
Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 49 | P a g e

MATLAB Implementation of 128-key length SAFER+ Cipher

System

*Musaria K. Mahmood
,
**Lujain S. Abdulla, **Ahmed H. Mohsin, and

**Hamza A. Abdullah
*Department of Communication and Electronics Engineering, Philadelphia University, Amman, Jordan

**

Department of Electrical Engineering, University of Tikrit, Tikrit, Iraq

ABSTRACT
Data security is a major challenge today. To protect data in the Internet or in private networks many measures

exist. The most important security layer is the use of encryption standard to protect information from

eavesdropper. Today many encryption standards exist failing in two categories: symmetric and asymmetric key

algorithms. In this work Secure And Fast Encryption Routine (SAFER+) standard is implemented using

MATLAB. The development in computer programming techniques and languages offers a good opportunity of

the software implementation of encryption standards with moderate cost and good performance. MATLAB can

be considered today as the first engineering programming language with powerful mathematical function and

reliable programming procedures.

Keywords: MATLAB, SAFER+, Symmetric key, software implementation

I. INTRODUCTION
The word today enters the era of data

gathering, classification, sharing and then protection

especially by the exponential increase of the use of

computer networks and mobile system. Data

protection becomes practically the important

challenges to be faced. Cryptography is the most

important countermeasure for securing data in

general. SAFER+ is a symmetric key standard where

the same key is shared by a sender and a receiver. It

was one of the candidates for the last round for the

Advanced Encryption standard (AES). Designed by

James Massie (Messey) in Cylink in 1998, it is the

new algorithm of the family SAFER (SAFER-64

SAFER-128) [1]. It is one of the symmetric key

algorithms known by its speed of data encryption

that made it capable to be used for real-time data

encryption requirements [2]. SAFER+ presents a

good hardware-software tradeoff orientation,

simplicity, high throughput compared to other

algorithms, and low memory requirement [3], [4].

This encryption standard carries attention by its use

as security measure in Bluetooth and wireless

communication [5]. Hardware implementation of

SAFER+ encryption algorithm was presented in the

beginning of the deployment of the encryption

standard which was proven to be very efficient [6].

Bluetooth communication provides a short-

run distance wireless communication between

devices and other network with low cost and low

power making it important part of the modern world

where it [7]. SAFER+ is the most outstanding

encryption standard in Bluetooth security

architecture. A confrontation of SAFER+ standard

with existing encryption algorithms proves the

superiority of this algorithm in VLSI implementation

in Bluetooth devices [8], [9] [10]. The technical

values of SAFER+ are not limited to the hardware

implementation and to the Bluetooth communication

protection, but can be spreading to others areas [2].

In [11], a software evaluation of SAFER+ is

implemented where its performances are evaluated

based on the efficiency of the algorithm. In this

paper a software platform is developed based on the

implementation of SAFER+ cipher system on

MATLAB with 128-bits key length. This platform

can be used for data encryption from personal use to

small institution. Results of the implementation

show good performances in encryption of data in

general. An innovative programming procedure is

presented for the implementation of nonlinear

functions which are the most difficult step of

programming implementation. This paper is

organized as follows. The module structures of

SAFER+ are described in Section II. The software

implementation of the algorithm and results

discussion is presented in Section III. Finally in

section IV a conclusion of the work is given.

II. SAFER+ ENCRYPTION AND

DECRYPTION PROCEDURES
The encryption system is composed by

three different modules: the encryption, decryption

and the keys schedules modules. Each module is a

combination of several logic functions with two non-

linear functions based on logarithm and exponential

computation.

RESEARCH ARTICLE OPEN ACCESS

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 50 | P a g e

2.1 SAFER+ ENCRYPTION METHOD

SAFER+ is a block cipher system which

encrypts (decrypts) a block of 128 bits data at a time,

using a key of 128 bits length (can also be of length

192 or 256 bytes). Input data (Plain text) is subject

to a number of encryption rounds (R) giving

encrypted output data. R is related to the keys length

as:
R = 8 rounds if key length =128 bits (16 bytes),

R = 12 rounds if key length =192 bits (24 bytes),

R = 16 rounds if key length =256 bits (32 bytes).

