M

P

4
 

N
B

V
1

A

L
 

N
B

V
2

A

L
 

N
B

V
3

A

L
 

N
B

V
4

A

L
 

L1 0 0 0 0 1 - - - - - - - - - - - 0 0 1 0 0 0 0 0 0 0 0 0 

L2 0 0 0 0 0 – 0 - - - - - - - - -  0 0 1 1 0 0 0 0 0 0 0 0 

L3 0 0 0 0 0 – 1 - - - - - - - - -  0 0 0 1 0 0 0 0 0 0 0 0 

L4 0 0 1 0 - - - - - - - - - - - -  0 0 1 1 0 0 0 0 0 0 0 0 

L5 0 0 1 1 - 1 - - - - - - - - - -  0 1 0 0 0 0 0 0 0 0 0 0 

L6 0 0 1 1 - 1 0 - - - - - - - - -  0 1 0 0 0 0 0 0 1 0 0 0 

L7 0 0 1 1 - 1 1 - - - - - - - - -  0 0 0 1 0 0 0 0 0 0 0 0 

L8 0 0 0 1 1 - - - - - - - - - - -  0 0 1 0 1 0 0 0 0 0 0 0 

L9 0 0 0 1 0 – 0 - - - - - - - - -  0 0 1 1 1 0 0 0 0 0 0 0 

L10 0 0 0 1 0 – 1 - - - - - - - - -  0 0 0 1 1 0 0 0 0 0 0 0 

L11 0 1 0 0 - - - 1 0 - - - - - - - 0 1 1 0 0 0 0 0 0 0 0 0 

L12 0 1 0 0 - - - 0 – 0 - - - - - -   0 1 1 1  0 0 0 0 0 0 0 0 

L13 0 1 0 0 - - - 0 – 1 - - - - - -  0 1 0 1 0 0 0 0 0 0 0 0 

L14 0 1 1 0 - - - - - - - - - - - -  0 1 1 1 0 0 0 0 0 0 0 0 

L15 0 1 1 1 - - - - 1 - - - - - - -  1 0 0 0 0 0 0 0 0 0 0 0 

L16 0 1 1 1 - - - - 1 0  - - - - - - 1 0 0 0 0 0 0 0 0 1 0 0 

L17 0 1 1 1 - - - - 1 1 - - - - - - 0 1 0 1 0 0 0 0 0 0 0 0 

L18 0 1 0 1 - - - 1 - - - - - - - - 0 1 1 0 0 1 0 0 0 0 0 0 

L19 0 1 0 1 - - - 0 – 0 - - - - - - 0 1 1 1 0 1 0 0 0 0 0 0 

L20 0 1 0 1 - - - 0 – 1 - - - - - - 0 1 0 1 0 1 0 0 0 0 0 0 

L21 1 0 0 0 - - - - - -1 - -  - - -  1 0 1 0 0 0 0 0 0 0 0 0 

L22 1 0 0 0 - - - - - - 0 – 0  - - -  1 0 1 1 0 0 0 0 0 0 0 0 

L23 1 0 0 0 - - - - - -0 – 1 - - -  1 0 1 1 0 0 0 0 0 0 0 0 

L24 1 0 1 0 - - - - - - - - - - - - 1 0 1 1 0 0 0 0 0 0 0 0 

L25 1 0 1 1 - - - - - - - 1 - - - -  1 1 0 0 0 0 0 0 0 0 0 0 

L26 1 0 1 1 - - - - - - - 1 0 - - -  1 1 0 0 0 0 0 0 0 0 1 0 

L27 1 0 1 1  - - - - - - - 1 1 - - -  1 0 0 1 0 0 0 0 0 0 0 0 
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In the ASM chart for upper tank control system, we have the following inputs: 4 decision boxes each 

containing an input variable (called qualifier) per sub-unit. For the four subunits shown, a total of 12 input lines 

are needed just for the qualifiers alone. Also the state code of 4-bits must appear at the input to facilitate the 

control process. 