For the three cases the input plaintext is

grouped into 128 bits blocks. In this work the cipher

system with 128 bits key length is implemented

because other options (192 or 256 bits key length)

are found with certain key feebleness [12]. Fig. 1

presents the principals of SAFER+ algorithm

mechanism.

2.2 KEYS SCHEDULE

Algorithm users own the 128 bits (16-

bytes) principal key (), from what a number of

(16) other keys () are generated using key

schedule module with 128 bits length for each key.

Two keys are used for each round and the last key

() is used for the output transformer.

(a) Encryption

(b) Decryption

Figure 1: Structure of SAFER+ standards

The key schedule module uses sample

arithmetic and logic functions like bit rotation, bit-

by-bit exclusive-or of bytes, modulo 256 addition of

bytes, and byte selection process.

The key schedule for the 16 bytes input key

is exposed in Fig. 2. The 16 sub keys () are

computed in the following manner. The user secret

key itself is used as the first sub key (K1) and is also

loaded into the first 16 byte positions of a 17-byte

key register (KB1 to KB16). The last byte position of

this register (KB17) is then loaded with the bit-by-bit

modulo two, sum of the 16 bytes of the user selected

key. Each byte of the key register is then rotated

leftwards by three bits positions. The second sub key

K2 is then calculated as modulo 256 -sum of the

bytes of 16-byte bias word (B2) with the bytes

number KB2, KB3…, and KB17 respectively. Each

byte of the key register is then again rotated

leftwards by 3 bit positions. K3 is calculated as the

sum modulo 256 of the 16-byte bias word (B3) with

the bytes number KB3, KB4,....KB17, and KB1

respectively. B matrix is used by SAFER+ standard

to randomize the round sub keys [1]. The first bias

word (B1) is a "dummy" never used but it is defined

for programming purpose. Bi denotes the i
th

 bias

word and let denote the j
th

 byte of this i
th

 bias

word computed as follows:

 (1)

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 51 | P a g e

Figure 2: sub key production

2.3 ENCRYPTION PROCEDURE

SAFER+ is a symmetric block cipher

standard. Fig. 3 shows SAFER+ encryption structure

where the input is the plaintext block of 16-bytes

(PT1…PT16). 17 Sub key produced by the key

schedule (each sub key of 16 bytes length) are used

in the encryption rounds as two keys for each round.

Round (i) uses key K2i-1 and K2i. K17 is used for the

output transformation as bit-by-bit exclusive-or and

modulo 256 byte addition. The 16-byte input data of

round (i) (RT1…RT16) are bit-by-bit XOR, and

modulo 256 addition of bytes with the key K2i-1.

Bytes 1, 4, 5, 8, 9, 12, 13, and 16 of round input data

and round sub-key K2i-1 are added together bit-by-bit

modulo two. Other bytes are added together modulo

256.

The results are then fed to a nonlinear layer.

The value (x) of byte (j) is converted to (45
x
 mod

257) for j = 1, 4, 5, 8, 9, 12, 13, and 16 (with the

Convention that when x = 128, then 45
128

 mod 257 =

256 is represented by a 0). The value (x) of byte (j)

is converted to log45(x) for j = 2, 3, 6, 7, 10, 11, 14,

and 15 (with convention that when x = 0, then log45

(0) = 128). The output of the nonlinear layer is then

subjected to the same addition and XOR operation

similar to the first block with key K2i but with

opposite order as shown in figure 4. At the end of

round (i), matrix multiplication is used. The 16 bytes

are multiplied by matrix (M) in mod 256 arithmetic.

M is a 16 × 16 predefined matrix given as fixed

input. M is used in the encryption process while

is used in the decryption process. At the end of

round (8) the message is processed by the output

transformer to give the 16-bytes (CT1…CT16) cipher

text as shown at the bottom of the fig. 3.