Therefore a minimum of 16 lines are needed as against 8-lines available in an input port. On the output 

side there are 1 output and 1 conditional output lines per subunit, giving a total of 8 output lines. Furthermore, 4 

secondary outputs called next state codes are required for the control process, again giving a total of 12 lines for 

output in this control process. Since the 8051 microcontroller equipped with only four 8-bit I/O ports [6, 7] 

obviously cannot cope with the number of lines required, a technique [2] must be found that could implement 

the system without needing so many I/O lines. Furthermore, each dash in the state transition table (table II) must 

be expanded into 0’s and 1’s as dashes cannot be stored in ROM. All possible combinations of the dashes are 

needed for ROM based design leading to what is known as combinatorial explosion. If this method were taken 

we would need a ROM size of 2
16

 address locations and much design effort to implement this control system. 

An alternative approach is to introduce input multiplexing and output decoding [2] in order to fit the 

control system’s I/O lines into the processor (8051) in use. The architecture for this later design approach is 

shown in fig 6. Table III is therefore the modified Fully Expanded State Transition Table (FESTT) using 

input/output multiplexing/decoding respectively. Note that only one 8-bit port is needed for input and only one 

8-bit port for output in this later design.  

 This uses fewer I/O and fewer rows than if the former un-multiplexed and un-decoded I/O lines (of 

table II) were to be fully expanded. That one has 16 columns, its full expansion gives rise to 2
16

 rows = 64k 

rows while table 3 has 6 address columns which give rise to 2
6
 = 64 rows. That implies a much reduced control 

system design effort for this microcontroller based control system. 

 

L28 1 0 0 1 - - - - - - 1 - -  - - -  1 0 1 0 0 0 1 0 0 0 0 0 

L29 1 0 0 1 - - - - - - 0 – 0  - - -  1 0 1 1 0 0 1 0 0 0 0 0 

L30 1 0 0 1 - - - - - - 0 – 1 - - -  1 0 0 1 0 0 1 0 0 0 0 0 

L31 1 1 0 0 - - - - - - - - - 1 - -  1 0 1 1 0 0 0 0 0 0 0 0 

L32 1 1 0 0 - - - - - - - - - 0 – 0  1 1 1 1 0 0 0 0 0 0 0 0 

L33 1 1 0 0 - - - - - - - - - 0 – 1 1 1 0 1 0 0 0 0 0 0 0 0 

L34 1 0 1 1 - - - - - - - - - - - - 1 1 1 1 0 0 0 0 0 0 0 0 

L35 1 1 1 1 - - - - - - - - - - 1 -  0 0 0 0 0 0 0 0 0 0 0 0 

L36 1 1 1 1 - - - - - - - - - - 1 0  0 0 0 0 0 0 0 0 0 0 0 1 

L37 1 1 1 1 - - - - - - - - - - 1 1  1 1 0 1 0 0 0 0 0 0 0 0 

L38 1 1 0 1 - - - - - - - - - 1 - - 1 0 1 1 0 0 0 1 0 0 0 0 

L39 1 1 0 1 - - - - - - - - - 0 – 0  1 1 1 1 0 0 0 1 0 0 0 0 

L40 1 1 0 1 - - - - - - - - - 0 – 1 1 1 0 1 0 0 0 1 0 0 0 0 
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Table III: Modified Fully Expanded State Transition Table 

 

Link 

path 

Present state 

code 

Qualifiers ROM 

address 

Next state 

code 

Conditional 

output 

Memory 

content 

 D C B A 

Q
1

  

Q
2

 

 

  

 D′C′B′A′ 

N
B

V
1

A
L

 

N
B

V
2

A
L

 

N
B

V
3

A
L

 

N
B

V
4

A
L

 

 