M= (2)

 (3)

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 52 | P a g e

2.4 DECRYPTION PROCEDURES

The decryption module has the reverse

process that used in encryption module. The

encrypted data is injected to the input transformation

where key K17 is used. The input transformation uses

the same functions of the output transformation but

with modulo 256 subtraction of bytes instead of

bytes addition as in Fig. 3. Decryption round,

mathematical functions are simply the inverse

operations from the encryption round. The first

operation is a multiplication of input data (here

encrypted data) by the matrix which is modulo

256 inverse of M. The round sub-key () is

then "subtracted" from the input round cipher text

(x) in the manner that the round sub key bytes 1, 4,

5, 8, 9, 12, 13, and 16 are subtracted modulo 256

from the corresponding bytes of (x) while round sub

key bytes 2, 3, 6, 7, 10, 11, 14, and 15 are added bit-

by bit modulo 2 to the corresponding bytes of (x).

The resulting bytes are directed to the non linear

stage with log45(x) and as in the encryption

process but with reverse order of log and

exponential. The round sub-key (is then

subtracted from the 16-bytes result in the reverse

manner of the previous subtraction stage.

III. MATLAB IMPLEMENTATION AND

RESULTS
The algorithm implementation is achieved; many

case studies are used to evaluate the performance of

the encryption routine. SAFER+ is a block

symmetric key encryption algorithm which can

encrypt (decrypt) data of any kinds as images, video,

numerical data, or speech. The fact that the

algorithm is proved to be a fast routine presents the

possibility to encrypt data in real time. The software

implementation of SAFER+ requires a high

performances computer for running the algorithm in

real time conditions.

Encryption, Decryption, and sub-keys

production modules have to calculate some values

many times during the program execution. To avoid

the repetition at every step, calculations are done

once; results are stored, called when needed in the

program. These sub-programs are conversion of

binary to decimal, decimal to binary, logarithmic

function, exponential function, and bias matrix (B).

3.1 Implementation of Logic Functions

MATLAB is a powerful language, possesses a large

library of logic and mathematical function.

Functions used to implement SAFER+ are:

 Add: P+K

 Sub: C-K

 Modulo:

 mod(x,y)

 Matrix multiplication: PT*M

 Xor: xor(p(i), k(i))

 Rotate: R(:,1:5)=B(:,4:8); R(:,6:8)=B(:,1:3);

Figure 3: Encrypting and Decrypting structure of the SAFER+ algorithm [1]

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 53 | P a g e

 Figure 4: Encrypting round structure

3.2 Logarithmic and Exponential Functions

The most difficult programming step in SAFER+ is

the implementation of nonlinear functions which are

here the exponential and logarithmic functions.

These functions are defined as:

Exponential function:

 (4)

Logarithmic function:

 (5)

The difficulty of implementing exponential

function comes from the fact that can be a huge

number impossible for MATLAB and other

programming tools to handle it. The power of the

number 45 gives a very large value for ()

where the output cannot calculated directly. A sub

program is developed in this work to overcome the

limitation of MATLAB to handle big numbers as

presented in figure (5). Three cases are present in

this procedure:

1- if , then

2- if , then is computed directly using

(4)

3- if put ,

, then

Logarithmic function given (5) is the inverse

function of the exponential given in (4). The above

is used to calculate , for one

time, stored in a one row matrix to be used by the

program.

3.3 Image Encryption/Decryption

The implemented algorithm can be used for images

encryption by following these steps:

 Read and convert the image into a three-

dimensional matrix with each element value

ranging from 0 to 255.

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 54 | P a g e

Figure 5: exponential and logarithmic functions

 Convert the matrix into a serial flow of numbers

given as one row.

 Add a number of redundant elements with fixed

value to get a total elements number that can be

divided by (16) which is encrypted block size.

The added elements will be removed after

decryption and before the regeneration of the

original images.

 Convert data into two- dimensional matrix with

number of columns equal to (16). One row of

(16) elements is encrypted at a time presenting

one block.

 At the receiver side the reverse operations are

implemented to regenerate the original

messages.

3.4 Results of Implemented Algorithm

Running the implemented program requires

a principal 16-byte key. Input data can be blocks of

16-byte blocks or primitive data such as an image.

Each byte is given as a number between 0 and 255

and can be coded on 8- bits binary word.

The key: 41-35-190-132-225-108-214-174-82-144-

73-241-241-187-233-235.

Plaintext: 179-166-219-60-135-12-62-153-36- 94-

13-28 6-183-71-222

After running the program a cipher text of 16-byte is

produced:

Cipher text block is: 224-31-182-10-12-255-84-70-

127-13-89-249-9 -57-165-220

At the receiver side the original message is

regenerated by the decryption and key schedule

modules and using the same principal key:

Regenerated message: 179-166-219-60-135-12-62-

153-36- 94-13-28 6-183-71-222.

In the case of image or any other primitive

data, first data must be grouped into 16-byte blocks

as explained in (3.3), and then presented at the

encryption module input. Fig. 6-a presents image

(A) to be encrypted. Fig. 6-b, the same image after

encryption is represented, and looks as a pure

undefined noise. Fig. 6-c the original image after the

application of decryption module with the

appropriate principal key is regenerated. If another

key is used or just on bit error in the principal key

the image cannot be regenerated and still appearing

as noise as in fig. 6-d.

Figure (6): Encryption /decryption of an image

IV. CONCLUSION
 SAFER+ presents an encryption decryption

algorithm with good hardware software

implementation. An encryption decryption platform

is implemented by SAFER+ using MATLAB. This

platform can be used for data encryption from

personal use or for small institution with

insignificant cost. Results of the implementation

show a good performance in encryption of pictures

and data in general. The speed of SAFER+ routine

presents an opportunity to use it for the encryption

of all type of data.

ACKNOWLEDGEMENTS

Musaria K. Mahmood.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 2, (Part -5) February 2017, pp.49-55

www.ijera.com DOI: 10.9790/9622- 0702054955 55 | P a g e

This research was supported by the Institute of

International Education- SRF. We are thankful for

their help.

REFERENCES
[1] J. Messy, H. Kh and K. Kuregian,

Nomination of SAFER+ as a candidate

algorithm for the AES, 1998.

http://csrc.nist.gov/archive/aes/round1.

[2] Musaria K. Mahmood, and Fawzi M. Al-

Naima, Developing a multi-layer strategy

for securing control systems of oil

refineries, wireless Sensor Network, 2,

2010, 520-527.

[3] A. Schubert, and W. Anheier, Efficient

VLSI implementation of modern symmetric

block ciphers, Proc. 6
th

 IEEE International

Conf. on Electronics, Circuits and Systems,

Cyprus Sep. 1999, Vol. 2, 757 – 760.

[4] Swarnendu M., Debashis G., and Somnath

N., A New Generation Cryptographic

Technique, International Journal of

Computer Theory and Engineering, 1(3),

2009, 284-287.

[5] I. S. Ashour, Online Data and Voice

Encryption System Based on FPGA, Proc.

24
th

 National Radio Science Conf., Cairo,

National Republican Senatorial Committee,

2007, 1-7.

[6] P. Kitsos; N. Sklavos; O. Koufopavlou,

Hardware implementation of the SAFER+

encryption algorithm for the Bluetooth

system, Proc. IEEE International

Symposium on Circuits and Systems, 2002,

Vol. 4, 878 -881.

[7] U.L. Muhammed, S. Mosharani, S.

Amuthapriya, M.M. Mufthas, M. Hezretov,

and D. Dhammearatchi, Bluetooth security

analysis and solution, International Journal

of scientific and research publication, 6(4),

2016, 333-338.

[8] B. J. Babu, D. Kishore, and R. V. V.

Krishna, Design of SAFER+ encryption

algorithm for Bluetooth transmission,

International Journal of innovative

technology and research, 3(1), 2015, 1864-

1867.

[9] B. Manthan A., and A. S. Shingh,

Multilevel security algorithm for Bluetooth

technology, International Journal for

Research in Technological Studies, 1(1),

2013, 1-7.

[10] V. P. Babu, B. Sreenivas, T. P. Kumar, and

R. J. Lai, Cracking Bluetooth security,

International Journal of applied sciences

and Engineering Research, 3(2), 2014, 540-

545.

[11] D. Sharmila and R. Neelaveni, Performance

Analysis of SAFER+ and Triple DES

Security Algorithms for Bluetooth Security

System, International Journal of Computer

Science and Network Security, 9(2), 2009,

74-87.

[12] J. Kelsey, B. Schneier and D. Wagner, Key

Schedule Weaknesses in SAFER+, Proc.

2ndAdvanced Encryption Standard

Candidate Conf., Rome, 1999, 155- 167.

http://csrc.nist.gov/archive/aes/round1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6565
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6565