L1 0 0 0 0 1  0  02 0 0 1 0 0 0 0 0 20 

L1 0 0 0 0 1  1 03 0 0 1 0 0 0 0 0 20 

L2 0 0 0 0 0  0  00 0 0 1 1 0 0 0 0 30 

L3 0 0 0 0 0  1   01 0 0 0 1 0 0 0 0 10 

L4 0 0 1 0 0   0 08 0 0 1 1 0 0 0 0 30 

L4 0 0 1 0 0   1 09 0 0 1 1 0 0 0 0 30 

L4 0 0 1 0 1   0 0A 0 0 1 1 0 0 0 0 30 

L4 0 0 1 0 1   1 0B 0 0 1 1 0 0 0 0 30 

L5 0 0 1 1 1 0   0E 0 1 0 0 0 0 0 0 40 

L5 0 0 1 1 1 1   0F 0 1 0 0 0 0 0 0 40 

L6 0 0 1 1 1 0  0E 0 1 0 0 1 0 0 0 48 

L7 0 0 1 1 1  1  0F 0 0 0 1 0 0 0 0 10 

L8 0 0 0 1 1  0  06 0 0 1 0 0 0 0 0 20 

L8 0 0 0 1 1  1  07 0 0 1 0 0 0 0 0 20 

…… ........ …… ........ …… ........ …… 

…… ........ …… …… ........ …… …… 

L26 1 0 1 1 1 0  2E 1 1 0 0 0 0 1 0 C2 

L27 1 0 1 1  1 1  2F 1 0 0 1 0 0 0 0 90 

L28 1 0 0 1 1 0  26 1 0 1 0 0 0 0 0 A0 

L28 1 0 0 1 1 1  27 1 0 1 0 0 0 0 0 A0 

L29 1 0 0 1 0  0  24 1 0 1 1 0 0 0 0 B0 

L30 1 0 0 1 0  1   25 1 0 0 1 0 0 0 0 90 

L31 1 1 0 0 1  0   32 1 0 1 1 0 0 0 0 B0 

L31 1 1 0 0 1  1  33 1 0 1 1 0 0 0 0 B0 

L32 1 1 0 0 0  0  30 1 1 1 1 0 0 0 0 F0 

L33 1 1 0 0 0  1 31 1 1 0 1 0 0 0 0 D0 

L34 1 0 1 1 0   0  2C 1 1 1 1 0 0 0 0 F0 

L34 1 0 1 1 0   1  2D 1 1 1 1 0 0 0 0 F0 

L34 1 0 1 1 1   0  2E 1 1 1 1 0 0 0 0 F0 

L34 1 0 1 1 1   1  2F 1 1 1 1 0 0 0 0 F0 

L35 1 1 1 1 1  0  3E 0 0 0 0 0 0 0 0 00 

L35 1 1 1 1 1  1  3F 0 0 0 0 0 0 0 0 00 

L36 1 1 1 1 1 0  3E 0 0 0 0 0 0 0 1 01 

L37 1 1 1 1 1 1  3F 1 1 0 1 0 0 0 0 D0 

L38 1 1 0 1 1  0 36 1 0 1 1 0 0 0 0 D0 

L38 1 1 0 1 1  1 37 1 0 1 1 0 0 0 0 D0 

L39 1 1 0 1 0 0  34 1 1 1 1 0 0 0 0 F0 

L40 1 1 0 1 0 1 35 1 1 0 1 0 0 0 0 D0 
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Having realised an acceptable Fully 

Expanded State Transition Table (FESTT), the next 

step is to form the ROM addresses and their 

contents as demanded by this application. In every 

row of the FESTT, the present state code and the 

qualifiers constitute an address and the Next State 

Code, and conditional outputs along the same row 

constitute the content of that address in ROM (table 

III). Once the ROM address thus formed, are 

populated with their corresponding contents, the 

FESTT is subdivided into states according to the 

present state code. Since the state code  is 4-bits 

long and there are 16 states in all, these 16 states 

are therefore allocated to 16 state agents, namely 

state agent 0 through state agent 15 (table IV). The 

work of each state agent is to supply the output 

byte whenever it is invoked by the sub-process 

agent. Provided the state agents are invoked in the 

sequence suggested by the ASM chart of fig 3 and 

the logic levels of its qualifiers and the output 

allocated to each state is produced as and when due 

the control system represented by the ASM chart of 

fig 3 works as desired. 

 

Table IV: Allocation of state agents and sub-process agents 

s/n State code Agent Sub process 

1 0000 Agent 0 Subprocess 1 

2 0001 Agent 1 

3 0010 Agent 2 

4 0011 Agent 3 

5 0100 Agent 4 Subprocess 2 

6 0101 Agent 5 

7 0110 Agent 6 

8 0111 Agent 7 

9 1000 Agent 8 Subprocess 3 

10 1001 Agent 9 

11 1010 Agent 10 

12 1011 Agent 11 

13 1100 Agent 12 Subprocess 4 

14 1101 Agent 13 

15 1110 Agent 14 

16 1111 Agent 15 

 

VI. CONCLUSION 
A sub process agent assisted control logic 

design scheme has been proposed and exemplified 

by using this approach to design a control system 

for upper tank control in beverage blending 

process. Techniques for reducing drastically the 

design effort needed to realise complex control 

systems have also been shown using input 

multiplexing and output decoding.  
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